Bone marrow-derived mesenchymal stem cell and simvastatin treatment leads to improved functional recovery and modified c-Fos expression levels in the brain following ischemic stroke

Document Type : Original Article

Authors

1 Neuroscience Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran

2 Electrophysiology Research Centre, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran

3 Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,

4 Departmentof Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran

5 Department of Anatomy, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran

6 Genetics and Development Division, Krembil Research Institute, Toronto, ON, Canada

Abstract

Objective(s): The beneficial outcomes of bone marrow-derived mesenchymal stem cell (BMSC) treatment on functional recovery following stroke has been well established. Furthermore, 5-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors have also been shown to increase neuronal survival and promote the movement of BMSCs towards the sites of inflammation. However, the precise mechanisms mediating the improved neurological functional recovery in stoke models following a combination treatment of Simvastatin and BMSCs still remained poorly understood.
Materials and Methods: Here, an embolic stroke model was used to experimentally induce a focal ischemic brain injury by inserting a preformed clot into the middle cerebral artery (MCA). Following stroke, animals were treated either with an intraperitoneal injection of Simvastatin, an intravenous injection of 3 ×106 BMSCs, or a combination of these two treatments.
Results: Seven days after ischemia, the combination of Simvastatin and BMSCs led to a significant increase in BMSC relocation, endogenous neurogenesis, arteriogenesis and astrocyte activation while also reducing neuronal damage when compared to BMSC treatment alone (PConclusion: These results further demonstrate the synergistic benefits of a combination treatment and help to improve our understanding of the underlying mechanisms mediating this beneficial effect.

