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Objective(s): Tanshinone IIA (T. IIA), one of the most pharmacologically active components extracted 
from Salviae miltiorrhiza, has anti-inflammatory and antioxidant features. The aim of the present 
study is to investigate the benefit of T. IIA on asthma using a murine model of asthma induced by 
ovalbumin (OVA). 
Materials and Methods: Male BALB/c mice were used in the present study. The mice were sensitized by 
OVA intraperitoneal injection on days 0 and 14, and received aerosolized OVA challenge for 30 min daily on 
days 21-23. T. IIA (10 mg/kg twice daily) intraperitoneal injection was performed on days 18-23. 
Results: Treatment of T. IIA reduced the levels of interleukin (IL)-4, IL-5, and IL-13 in bronchoalveolar 
lavage fluid (BALF) (P<0.05 for all cases). The OVA-induced elevation of total white blood cells as 
well as differential white blood cells in BALF and blood were inhibited by T. IIA (P<0.05 for all cases). 
Moreover, airway hyperresponsiveness was dampened in T. IIA-treated group (P<0.05). T. IIA inhibited 
the activation of nuclear factor-κB in asthmatic mice (P<0.05). The activity of nuclear factor erythroid-
2-related factor 2 was enhanced in T. IIA-treated group (P<0.05). T. IIA elevated the activities of heme 
oxygenase-1, glutathione peroxidase, and superoxide dismutase (P<0.05 for all cases).
Conclusion: T. IIA inhibits OVA-induced airway inflammation and hyperresponsiveness. T. IIA is a 
potential therapeutic agent for asthma.

Article history:
Received: Mar 15, 2018
Accepted: Aug 11, 2018

Keywords: 
Asthma
Inflammation
Nuclear factor-κB
Oxidative stress
Tanshinone IIA

►Please cite this article as:  
Wang ShB, Guo XF, Weng B, Tang SP, Zhang HJ. Tanshinone IIA attenuates ovalbumin-induced airway inflammation and hyperresponsiveness in a murine 
model of asthma. Iran J Basic Med Sci 2019; 22:160-165. doi: 10.22038/ijbms.2018.30598.7375

Introduction
Airway hyper-responsiveness and inflammation are 

the most common features of asthma (1). Cytokines 
from T helper 2 (Th2) cells is believed to play a vital 
effect in organizing the chronic inflammation of asthma 
(1). Inhibition of inflammation is an important strategy 
for pulmonary inflammatory disorders (2-4). 

Nuclear factor erythroid-2-related factor 2 (Nrf2), 
a transcription factor, is known as a vital antioxidant 
defense mechanism. Scientific evidence has shown that 
Nrf2 is critical in protecting the lung against oxidative 
stress in asthma (5). Nuclear factor-κB (NF-κB), another 
important transcription factor, is believed to play a 
vital effect in organizing the expression of cytokines in 
pulmonary diseases (4). Inhibition of NF-κB has shown 
beneficial effect on asthma (6). Inhibition of NF-κB and 
activation of Nrf2 are associated with dampened airway 
inflammation and hyperresponsiveness in asthma (4, 
5). Thus, induction of Nrf2 and inhibition of NF-κB are 
potential strategy for reduction of asthma.

Despite significant advances in the management of 
asthma, novel treatments for asthma are still required 
as the current strategies have their limitations (7-
9). Recently, there are a growing interest on herbal 
medicines and natural products (10, 11). Tanshinone 
IIA (T.IIA) is a pharmacologically active component 

of Salviae miltiorrhizae, which is a traditional Chinese 
medicine and has antioxidant and anti-inflammation 
features (12-15). Oxidative stress-induced myocardial 
apoptosis was inhibited by T. IIA (16). T. IIA dampened 
lipopolysaccharide-induced pulmonary inflammation 
and edema in an animal model of acute lung injury (17). 
T. IIA is believed to play a beneficial role on chronic 
obstructive pulmonary disease (18). However, the effect 
of T. IIA on asthma remains unclear. The current study 
investigates the effect of T. IIA on ovalbumin (OVA)-
induced airway inflammation and hyperresponsiveness 
using a murine model of asthma. 

