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Objective(s): Present study investigated the neuroprotective effects of selegiline and the molecular 
mechanisms involved in methamphetamine-induced neurotoxicity.
Materials and Methods: Male wistar rats were randomly divided into six groups (10 rats in each group). 
Group 1 and group 2 received normal saline and methamphetamine (10 mg/kg), respectively. Groups 
3, 4, 5 and 6 were treated simultaneously with methamphetamine and selegiline. From day 22 to day 
28, forced swim test, elevated plus maze, and open field test were conducted to assess mood (anxiety 
and depression) levels, and from day 17 to day 21, Morris Water Maze was conducted for cognition 
assessment. On day 29, hippocampus of the animals were isolated and evaluated by ELISA method 
for oxidative, antioxidant, and inflammatory factors and expression levels of active (total) and inactive 
(phosphorylated) forms of cyclic AMP response element binding protein (CREB), brain-derived 
neurotrophic factor (BDNF), Akt (Protein Kinase B) and glycogen synthase kinase 3 (GSK3) proteins. 
Results: Selegiline reduced behavioral impacts caused by methamphetamine in all doses. 
Methamphetamine administration may improve malondialdehyde, tumor necrosis factor-alpha, 
interleukin-1 beta and GSK3 (both forms). Moreover, methamphetamine reduced the activity of 
superoxide dismutase, glutathione peroxidase, glutathione reductase, amount of BDNF, CREB and Akt 
(both forms).
Conclusion: Current research showed that selegiline can protect the brain from methamphetamine-
prompted neurodegeneration, and this could be intervened by CREB -BDNF or Akt-GSK3 signaling 
pathways.
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Introduction
Methamphetamine that is prescribed for attention 

deficiency hyperactivity disorder in children stimulates 
the central nervous system (1). Continuing impacts of 
methamphetamine abuse and negative neurochemical 
and behavioral impacts are still undefined (2). This 
agent is comparable in functional and pharmacological 
features to cocaine (3-5). Because of these similarities, 
methamphetamine has an incredibly elevated potential 
for abuse and addiction (3-5). 

Various previous studies have shown that extended 
use and abrupt cessation of methamphetamine may 
trigger some neurobehavioral disturbances, such as 
anxiety and depression, which are considered as the 
major symptoms of methamphetamine withdrawal (3, 
4, 6). Researches indicate that the decrease in dopamine 
and norepinephrine may be responsible for these 
behaviors over the long term use of methamphetamine 
and down expression of amine-associated receptors 
(7-9). In addition, some prior studies have shown 
that misuse of methamphetamine can interfere with 

mitochondrial function leading to oxidative stress, 
inflammation and neurodegeneration in various brain 
regions (10, 11). Selegiline is an irreversible selective 
monoamine oxidase-B (MAO-B) inhibitor, but it also 
inhibits MAO-A in higher doses. This agent is prescribed 
for Parkinson’s disease therapy, depression and dementia 
in the early stages (12). Previous studies have found that 
selegiline may be a useful replacement for anxiolytic and 
antidepressant impacts in circumstances where both 
depression and anxiety occur, as with amphetamine and 
other psychostimulants (13, 14). There are numerous 
studies on the impact of this agent on the incidence of 
neurotoxicity due to its anti-apoptotic and anti-oxidant 
effects (15-17). It has also been shown that selegiline 
can be effective in the treatment of alcohol, morphine 
and other drug addiction (18, 19). 

A significant percentage of current research have 
shown that dopamine and a number of dopaminergic 
receptor agonists have anxiolytic and antidepressant 
impacts; these results suggest that a dopaminergic 
agent such as selegiline may be efficient against 
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methamphetamine-induced anxiety and depression, but 
its putative mechanism remained imprecise (20, 21). On 
the other side, cyclic AMP response element binding 
protein (CREB) functions as a critical transcription 
factor in neurogenesis and brain regeneration (22-25). 
Phosphorylated form of CREB (active form) is activated 
by different protein kinase, which phosphorylates 
this specific protein and converts CREB into its active 
form (26-32). CREB, by acting on DNA, stimulates 
brain-derived neurotrophic factor (BDNF) protein 
production, which is crucial for neurogenesis and 
growth. On the other hand, phosphatidylinositol 
3-kinase (PI3 K) may activate Akt (Protein Kinase B) 
protein, which leads to inhibition of glycogen synthase 
kinase 3 (GSK3), involved in neurodegeneration, and 
inhibits GSK3 neurodegenerative effects in cells (33). 
The Akt/GSK3 signaling pathway also plays a critical 
role in cognitive exercise (33). Due to the significance 
of the role of P-CREB / BDNF and Akt / GSK3 signaling 
paths in inhibiting neurodegeneration and modulation 
of cognition, the current research was considered to 
evaluate the role of these pathways in the provision 
of neuroprotective features of selegiline against 
methamphetamine-prompted neurotoxicity and 
neurobehavioral complications. This can also lead to a 
better understanding of the effects of amphetamines 
and the procedures involved.

