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Objective(s): Valproic and arundic acids are astrocytes-modulating agents with potential effects in 
the treatment of Alzheimer’s disease (AD). S100B is an astrocytic cytokine with a possible role in 
the pathogenesis of AD. In this study, we aimed to assess the glioprotective effects of valproic and 
arundic acids against amyloid-β-peptide (Aβ)-induced glial death and contribution of S100B to the 
glioprotective effects of these agents in an astrocytic culture.   
Materials and Methods: We used Aβ25–35 at a concentration of 200 μM in 1321N1 astrocyte cells. We treated 
the cells with valproic acid (0.5 and 1 mM) and/or arundic acid 50 µM for 24 hr. Methylthiazolyldiphenyl-
tetrazolium bromide (MTT) test was used to measure cell viability. The intracellular and extracellular 
S100B levels were measured using an ELISA kit. The data were analyzed using one-way analysis of variance 
followed by the Tukey’s test.   
Results: Aβ (200 µM) decreased the cell viability compared to the control group (P<0.001). Valproic 
acid (0.5 and 1 mM) and arundic acid (50 µM) ameliorated the gliotoxic effects of Aβ (P<0.05). The Aβ-
treated group had higher S100B levels (both intracellular and extracellular) compared to the negative 
control groups (P<0.001). Arundic and valproic acids (0.5 and 1 mM) decreased both the intracellular 
and extracellular S100B levels compared to the Aβ-treated group (P<0.001).
Conclusion: By considering homeostatic and neuroprotective functions of astrocyte, the astroprotective 
effects and the attenuation of S100B level may be responsible, at least in part, for the beneficial effects 
of valproic and arundic acids in AD. 
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Introduction
Alzheimer’s disease (AD) is a progressive 

neurodegenerative disorder which affects several 
brain regions responsible for learning and memory 
(1). The main pathological findings are the aggregation 
of amyloid-β-peptide (Aβ) and the formation of 
neurofibrillary tangles (2). Recently, convincing 
evidence has also indicated the contribution of glial 
dysfunction or loss in the pathogenesis of AD (3).   

Astrocytes are the most prevalent glial cells with 
probable roles in the pathophysiology of AD. In vitro and 
in vivo studies have shown the close association of Aβ 
with astrocytes (4, 5). Astrocytes internalize and degrade 
Aβ and prevent the aggregation of Aβ extracellular 
plagues (6, 7). The aggregation of Aβ in astrocytes may 
cause astrocytic lysis and lead to astrocytic plaques 
(8). The progressive loss of astrocytic functions like 
energy metabolism (9), glutamate recycling (10), and 
glutathione supply (11, 12) may affect homeostatic and 
neuroprotective functions of these cells and promote the 
neurodegenerative process (13, 14). Thus, a potential 
cure for the treatment of AD may be restoration of the 
astrocytic function to amend the homeostatic process 
and avoid neurodegeneration (15). 

Valproic and arundic acids are potential drugs for 
the treatment of AD (16). Some evidence shows that 
astrocytes may be the primary target of these two agents 

(17, 18). Arundic acid is a new derivative of valproic acid 
with inhibitory effects on the synthesis and release of 
S100B in astrocytes (19). By considering homeostatic 
functions of astrocytes in the central nervous system 
(CNS), protection of astrocytes by modulation of S100B 
may be relevant to the arundic acid mechanism of 
action. Moreover, the glioprotective effects of valproic 
acid and the contribution of S100B suppression to its 
glioprotective effects are elusive. Thus, we aimed to 
assess the glioprotective effects of valproic and arundic 
acids against Aβ-induced glial death. Moreover, we 
also aimed to explore the contribution of S100B to the 
glioprotective effects of these agents in the 1321N1 
astrocyte culture. 

Materials and Methods
Materials 

1321N1 astrocyte cells were purchased from the 
Pasteur Institute (Tehran, Iran). Cell culture materials 
including DMEM/F12, FBS (fetal bovine serum), and 
penicillin-streptomycin were obtained from Gibco® 
life technologies™ (New York, USA). We obtained Aβ, 
valproic acid, methylthiazolyldiphenyl-tetrazolium 
bromide (MTT), phosphate buffered solutions (PBS), 
and dimethyl sulfoxide (DMSO) from the Sigma-Aldrich 
Corporation (St. Louis, USA). We purchased arundic acid 
(ONO-2506) from Tocris Bioscience (USA). 

http://ijbms.mums.ac.ir
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Astrocyte cell culture
We kept 1321Na cells in a t75 flask and maintained 

it at 37 °C in 95% humidified atmosphere/5% CO2. 
Upon reaching confluency, we detached the cells from 
the flask by 0.25% Trypsin/EDTA. We then centrifuged 
the cell suspension for 10 min at 1200 rpm and 22 °C. 
The cells then were seeded on 6 or 96 well plates.  