Materials and Methods
Animals

All experiments were conducted in accordance with 
the Helsinki convention for the use and care of animals. 
All experiment protocols were reviewed and approved 
by the Research Ethics Committee of Fujian Medical 
University.

Six-week old male BALB/c mice (obtained from 
the Experimental Animal Center of Fujian Medical 
University) were bred in a specific pathogen-free and 
temperature controlled (22±2 °C) animal facility. The 
mice were maintained on a 12 hr light/ 12 hr dark 
schedule and received standard laboratory rodent chow 
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and tap drinking water ad libitum. 

Sensitization and provocation protocols 
The sensitization and provocation protocols used in 

the present study were discussed previously (19). Mice 
were immunized using OVA (sigma-Aldrich, St Louis, 
MO, USA) intraperitoneal injection on days 0 and 14. OVA 
(50 μl) and an adjuvant, Al(OH)3 (50 μl, Pierce, Rockford, 
IL, USA), were dissolved in normal saline (NS; 200 μl) 
before use. From the day 21 to 23, animals were exposed 
to aerosolized OVA (1% OVA) for 30 min once daily. 
Mice in control group received the equivalent Al(OH)3 
diluted in NS intraperitoneal injection, and exposed to 
a nebulized aerosol of NS at the same time points as the 
OVA challenged animals.

T. IIA administration
T. IIA was obtained from Shanghai No. 1 Biochemical 

Pharmaceutical Co, Ltd. (Shanghai, China). The animals 
were randomly divided into various groups: control 
(sham+ NS), T. IIA control (sham+T. IIA), asthma+NS, and 
asthma+T. IIA group. Briefly, the mice were treated with 
intraperitoneal injection of 10 mg/kg T. IIA twice daily 
on days 18-23. The dose of T. IIA selected in the present 
study was based on previously published articles (13, 16) 
and our preliminary study (data not shown). Equivalent 
NS was administrated for control group. 

Bronchoalveolar lavage fluid (BALF) analysis
The mice were anesthetized (50 mg/kg thiopental 

intraperitoneal injection), and the trachea was 
cannulated with a 0.6 mm catheter and secured with a 
silk suture. Sterile NS (1 ml) was instilled through the 
catheter using a 1 mL syringe for 3 times. More than 
90% of BALF was withdrawn. Then, BALF centrifugation 
was performed (1,200 rpm for 5 min at 4 °C) using a 
cytocentrifugation (cytospin 3, Shandon Instruments, 
Pittsburgh, PA). The sediment cells were washed and 
stained with Giemsa stain. Total and different subtypes 
of white blood cells were counted with a hemocytometer. 
The supernatant was analyzed for cytokines.

Proinflammatory cytokines measurement 
Commercial enzyme-linked immunosorbent assay 

(ELISA) kits were used to measure the proinflammatory 
cytokine levels, including interleukin (IL)-4, IL-5, as well 
as IL-13, in BALF following the manufacturer’s protocol 
(eBioscience Co, San Diego, USA.). 

Airway responsiveness measurement 
The mice were anesthetized (50 mg/kg thiopental 

intraperitoneal injection) and mechanically ventilated 
with a rodent ventilator at 24 hr after the last aerosolized 
OVA or vehicle challenge. The mice were challenged 
with aerosolized methacholine (12.5, 25, 50 mg/ml; 
Sigma-Aldrich) or NS after being stabilized (19). Then, 
tissue resistance, tissue elastance, respiratory system 
elastance, respiratory system resistance, and airway 
resistance were measured (Buxco Research System). 

NF-κB and Nrf2 activity analysis 
A nuclear extract kit (Active Motif North America) was 

used to prepare nuclear extracts from lung tissues. NF-
κB p65 binding activity was detected by using an ELISA 
assay kit (Active Motif, Carlsbad, CA, USA) following 
the manufacturer’s protocol (20). Briefly, the nuclear 
extracts were incubated with the p65 subunit of NF-κB 
consensus site oligonucleotides (5`-GGGACTTTCC-3`) 
immobilized to 96-well plates. The DNA binding activity 
of NF-κB p65 was detected with an antibody specific 
to the activated form of NF-κB p65 and visualized 
by colorimetric reaction catalyzed by horseradish 
peroxidase-conjugated secondary antibody, and 
absorbance was measured at 450 nm with a reference 
wavelength of 655 nm.