Keywords

Main Subjects


1. Petito CK, Feldmann E, Pulsinelli WA, Plum F. Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology 1987; 37:1281-1281.
2. Lee WS, Abbud R, Smith MS, Hoffman GE. LHRH neurons express cJun protein during the proestrous surge of luteinizing hormone. Endocrinology 1992; 130:3101-3103.
3. Colotta F, Re F, Polentarutti N, Sozzani S, Mantovani A. Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood 1992; 80:2012-2020.
4. Bao X, Wei J, Feng M, Lu S, Li G, Dou W, et al. Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats. Brain Res 2011; 1367:103-113.
5. He X-Y, Chen Z-Z, Cai Y-Q, Xu G, Shang J-H, Kou S-B, et al. Expression of cytokines in rat brain with focal cerebral ischemia after grafting with bone marrow stromal cells and endothelial progenitor cells. Cytotherapy 2011; 13:46-53.
6. Wakabayashi K, Nagai A, Sheikh AM, Shiota Y, Narantuya D, Watanabe T, et al. Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J Neurosci Res 2010; 88:1017-1025.
7. Wei L, Fraser JL, Lu Z-Y, Hu X, Yu SP. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol Dis 2012; 46:635-645.
8. Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res 2003; 73:778-786.
9. Hess DC, Hill WD, Martin-Studdard A, Carroll J, Brailer J, Carothers J. Bone marrow as a source of endothelial cells and NeuN-expressing cells after stroke. Stroke 2002; 33:1362-1368.
10. Zhang ZG, Zhang L, Jiang Q, Chopp M. Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res 2002; 90:284-288.
11. Chen L, Tredget EE, Wu PY, Wu Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PloS one 2008; 3:e1886.
12. Fathke C, Wilson L, Hutter J, Kapoor V, Smith A, Hocking A, et al. Contribution of bone marrow–derived cells to skin: collagen deposition and wound repair. Stem cells 2004; 22:812-822.
13. Schinköthe T, Bloch W, Schmidt A. In vitro secreting profile of human mesenchymal stem cells. Stem Cells Dev 2008; 17:199-206.
14. Pirzad Jahromi G, Seidi S, Sadr SS, Shabanzadeh AP, Keshavarz M, Kaka GR, et al. Therapeutic effects of a combinatorial treatment of simvastatin and bone marrow stromal cells on experimental embolic stroke. Basic Clin Pharmacol Toxicol 2012; 110:487-493.
15. Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochimica et Biophysica Acta (BBA) 1991; 1072:129-157.
16. Hoffman GE, Lee W-S, Smith MS, Abbud R, Roberts M, Robinson A, et al. c-Fos and Fos-related antigens as markers for neuronal activity. NIDA research monograph 1993; 125:117-133.
17. Jørgensen MB, Wright DC, Gehlert DR. Delayed c-fos proto-oncogene expression in the rat hippocampus induced by transient global cerebral ischemia: an in situ hybridization study. Brain Res 1989; 484:393-398.
18. Kindy M, Carney J, Dempsey R, Carney J. Ischemic induction of protooncogene expression in gerbil brain. J Mol Neurosci 1990; 2:217-228.
19. Uemura Y, Kowall NW, Moskowitz MA. Focal ischemia in rats causes time-dependent expression of c-fos protein immunoreactivity in widespread regions of ipsilateral cortex. Brain Res 1991; 552:99-105.
20. Badoer E, McKinley MJ, Oldfield BJ, McAllen RM. Distribution of hypothalamic, medullary and lamina terminalis neurons expressing Fos after hemorrhage in conscious rats. Brain Res 1992; 582:323-328.
21. Herrera D, Robertson H. N--methyl-d-aspartate receptors mediate activation of the c-fos proto-oncogene in a model of brain injury. Neuroscience 1990; 35:273-281.
22. Elmquist JK, Ackermann MR, Register KB, Rimler RB, Ross LR, Jacobson CD. Induction of Fos-like immunoreactivity in the rat brain following Pasteurella multocida endotoxin administration. Endocrinology 1993; 133:3054-3057.
23. Pirzad Jahromi G, Shabanzadeh Pirsaraei A, Sadr SS, Kaka G, Jafari M, Seidi S, et al. Multipotent bone marrow stromal cell therapy promotes endogenous cell proliferation following ischemic stroke. Clin Exp Pharmacol Physiol 2015; 42:1158-1167.
24. Rezazadeh H, Kahnuee MH, Roohbakhsh A, Shamsizadeh A, Rahmani MR, Bidaki R, et al. Neuroprotective consequences of postconditioning on embolic model of cerebral ischemia in rat. Iran J Basic Med Sci 2013; 16:144149.
25. Shabanzadeh AP, Shuaib A, Wang CX. Simvastatin reduced ischemic brain injury and perfusion deficits in an embolic model of stroke. Brain Res 2005; 1042:1-5.
26. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 2001; 32:1005-1011.
27. Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 1986; 17:472-476.
28. Shabanzadeh A, Tassew N, Szydlowska K, Tymianski M, Banerjee P, Vigouroux R, et al. Uncoupling Neogenin association with lipid rafts promotes neuronal survival and functional recovery after stroke. Cell Death Dis 2015; 6:e1744.
29. Zhang L, Chen J, Li Y, Zhang ZG, Chopp M. Quantitative measurement of motor and somatosensory impairments after mild (30 min) and severe (2 h) transient middle cerebral artery occlusion in rats. J Neurol Sci 2000; 174:141-146.
30. Albers GW, Easton JD, Sacco RL, Teal P. Antithrombotic and thrombolytic therapy for ischemic stroke. Chest 1998; 114:683S-698S.
31. Sadraie S, Kaka G, Mofid M, Torkaman G, Monfared MJ. Effects of low intensity pulsed ultrasound on healing of denervated tibial fracture in the rabbit. Iran Red Crescent Med J 2011; 13:34-41.
32. Paxinos GW, C. The rat brain in stereotaxic coordinates. New York: Academic Press 1986.
33. Cui X, Chen J, Zacharek A, Roberts C, Savant-Bhonsale S, Chopp M. Treatment of stroke with (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl) amino] diazen-1-ium-1, 2-diolate and bone marrow stromal cells upregulates angiopoietin-1/Tie2 and enhances neovascularization. Neuroscience 2008; 156:155-164.
34. Cui X, Chopp M, Zacharek A, Roberts C, Lu M, Savant-Bhonsale S, et al. Chemokine, vascular and therapeutic effects of combination simvastatin and BMSC treatment of stroke. Neurobiol Dis 2009; 36:35-41.