Aβ25–35 preparation 
Aβ25–35 at a concentration of 2 μg/μl was dissolved 

in sterile distilled water and kept in the freezer (at −70 
°C) until use. Aβ25–35 was aggregated by incubation for 
4 days at 37 °C before administration in the cell culture.  

Treatments 
We dissolved Aβ and valproic acid in PBS and 

arundic acid in a solution of PBS and DMSO (5% 
v/v).  We calculated the effective concentration of 
Aβ25-35, valproic acid, and arundic acid by dose-
response experiments and MTT assay. On the day of 
the experiment, we treated the cells with the chosen 
concentrations of each agent. We incubated the cells 
with Aβ (200 μM), valproic acid (0.5 and 1 mM), and 
arundic acid (50 µM), or both for 24 hr. 

Cell viability assay 
We used MTT reagent to measure cell viability, and 

added 5 mg/ml MTT reagent to the cell culture media 
24 hr after the treatments. Four hours later, we removed 
the cell culture media and dissolved the precipitation 
of each well in 100 μl of DMSO. Then, we measured 
the absorbance of each well at 570 nm by a microplate 
reader (Synergy HT, Biotek®).

Sample preparation for measurement of the S100B 
protein 

After the dose selection, astrocytes were cultured in 
the 6-well plates in a condition similar to the cell viability 
assay. The intracellular S100B level was measured using 
the astrocytic cell lysate. We used pre-cooled PBS and 
trypsin to detach cells from the plates. The suspended 
cells were centrifuged for 5 min at 1000×g and then 

lysed with three cycles of freeze-thawing. Then the 
cell mixture was centrifuged at 1500×g, 4 °C. The cell 
culture supernatants were centrifuged at 1000×g and 4 
°C and used for measurement of the extracellular level 
of S100B.  

Measurement of S100B level
Twenty-four hours after the treatment, intracellular 

and extracellular S100B levels were measured using a 
commercially available ELISA kit (Mybiosource Inc., 
USA). The experimental procedure was compatible 
with the manufacturer’s instructions. In brief, 100 μL 
of the standard or samples were added to each well 
and incubated for 90 min at 37 °C. Then, 100 μl of the 
biotinylated detection Ab was added to the separated 
supernatant and incubated for 1 hr at 37 °C. After 
washing, 100 μl of the HRP conjugate was added and 
incubated for 30 min at 37 °C. After washing, we poured 
the substrate reagent into wells and incubated for 15 
min at 37 °C. Finally, we poured the stop solution (50 
μL) into each well and measured the absorbance at 450 
nm using a microplate reader (Synergy HT, Biotek®). 
The concentration of the S100B protein was determined 
by a standard curve. 

Statistical analysis
The data were analyzed using the one-way analysis of 

variance (ANOVA) followed by the Tukey’s test. P<0.05 
was considered as significance cutoff. All analyses were 
performed using the SPSS software, version 23.  

Results
Effects of different treatments on the glial cell viability

This study showed that cell viability was different 
in various treatment groups (F (7, 24) = 10.139, 
P<0.001) (Figure 1). The administration of Aβ (200 µM) 
decreased the cell viability compared to the control 
group (P<0.001) (Figure 1). Addition of valproic acid 
(0.5 mM, P=0.021), valproic acid (1 mM, P<0.001), or 
arundic acid (50 µM, P=0.008) to Aβ ameliorated the 
gliotoxic effects of Aβ (Figure 1). Addition of arundic 
acid + valproic acid (1 mM) to Aβ also diminished the 

 