A TransAM Nrf2 assay kit (Active Motif, Carlsbad, 
CA, USA) was used to measure the Nrf2 binding activity 
as described previously (21). Briefly, the nuclear 
extracts were incubated in 96-well plates coated with 
immobilized oligonucleotide containing a consensus 
(5`-GTCACAGTGACTCAGCAGAATCTG-3`) binding site for 
antioxidant response element. The Nrf2 binding activity 
to the target oligonucleotide was detected by incubation 
with primary antibody specific for DNA-bound Nrf2, 
visualized by horseradish peroxidase conjugate and 
developing solution, and quantified at 405 nm. 

Heme oxygenase (HO)-1 activity assay
The HO-1 activity in tissue homogenate was 

determined by measuring the generated bilirubin as 
previously described (22). Briefly, samples of lung tissue 
were added to a mixture containing glucose 6-phosphate, 
glucose 6-phosphate dehydrogenase, protohemin, and 
nicotinamide adenine dinucleotide phosphate. The 
reaction was continued for 1 hr at 37˚C. The bilirubin level 
was determined by a detection reader at excitation and 
emission wavelengths of 464 and 530 nm, respectively.

Antioxidant enzymes activities assay
A glutathione peroxidase (GPx) activity detection kit 

(Nanjing Jiancheng Bioengineering Institute, Jiangsu, 
China) was used to measure the GPx activity in lung 
homogenate. The GPx activity was determined by 
measuring the level of oxidized glutathione (GSSG), 
which was converted from glutathione (GSH) by GPx. 
The sample of lung tissue was incubated with H2O2. The 
absorbance of GSSG was measured at 412 nm. 

A superoxide dismutase (SOD) activity detection kit 
(Nanjing Jiancheng Bioengineering Institute, Jiangsu, 
China) was used to measure the SOD activity in lung 
homogenate. The level of formazan salt was used as an 
indicator of SOD activity. Briefly, sample of lung tissue 
was added to a mixture including tetrazolium salt and 
xanthine oxidase enzyme at 37 °C. The reaction was 
continued for 20 min. The absorbance of formazan salt 
was detected at 550 nm. 

Maleic dialdehyde (MDA) production measurement 
The MDA production was used to indicate reactive 

oxygen species (ROS) levels in pulmonary tissues. The 
sample of lung tissue was added to a mixture containing 
acetic acid, sodium dodecyl sulfate, aqueous solution 
of thio-barbituric acid, n-butanol, and pyridine. The 
mixture was shaken and centrifuged (4,000 rpm for 10 
min). The MDA production was determined at 532 nm 
by a detection reader.



Iran J Basic Med Sci, Vol. 22, No. 2, Feb 2019

Wang et al. Tanshinone IIA attenuates asthma

162

White blood cell analysis
Blood sample was collected by cardiac puncture 

under anesthesia (50 mg/kg ketamine intraperitoneal 
injection) with a heparinized syringe (5 ml) and 
analyzed as described previously (23).

Statistical analysis
All data were presented as mean±SEM. Differences in 

values were measured by one-way analysis of variance 
(ANOVA) followed by the Student-Newman-Keuls 
method, and were considered statistically significant if P 
value less than 0.05. SPSS 19.0 software (IBM, Armonk, 
USA) was used for all statistical analysis.

Results
T. IIA reduces airway inflammation

The total and differential white blood cells counts 
were shown in Figure 1A and Table 1. As indicated in 
Figure 1A, compared with control animals, the number 
of total inflammatory cells in BALF was increased in 
asthmatic mice (P<0.05). Meanwhile, the number of 
eosinophils in BALF was elevated in asthmatic mice 
(P < 0.05). In blood, the number of total inflammatory 
cells was increased by 1.74-fold in vehicle-treated 
asthmatic mice compared to control (P<0.05), (Table 
1). Similarly, the number of eosinophils in blood was 
elevated by 2.4-fold (P<0.05), (Table 1). T. IIA inhibited 
the total inflammatory cells and eosinophils in blood 
and infiltration in BALF (P<0.05 for all cases), (Table 
1; Figure 1A). The IL-4 level in BALF was increased 
by 6-fold in asthmatic mice (P<0.05), (Figure 1B). 
The OVA-induced elevating of IL-4 was inhibited by T. 
IIA treatment (P<0.05), (Figure 1B). Moreover, T. IIA 
treatment decreased IL-5 and IL-13 levels by 38% and 
45%, respectively (P<0.05 for both cases), (Figure 1C 
and D).