35. Cui X, Chopp M, Zacharek A, Zhang C, Roberts C, Chen J. Role of endothelial nitric oxide synthetase in arteriogenesis after stroke in mice. Neuroscience 2009; 159:744-750.
36. Shena LH, Lia Y, Chopp M. Astrocytes mediate bone marrow stromal cell transplantation enhanced glial cell derived neurotrophic factor (GDNF) production in the ischemic boundary zone after stroke in adult rats. Glia 2010; 58:1074–1081.
37. Padalkar Ramchandra K, Bhagat MPSMD, Sonali S. Study of neuron–specific enolase as potential biomarker for assessing the severity and outcome in patients with cerebrovascular accidents. GJMR 2014; 14.
38. Quertainmont R, Cantinieaux D, Botman O, Sid S, Schoenen J, Franzen R. Mesenchymal stem cell graft improves recovery after spinal cord injury in adult rats through neurotrophic and pro-angiogenic actions. PLoS One 2012; 7:e39500.
39. Shabanzadeh A, D’onofrio P, Monnier P, Koeberle P. Targeting caspase-6 and caspase-8 to promote neuronal survival following ischemic stroke. Cell Death Dis 2015; 6:e1967.
40. Barreto G, E White R, Ouyang Y, Xu L, G Giffard R. Astrocytes: targets for neuroprotection in stroke. Cent Nerv Syst Agents  Med Chem 2011; 11:164-173.
41. Kowiański P, Lietzau G, Steliga A, Waśkow M, Moryś J. The astrocytic contribution to neurovascular coupling–still more questions than answers? Neurosci Res 2013; 75:171-183.
42. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol 2010; 119:7-35.
43. Ma N, Harding AJ, Pamphlett R, Chaudhri G, Hunt NH. Increased c-fos expression in the brain during experimental murine cerebral malaria: possible association with neurologic complications. J Infect Dis 1997; 175:1480-1489.
44. Mohammadian M, Boskabady MH, Kashani IR, Jahromi GP, Omidi A, Nejad AK, et al. Effect of bone marrow derived mesenchymal stem cells on lung pathology and inflammation in ovalbumin-induced asthma in mouse. Iran J Basic Med Sci 2016; 19:55-63.
45. Mohammadian M, Sadeghipour HR, Kashani IR, Jahromi GP, Omidi A, Nejad AK, et al. Evaluation of simvastatin and bone marrow-derived mesenchymal stem cell combination therapy on airway remodeling in a mouse asthma model. Lung 2016; 194:777-785.
46. da Silva Meirelles L, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 2009; 20:419-427.
47. Uccelli A, Benvenuto F, Laroni A, Giunti D. Neuroprotective features of mesenchymal stem cells. Best Pract Res Clin Haematol 2011; 24:59-64.
48. Van Poll D, Parekkadan B, Rinkes IB, Tilles A, Yarmush M. Mesenchymal stem cell therapy for protection and repair of injured vital organs. Cell Mol Bioeng 2008; 1:42-50.
 49. Borlongan CV, Lind JG, Dillon-Carter O, Yu G, Hadman M, Cheng C, et al. Bone marrow grafts restore cerebral blood flow and blood brain barrier in stroke rats. Brain Res 2004; 1010:108-116.
50. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 2001; 32:1005-1011.
51. Chen J, Chopp M. Neurorestorative treatment of stroke: cell and pharmacological approaches. NeuroRx 2006; 3:466-473.
52. Cui X, Chen J, Zacharek A, Li Y, Roberts C, Kapke A, et al. Nitric oxide donor upregulation of stromal cell‐derived factor‐1/chemokine (CXC Motif) receptor 4 enhances bone marrow stromal cell migration into ischemic brain after stroke. Stem Cells 2007; 25:2777-2785.
53. Cui X, Chopp M, Zacharek A, Dai J, Zhang C, Yan T, et al. Combination treatment of stroke with sub-therapeutic doses of Simvastatin and human umbilical cord blood cells enhances vascular remodeling and improves functional outcome. Neuroscience 2012; 227:223-231.
54. Zhao Y, Zhang Q, Chen Z, Liu N, Ke C, Xu Y, et al. Simvastatin combined with bone marrow stromal cells treatment activatesastrocytes to ameliorate neurological function after ischemic stroke in rats. Turk J Biol 2016; 40:519-528.
55. Chade AR, Zhu X, Mushin OP, Napoli C, Lerman A, Lerman LO. Simvastatin promotes angiogenesis and prevents microvascular remodeling in chronic renal ischemia. FASEB J 2006; 20:1706-1708.
56. Chen J, Cui X, Zacharek A, Chopp M. Increasing Ang1/Tie2 expression by simvastatin treatment induces vascular stabilization and neuroblast migration after stroke. J Cell Mol Med 2009; 13:1348-1357.
57. Bharosay A, Bharosay VV, Varma M, Saxena K, Sodani A, Saxena R. Correlation of brain biomarker neuron specific enolase (NSE) with degree of disability and neurological worsening in cerebrovascular stroke. Indian J Clin Biochem 2012; 27:186-190.
58. Colotta F, Polentarutti N, Sironi M, Mantovani A. Expression and involvement of c-fos and c-jun protooncogenes in programmed cell death induced by growth factor deprivation in lymphoid cell lines. J Biol Chem 1992; 267:18278-18283.
59. Verrier B, Müller D, Bravo R, Müller R. Wounding a fibroblast monolayer results in the rapid induction of the c-fos proto-oncogene. The EMBO J 1986; 5:913-917.
60. Kiessling M, Stumm G, Xie Y, Herdegen T, Aguzzi A, Bravo R, et al. Differential transcription and translation of immediate early genes in the gerbil hippocampus after transient global ischemia. J Cereb Blood Flow Metab 1993; 13:914-924.
61. Kogure K, Kato H. Altered gene expression in cerebral ischemia. Stroke 1993; 24:2121-2127.
62. Kreuzer J, Watson L, Herdegen T, Loebe M, Wende P, Kübler K. Effects of HMG-CoA reductase inhibition on PDGF-and angiotensin II-mediated signal transduction: suppression of c-Jun and c-Fos in human smooth muscle cells in vitro. Eur J Med Res 1999; 4:135-143.
63. Dechend R, Müller D, Park JK, Fiebeler A, Haller H, Luft FC. Statins and angiotensin II‐induced vascular injury. Nephrol Dial Transplant 2002; 17:349-353.
64. Rezaee F, Rellick SL, Piedimonte G, Akers SM, O’Leary HA, Martin K, et al. Neurotrophins regulate bone marrow stromal cell IL-6 expression through the MAPK pathway. PLoS One 2010; 5:e9690.
65. Shabanzadeh AP, Tassew NG, Szydlowska K, Tymianski M, Banerjee P, Vigouroux RJ, et al. Uncoupling Neogenin association with lipid rafts promotes neuronal survival and functional recovery after stroke. Cell Death Dis 2015 May 7;6:e1744.