  
Figure 1. Cell viability in 1321N1 astrocytic cells exposed to the beta-amyloid (Aβ), valproic acid, and arundic acid. Cell viability was measured 
using the methylthiazolyldiphenyl-tetrazolium bromide (MTT) test. Data were analyzed using one-way analysis of variance (ANOVA) followed by the 
Tukey’s test. P-value of lower than 0.05 was the significant level. Aβ: beta-amyloid peptide25-35 (200 µM), AA: arundic acid (50 µM), Val0.5: valproic 
acid (0.5 mM), Val1: valproic acid (1 mM). ‡: P-value of <0.001 compared to the control, *, and **: P-value of <0.05 and <0.001 compared to the Aβ-
treated group, respectively
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cell toxicity of Aβ (P<0.001) (Figure 1). However, the 
addition of arundic acid + valproic acid (0.5 mM) to Aβ 
had no significant effect on the Aβ-induced gliotoxicity. 
Arundic acid (50 µM, P=0.998) in the absence of 
Aβ exerted no effect on the survival of glial cells. 

Effects of different treatments on the intracellular 
S100B levels

In this study, various treatments altered the 
intracellular S100B levels (F (7, 24) =988.95, P<0.001) 
(Figure 2). The Aβ-treated group had a significantly 
higher S100B level compared to the control group 
(P<0.001). The treatment with arundic acid suppressed 
the S100B level compared to the Aβ and control groups 
(P<0.001). Addition of arundic acid (P<0.001) + valproic 
acid (0.5 mM, P<0.001) or valproic acid (1mM, P<0.001)) 
attenuated the intracellular S100B level compared to 
the Aβ-treated group. We summarized the results of 
intracellular S100B protein levels in Figure 2.

Effects of different treatments on the extracellular 
S100B levels 

The present study showed that different treatments 
changed the extracellular S100B levels (F (7, 24) 
=1824.88 (7), P<0.001). The administration of Aβ 
elevated the extracellular S100B level in the astrocyte 
culture compared to the control group (P<0.001) 
(Figure 3). In contrast, arundic acid attenuated the 
extracellular S100B level compared to Aβ (P<0.001) 
and control (P<0.001) groups. Addition of arundic 
acid or valproic acid (0.5 and 1 mM) suppressed the 
extracellular S100B rising induced by Aβ (P<0.001). The 
astrocytes that received arundic acid + valproic acid + 
Aβ had a lower extracellular S100B level compared to 
Aβ and Aβ + arundic acid treated groups (P<0.001). We 
summarized the results of extracellular S100B protein 
levels in Figure 3.  

 

  Figure 2. The intracellular S100B levels of 1321N1 astrocytic cells exposed to beta-amyloid (Aβ), valproic and arundic acids. The S100B 
concentration was measured in cell lysate via the ELISA method. Data were analyzed using one-way analysis of variance (ANOVA) followed by 
the Tukey’s test. P-value of lower than 0.05 was the significant level. Aβ: beta-amyloid peptide25-35 (200 µM), AA: arundic acid (50 µM), Val0.5: 
valproic acid (0.5 mM), Val1: valproic acid (1 mM). **: P-value of <0.001 compared to the beta-amyloid-treated group and ‡: P-value of <0.001 
compared to the control-treated group

 
Figure 3. The extracellular S100B levels of 1321N1 astrocytic cells exposed to beta-amyloid, valproic acid, and arundic acid. The S100B concentration 
was measured in cell culture media via the ELISA method. Data were analyzed using one-way analysis of variance (ANOVA) followed by the Tukey’s 
test. P-value of lower than 0.05 was the significant level. Aβ: beta-amyloid peptide25-35 (200 µM), AA: arundic acid (50 µM), Val0.5: valproic acid (0.5 
mM), Val1: valproic acid (1 mM). **: P-value of <0.001 compared to the beta-amyloid-treated group and ‡: P-value of <0.001 compared to the control-
treated group
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Discussion
The present study showed that Aβ induced astrocytes 

apoptosis. In agreement, treatment of rat primary 
astrocyte cultures with Aβ decreased astrocyte viability 
(20). However, the concentrations of Saha and Biswas 
study (20) were much lower (4 µM) than the one used 
in our study mainly due to different cell types used. 
Other studies have reported the apoptotic action of 
Aβ on astrocytes (21-23). However, the mechanism 
of apoptotic action of Aβ on astrocytes needs to be 
elucidated.  