Materials and Methods
Animals

Sixty male adult Wistar rats (with average weighing 270 
g) were purchased from an experimental research center 
at the IUMS in Iran. They have been placed in standard 
situation with free access to food and water. The room 
temperature was kept at 22±0.5 °C with a light/dark cycle 
of 12 hr. The investigational procedure of this research was 
obtained form medical doctorate thesis and all procedure 
was authorized by research committee in Department 
of medicine at Qom branch of Islamic Azad University 
(Research Protocol and ethical code number is 121914).

Experimental development
• All animals were randomly distributed into six groups 
(10 rats per group).
• Group 1 (control group) was administered for 21 days 
with normal saline (0.2 ml / rat, IP once daily).
• Group 2 (methamphetamine-treated group) had 
methamphetamine for 21 days (Sigma-Aldrich, USA) 
(10 mg/kg, IP once a day).
• Methamphetamine (10 mg/kg, IP once a day) and 
selegiline (Sigma-Aldrich, USA) 5, 10, 15 and 20 mg/kg 
doses were given concurrently during 21 days in groups 
3, 4, 5 and 6.

During day 22-28, some standard behavioral 
approaches such as Forced Swim Test (FST), Elevated 
Plus Maze (EPM) and Open Field Test (OFT) were 
used to determine mood-related activity (anxiety 
and depression) levels in experimental animals. 
Furthermore, Morris water maze (MWM) protocol was 
introduced to evaluate spatial memory and learning 
in animal treatment groups between the 17th and 21st 
days. On day 29, all animals were anesthetized by 
administering thiopental (50 mg/kg), removing brain 
tissue and separating their hippocampus from each 

rat according to previous study guides (34, 35). It has 
to be noted that the hippocampus in right hemisphere 
has been used to assess biomarkers for oxidative stress 
and inflammation, and hippocampus in left hemisphere 
has been used to assess CREB, P-CREB, BDNF, Akt, P-Akt, 
GSK and P-GSK expression of proteins.

Behavioral studies
Open Field Test

The open-field device was used for evaluation of 
anxiety and motor activity disorder, and this test was 
performed according to standard protocol reported in 
previous studies (36, 37). According to this protocol, 4 
standard behaviors were evaluated in this test.
1. Line crossing (ambulation) distance: Distance of the 
rat passing through the grid lines.
2. Center Square Entries: Frequency of that the rat 
crossed one of the red lines with all four paws in the 
main square.
3. Center Square Duration: The length of time the rat 
spent on the main square.
4. Rearing number: The frequency with which the rat 
shows a strange behavior (36, 37).

  
Forced Swim Test 

This is the assessment of behavior that is deployed 
in experimental designs to evaluate depression-
like behaviors. This test was performed according 
to standard protocol described by previous studies. 
Swimming exercise demonstrated non-depressive 
behavior, while immobility demonstrated depressive 
behavior (37-39).

Elevated plus maze 
EPM is a commonly deployed test for evaluation of 

anxiety-related behavior in rodents. Protocol of this test 
was performed according to standard protocol reported 
by previous studies. The tendency to be in the closed 
arms over the open arms was representative of anxiety-
like actions, while tendency to be in the open arms over 
the closed arms was representative of open arm over 
the closed arms was Representative of anti anxiety 
action (39, 40).

Morris water maze Task
A unit of the MWM has been used for both learning 

and memory behavior, and the protocol of learning 
and memory assessment was performed according to 
previous standard protocols (41, 42). 

During the learning process, three variables were 
evaluated.
1. Time to escape latency defined by time to discover the 
hidden platform.
2. Traveled distance that has been verified by the 
time every animal has spent entering and locating the 
concealed platform.
3. Speed of the animal during the discovery of a 
concealed stand.

Through the evaluation of memory, the platform was 
removed on the fifth day (sample day), and the animals 
were randomly terrified by water from one of the above-
mentioned directions (near East), and the proportion 
of animal presence in the target quarter (South East 
corner) was reported and measured (41, 42).
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Molecular study
Mitochondrial preparations 

Thiopental sodium (50 mg/kg, IP) was used to 
anesthetize animals and the hippocampus was removed 
from each rat. The isolated tissues were prepared 
according to standard protocol of mitochondrial 
isolation and were tested to assess oxidative stress and 
inflammatory markers (35, 43-45). 