Effect of T. IIA on airway hyperresponsiveness
We performed a methacholine dose–response 

curve to evaluate if T. IIA protects lung against airway 
hyperresponsiveness. As shown in Figure 2, tissue 
resistance, tissue elastance, respiratory system elastance, 
respiratory system resistance, and airway resistance 
were increased in OVA-sensitized mice challenged with 

methacholine (P<0.05 for all cases). Our results showed 
that T.  IIA markedly inhibited airway hyperresponsiveness 
compared to vehicle-treated asthmatic mice (P<0.05 for 
all cases), (Figure 2A, B, C, D, and E).

T. IIA inhibits NF-κB activation and elevates Nrf2 activity
The activity of NF-κB was increased in OVA-treated 

mice (P<0.05), (Figure 3A). T. IIA treatment decreased 
the activity of NF-κB by 52% compared to the vehicle-
treated asthmatic mice (P<0.05), (Figure 3A). Moreover, 
T. IIA enhanced Nrf2 activity in asthmatic mice compared 
to vehicle-treated animals (P<0.05), (Figure 3B).

Effect of T. IIA on antioxidant enzymes activities and 
ROS production 

The activities of GPx, SOD, and HO-1 were enhanced 
in T. IIA-treated asthmatic animals (P<0.05 for all 
cases), (Figure 3C, D, and E). Moreover, T. IIA treatment 
inhibited the OVA-induced ROS generation compared to 
vehicle-treated asthmatic animals (P<0.05), (Figure 3F).

 

  Figure 1. Tanshinone IIA reduces inflammatory cells and 
proinflammatory cytokines in bronchoalveolar lavage fluid. Values 
are expressed as mean±SEM. * P<0.05, compared to Sham+ normal 
saline (NS) group; #P<0.05, compared to asthma+NS group. TIIA, 
Tanshinone IIA; BALF, bronchoalveolar lavage fluid; IL-4, interleukin 
-4; IL-5, interleukin -5; IL-13, interleukin-13

 

  Figure 2. Effects of Tanshinone IIA on respiratory system elastance 
(A), respiratory system resistance (B), airway resistance (C), tissue 
elastance (D), and tissue resistance (E). Values are expressed as 
mean±SEM. * P<0.05, compared to Sham+ normal saline (NS) group; 
#P<0.05, compared to asthma+NS group. T. IIA, Tanshinone IIA; Ers, 
respiratory system elastance; Rrs, respiratory system resistance

 

                        sham+NS    sham+T. IIA    asthma+NS    asthma+T. IIA 

Total cells        6.23±1.57    6.01±1.35     10.81±2.13*    7.83±1.53# 

Lymphocytes     4.23±0.78    4.02±0.91      6.26±1.46*    4.96±0.74# 

Neutrophils      1.55±0.17    1.56±0.22      3.45±0.66*       2.23±0.35# 

Eosinophils      0.21±0.09    0.18±0.10      0.50±0.23*       0.29±0.18# 

Monocytes       0.20±0.12    0.21±0.07      0.46±0.37*       0.32±0.15# 

 

 

Table 1. Effect of Tanshinone IIA on total blood and differential white 
blood cells counts (×103 cells/ml)

Values are as mean±SEM. *P<0.05, compared to Sham+normal 
saline (NS) group; # P<0.05, compared to asthma+NS group. T. IIA, 
Tanshinone IIA
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Discussion
Inflammation is believed to play a vital role in asthma 

(1). Thus, inhibition of inflammation is believed to 
be a fundamental strategy for controlling asthma. In 
the present study, T. IIA inhibited the infiltration of 
inflammatory cells in the lung, reduced the productions 
of IL-4, IL-5, and IL-13, and dampened airway 
hyperresponsiveness. Moreover, T. IIA inhibited NF-
κB activation, and elevated the activities of Nrf2 and 
antioxidant enzymes. The ROS production was reduced 
in T. IIA-treated group. These results suggest that T. IIA 
has benefit on OVA-induced asthma.