Astrocytes have critical functions in the CNS (24). 
Consequently, the impaired astrocytic functions may have 
possible roles in the pathophysiology of all neurological 
diseases (24). In this regard, damaged astrocytes have 
been demonstrated in major psychiatric disorders (25) 
and neurodegenerative disorders (26), particularly AD 
(3). Animal models have shown functional deficit of 
astrocytes and astrodegeneration in the brain regions 
implicated in the pathophysiology of AD (27-29). 
Reduced number or function of astrocytes may decrease 
metabolic support of neurons, impair neurotransmitter 
recycling, reduce Aβ clearance, and enhance Aβ-related 
neurodegeneration (15). Accordingly, glial dysfunction 
may be an initial manifestation of neurodegeneration 
(13, 26). Thus, astrodegeneration may be an important 
feature of AD and astroprotection may be a target to halt 
the progression of AD.

Our study showed that Aβ increased the apoptosis of 
astrocytes and raised the intracellular and extracellular 
S100B levels. S100B is mainly synthesized and 
released by astrocytes. Astrocytic activation induces 
S100B production and further enhances microglial 
activation and inflammatory responses (30). The severe 
inflammation may cause extensive injury in AD (31). 
Furthermore, overproduction of S100B contributed to 
the Aβ-induced neuritic changes in Down’s syndrome 
(32). Therefore, S100B may be associated with the 
pathogenesis of Aβ and progression of AD (33). 
Our results may imply that Aβ exposure increased 
the synthesis of S100B in the astrocytes. Moreover, 
apoptosis of astrocytes may increase the passive 
release of S100B to the extracellular space. Thus, the 
astrodegeneration induced by Aβ may be the cause of the 
elevated S100B level in the animal models and patients 
with AD. Moreover, protection of astrocytes against 
Aβ may attenuate the passive release of S100B into 
the extracellular space and diminish the inflammatory 
responses in AD. 

Recent evidence has shown the valproic acid ability 
to restore learning and memory deficit in the animal 
models of neurodegeneration (34, 35). Moreover, 
numerous in vitro and in vivo studies have shown 
neuro- and astroprotective properties of valproic 
acid against cytotoxic insults (36). Thus, valproic acid 
may be a potential drug for the treatment of AD (37). 
However, the effects of valproic acid and its mechanism 
of action in AD are not completely understood. Arundic 
acid is a new derivative of valproic acid that is under 
investigation for the treatment of neurodegenerative 
disorders (16). Arundic acid has decreased cerebral 
amyloidosis and glial activation in a transgenic model 
of AD (30). Our study showed that valproic and arundic 
acids protected astrocytes against Aβ toxicity. Arundic 

acid protected neurons against different stressors 
(18). However, there is limited evidence about the 
anti-apoptotic action of arundic acid on astrocytes. By 
considering homeostatic and neuroprotective functions 
of astrocytes, astroprotective effects of valproic 
and arundic acids may be partly responsible for the 
beneficial effects of these agents in AD.

Our study showed that Aβ increased S100B while 
arundic and valproic acids decreased the extracellular 
and intracellular S100B level. Our results may imply that 
the cytoprotective effects of valproic and arundic acids 
against Aβ may be related to the suppression of S100B 
production and secretion. According to the present 
study, Aβ increased both intracellular and extracellular 
S100B levels. In contrast, arundic and valproic acids 
decreased both intracellular and extracellular S100B 
levels. These results may imply that Aβ enhances 
synthesis and secretion of S100B while arundic and 
valproic acids reduce the synthesis and secretion of 
S100B from astrocytes. Previous reports have shown 
that arundic acid suppressed S100B synthesis in 
astrocytes (38). However, there are limited data about 
the effects of arundic acid on astrocyte protection. The 
high concentration of extracellular S100B produces 
cytotoxic effects (39) and enhances the neurotoxic 
effects of Aβ (40). Moreover, S100B level is up-regulated 
in AD (33) and suppression of S100B rising may affect 
the Aβ level and confer with AD-like pathology in the 
transgenic animals (30). Thus, drugs that modulate 
the S100B level may be potential candidates for the 
treatment of AD. 

Limitations
We evaluated the effects of arundic and valproic acids 

on astroprotection and S100B in an astrocytic cell line. 
For the extrapolation of these results, it seems necessary 
to confirm the results of this study in animal models.   

Conclusion
Aβ induced astrocytic apoptosis and enhanced the 

S100B level. Arundic and valproic acids attenuated the 
S100B level and protected astrocytes against Aβ-induced 
toxicity. By considering homeostatic and neuroprotective 
functions of astrocytes, the astroprotective effects and the 
attenuation of S100B level may be responsible, at least in 
part, for the beneficial effects of these drugs in AD.
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