Measurement of oxidative stress biomarker
Determination of oxidative stress parameters, 

Malondialdehyde (MDA) level and also activity of 
antioxidant enzymes such as manganese superoxide 
dismutase (MnSOD), glutathione peroxidase (GPx) and 
glutathione reductase (GR) was performed according to 
previous standard protocols (44, 46-51).  

Measurement of expression of protein
Concentrations (protein levels) of BDNF, CREB 

(complete and phosphorylated), Akt1 (Protein 
Kinase B) (total and phosphorylated), GSK3 (total 
and phosphorylated), interleukin-1 beta (IL-1β) and 
tumor necrosis factor-alpha (TNF-α) in hippocampal 
tissue cell lysate were evaluated using an ELISA kit, 
which is commercially available (Genzyme Diagnostics, 
Cambridge, U.S.A) with special protocol and standard 
procedure (52-55). Results of BDNF, CREB (complete 
and phosphorylated), Akt1 (total and phosphorylated) 
and GSK3 (total and phosphorylated) were stated as 
pg/ml in tissue suspension of the hippocampus, while 
TNF-α and IL-1β were reported as ng/ml (52-55).

Analysis of statistics
The information collected was evaluated by GraphPad 

PRISM v.6 Software and averaged in each test group and 
stated as a mean±standard error (SEM). ANOVA was also 
used in the MWM experiment to assess behavior over 
four days of practice and its differences were evaluated 
on a daily basis. The distinctions between control and 
therapy groups were then assessed by ANOVA. To assess 

the severity of behaviors, variations between means in 
groups were compared using the Tukey’s post-test at a 
substantial rate of (P<0.001) or (P<0.05).

Results
OFT behavior in experimental group

As shown in Table 1, methamphetamine (10 mg/
kg)-treated animals have lower rates of central square 
entries, less time spent in the core area, and higher 
frequency of OFT rearing and ambulation distance 
(P<0.05)(Table 1). Selegiline inhibited this dose-
dependent effect of methamphetamine and improved 
central square entry rate, core time, OFT breeding 
frequency and ambulation period in methamphetamine-
treated groups. Compared to methamphetamine (10 mg/
kg), this distinction was statistically significant (P<0.05) 
(Table 1). Selegiline also improved mentioned OFT 
behaviors in animals treated with methamphetamine 
(10 mg/kg) at the highest dose (20 mg/kg). This 
improve was remarkably significant relative to the 
methamphetamine group (10 mg/kg) alone (P<0.05) 
(Table 1). Testament of methamphetamine-dependent 
animals with high doses of selegiline (20 mg/kg) results 
in remarkable differences in the rate of OFT parameters 
such as rearing, central square entries and time spent in 
the central area compared to animals treated with low 
doses of selegiline (5 mg/kg) (P<0.05) (Table 1).

FST behavior in in experimental group
Rats in the treated group of methamphetamine (10 

mg/kg) indicated less swimming time compared to the 
control group in FST (P<0.001) (Figure 1A). Selegiline 
inhibited the impact of methamphetamine at all doses 
and decreased the swimming time of experimental 
animals. Nonetheless, selegiline at doses of 15 and 20 
mg/kg significantly improved swimming time compared 
to the group which received only methamphetamine (10 
mg/kg) (P<0.001)(Figure 1A). Significant differences in 

Table 1. The effects of various doses of selegiline on open field exploratory and anxiety like behavior in rats treated with 10 mg/kg of 
methamphetamine

a represents statistical significance vs. control group (P<0.05)
b represents statistical significance vs. methamphetamine group (10 mg/kg) (P<0.05)
c represents statistical significance vs. 10 mg/kg of methamphetamine in combination with 5 mg/kg of selegiline (P<0.05)
All data are expressed as mean±SEM (N=10)
METH: methamphetamine; NS: Normal Saline
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Group Ambulation distance 
(cm) 

Central square entries 
(number) 

Time spent in central square 
(sec) 

Number of rearing 

Control (NS) 325±16 27±3 160±8 12±2 

METH (10 mg/kg) 210±17 a 14±2.5 a 109±7 a 5±1 a 

METH (10 mg/kg)+Selegiline (5 mg/kg) 260±20  b 16±2 130±9 b 6±1 

METH (10 mg/kg)+Selegiline (10 mg/kg) 270±18  b 17±1.8 b 135±8 b 9±1  

METH (10 mg/kg)+Selegiline (15 mg/kg) 275±22  b 23±2 b, c 149±9 b, c 9±2.5 b, c 

METH (10 mg/kg)+Selegiline (20 mg/kg) 300±18  b 24±1.5 b, c 151±8 b, c 10±1.5 b, c 
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swimming time were observed in methamphetamine-
dependent animals treated with high doses of selegiline 
(20 mg/kg) relative to animals treated with low doses of 
selegiline (5 mg/kg) (P<0.05) (Figure 1A).