Activation of NF-κB appears to play a vital effect in 
the pathogenesis of pulmonary inflammatory disorders 
(4, 24). Accumulating evidences have indicated that 
inhibition of NF-κB has a benefit on asthma (4, 6). 
Evidences have shown that T. IIA inhibits the activation 
of NF-κB (25-28). T. IIA attenuates ischemia/reperfusion 
injury caused by liver grafts via down-regulation of the 
NF-κB pathway (29). Phosphorylated NF-κB and IκBα 
in abdominal aortic aneurysm induced by elastase 
perfusion were decreased by T. IIA treatment (30). The 
present results showed that T. IIA dampened NF-κB 
activation in asthmatic mice. This result suggests that 
inhibition of NF-κB is involved in the protective effect of 
T. IIA on asthma.

IL-4, IL-5, and IL-13 belong to Th2 cytokines, which 
play a fundamental effect in asthma (31-33). Evidences 
have shown that IL-4 exacerbated asthma via induction 
of autophagy in B cells (34). Deletion of IL-4 or IL-13 
using monoclonal antibodies has shown a benefit on 
asthma control (35). B cells and eosinophils exert a vital 
effect in asthma. Evidences have shown that IL-5 exerts 
an important role on maturation and differentiation of 
B cells and eosinophils (36). Our results showed that 
the levels of IL-4, IL-5, as well as IL-13 were reduced in 
T. IIA-treated asthmatic mice. Our findings, combined 

with previous data, suggest that the benefits of T. IIA 
on asthma are associated with its effect on inhibition of 
Th2 cytokines.

Oxidative stress is believed to play a notable role 
in the pathogenesis of asthma (37, 38). Inhibition of 
oxidative stress is associated with dampened asthma 
(37, 38). Nrf2 is a major transcription factor that 
regulates the expression of antioxidants (39). GPx and 
SOD are important antioxidants against asthma (40-43). 
SOD and GPx activities were elevated in T. IIA-treated 
rats with liver steatosis (44). Our results showed that 
the activities of SOD and GPx were up-regulated by T. IIA 
in asthmatic mice. 

Aside from the GPx and SOD, T. IIA also induced an 
increase in HO-1 activity in the present study. HO-1 is 
known as a cytoprotective enzyme (45). HO-1 plays an 
important role in maintaining cellular homeostasis (45). 
HO-1 reduces airway inflammation induced by OVA 
via inhibition of immune response that is mediated by 
Th17 cell (46, 47). Consistent with our study, evidences 
have shown that induction of HO-1 reduces airway 
inflammation induced by OVA (48).

MDA is a commonly used indicator of oxidative 
stress (49). Increased MDA levels were found in adult 
and children patients with asthma (50, 51). Our results 
showed that the MDA levels were elevated in asthmatic 
mice. Moreover, our results showed that the OVA-
induced elevation of MDA was inhibited in T. IIA-treated 
asthmatic mice. This result suggests a benefit of T. IIA 
in regulating the equilibrium of oxidant-antioxidant in 
asthma.

Our findings, combined with previous data, suggest 
that T. IIA has antioxidant effect (16, 44). Nrf2 plays a 
vital effect on reduction of oxidative stress (39). Our 
results showed that the Nrf2 activity is increased in 
asthmatic mice. The elevated Nrf2 activity is a stress 
response of the body defense system. T. IIA treatment 
resulted in a further elevation of Nrf2 activity. Nrf2-
regulated genes have a low basal expression, as Nrf2 
binds to Kelch-like ECH-associated protein 1 (Keap1), 
an inhibitor of Nrf2, normally. When released from 
Keap1, Nrf2 binds to target genes in the nucleus (52). 
Findings have shown that T. IIA induced the degradation 
of Keap1, and up-regulated Nrf2 gene transcription 
(53). Our results suggest that the up-regulation of Nrf2 
and antioxidant enzyme activities are involved in the 
antioxidant effect of T. IIA on asthmatic mice. 

Conclusion
The current results suggest that T. IIA inhibits OVA-

induced airway inflammation and hyperresponsiveness. 
T. IIA is a potential therapeutic agent for asthma.
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