EPM behavior in in experimental group
Animal of control group stayed more time in the open 

arms of EPM in comparison with the group treated 
with 10 mg/kg of methamphetamine (P<0.001) (Figure 
1B). This study showed that selegiline treatment with 
doses of 10, 15 and 20 mg/kg significantly reduced the 
existence of animals in the open arms of EPM (P<0.05 

for 10 mg/kg selegiline and P<0.001 for 15 and 20 mg/
kg selegiline) relative to only methamphetamine (10 
mg/kg)-treated group (Figure 1B). Results showed 
significant time gaps for methamphetamine-dependent 
animals treated with high doses of selegiline (20 mg/kg) 
in the open arms of EPM relative to animals treated with 
5 mg/kg of selegiline (P<0.05) (Figure 1B).

Evaluation of learning parameters (escape latency 
and traveled distance) in MWM

Escape latency and traveled distance for the group 
treated with methamphetamine at a dosage of 10 

Figure 1. Displays swimming time (sec) in forced swim test (FST) 
A: duration of time spent in open arms (sec) in elevated plus maze (EPM), B: In control group, and groups treated with 10 mg/kg of methamphetamine 
and selegiline (5, 10, 15 and 20 mg/kg) in combination with methamphetamine. All data are expressed as mean±SEM=10)
### P< 0.001 vs control group, * P<0.05 vs. 10 mg/kg of methamphetamine, *** P<0.001 vs 10 mg/kg of methamphetamine, ¥ represents statistical 
significance with P<0.05 vs 10 mg/kg of methamphetamine in combination with 5 mg/kg of selegiline
METH: methamphetamine
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Figure 2. Displays mean of escape latency (A), traveled distance (B), swimming speed (C) during four days of training and percentage of time spent 
in target quarter in probe trial(D) in Morris Water Maze (MWM) in rats under treatment in control group and groups treated by methamphetamine 
(10 mg/kg)  and selegiline (5, 10, 15 and 20 mg/kg) in combination with methamphetamine. All data are expressed as Mean±SEM (N=10)
* P<0.05 vs group under treatment with methamphetamine. *** P<0.001 vs 10 mg/kg of methamphetamine 
# P<0.05 vs groups under treatment with 15 and 20 mg/kg of selegiline. ### P<0.001 vs control group
¥ represents statistical significance with P<0.05 vs 10 mg/kg of methamphetamine in combination with 5 mg/kg of selegiline. 
METH: methamphetamine
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mg/kg during four days of training in the MWM was 
statistically significant compared to the control group, 
and this behavior was different during all four days of 
training (learning) (P<0.05) (Figure 2A and B). While 
selegiline inhibited increases in escape latency caused 
by methamphetamine in all doses and traveled distance, 
and these differences were statistically significant at the 
15 and 20 mg/kg doses of selegiline compared to only 
methamphetamine (10 mg/kg)-treated group (P<0.05) 
(Figure 2A and B). High doses of selegiline (20 mg/kg), 
in methamphetamine-dependent animals, significantly 
increased latency and traveled distance compared to 
animals under therapy with small doses of selegiline (5 
mg/kg) (P<0.05) (Figure 2A and B).

Evaluation of swimming speed in MWM
During training trials, the mean swimming speeds 

were not changed in any of the animal groups, indicating 
that exposure to methamphetamine (10 mg/kg) alone 
or in addition to selegiline (5, 10, 15 and 20 mg/kg) did 
not lead to motor disruption in test animals (Figure 2C).

Percentage analysis in the target quarter in the MWM 
probe trial

Findings showed that there is a significant reduction 
in the proportion of animal presence in the target 
quarter of methamphetamine (10 mg/kg)-treated 
group compared to the control group (P<0.001) (Figure 
2D). Selegiline with 15 and 20 mg/kg doses can also 
reduce this impact of methamphetamine, which was 
statistically relevant relative to methamphetamine 
alone (10 mg/kg)-treated group (P<0.001) (Figure 
2D). Treatment with high doses of selegiline (20 mg/
kg) in methamphetamine-dependent animals resulted 
in significant differences in animal presence (as 
percentage) in the target quarter relative to animals 
treated with low doses of selegiline (5 mg/kg) (P<0.05) 
(Figure 2D).

Evaluation of oxidative stress changes
Methamphetamine administration significantly 

increased MDA (lipid peroxidation biomarker) levels 
and also decreased SOD, GPx and GR activities compared 
to the control group (P<0.05) (Table 2). By comparison, 
varying doses of selegiline (5, 10, 15 and 20 mg/kg) 
decreased methamphetamine-induced levels of MDA 
and reduced methamphetamine-prompted reductions 
in SOD, GPx and GR behaviors relative to groups 
treated with methamphetamine (P<0.05) (Table 2). In 
methamphetamine-dependent animals treated with 
10 and 20 mg/kg of selegiline, there were substantial 
differences in levels of MDA and SOD, GPx and GR 
activity relative to treatment-dependent animals with 
small doses of selegiline (5 mg/kg) (P<0.05)(Table 2).

Evaluation of inflammation alteration 
The animals in methamphetamine-treated groups 

showed significant rises in IL-1β and TNF-α levels in 
comparison with the control group (P<0.05) (Table 2). 
While, high selegiline doses (15 and 20 mg/kg) inhibited 
methamphetamine-induced rise in biomarkers of 
inflammation relative to methamphetamine-only 
treatment (P<0.05) groups (Table 2). The increase in 
IL-1β and TNF-α concentrations in methamphetamine-
dependent animals treated with 10 and 20 mg/
kg selegiline was significant relative to the 5 mg/
kg selegiline-treated methamphetamine-dependent 
animal (P<0.05) (Table 2).

Results of selegiline effects on methamphetamine-
prompted alterations in CREB, P-CREB and BDNF 
protein expression

Methamphetamine (10 mg/kg) therapy significantly 
decreased CREB (total and phosphorylated) and 
BDNF relative protein levels (expression) in rat 
hippocampus compared to control group (P<0.001) 
(Figure 3A, B and C). Selegiline (10, 15 and 20 mg/

Table 2. The effects of various doses of selegiline on alterations of oxidative stress and inflammatory biomarkers in mitochondria of rats treated 
with methamphetamine (10 mg/kg/day)
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Group MDA 
nmol/mg of protein 

SOD 
U/ml/mg protein 

GPx 
U/ml/mg protein 

GR 
      U/ml/mg protein 

   TNF-α 
   ng/ml 

 

IL-1β 
ng/ml 

Control (NS) 7.2±0.8 69.3±5.2 75.1±3.9 55.1±6.3 59.4±7.3 48.2±6.1 

METH (10 mg/kg) 25.4±1.1 a 36.5±5.5 a 36.2±6.4 a 18.1±4.6 a 106.5±9.9 a 109.2±9.1a 

METH (10 mg/kg)+Selegiline 
(5 mg/kg) 

15±1.5 b 49.4±6.3 b 48.2±8.3  b 23.4±6.6 b 99.5±6.1 95.2±6.1 

METH (10 mg/kg)+Selegiline 
(10 mg/kg) 

13±3  b 45.8±6.1 b 54.2±8.1 b 46.3±6.3 b 93.1±4.2 92.5±3.1 

METH (10 mg/kg)+Selegiline 
(15 mg/kg) 

11±0.1  b, c 41.6±6.6 b 67.9±6.3   b, c 47.2±5.2  b, c 75.6±6.6   b, c 83.2±4.2   b, c 

METH (10 mg/kg)+Selegiline 
(20 mg/kg) 

9±0.9  b, c 40.3±7.1 b 71.9±8.9  b, c 48.1±6.1   b, c 68.1±1.1  b, c 71.1±4.3   b, c 

a represents statistical significance with P<0.05 vs. control group 
b represents statistical significance with  P<0.05 vs 10 mg/kg of methamphetamine
c represents statistical significance with  P<0.05 vs 10 mg/kg of methamphetamine in combination with 5 mg/kg of selegiline
All data are expressed as mean±SEM (N=10)
METH: methamphetamine. NS: Normal Saline. MDA: Malondialdehyde. SOD: Superoxide dismutase. GPx: Glutathione peroxidase. GR: Glutathione 
reductase. TNF-α: Tumor necrosis factor alpha. IL-1β: Interleukin-1 beta
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kg) levels, on the other hand, significantly increased 
the protein levels (expression) of CREB (both form) 
and BDNF in methamphetamine-treated animals 
relative to the groups treated with methamphetamine 
alone group (P<0.001) (Figure 3A, B and C). Findings 
showed substantial differences in the extent of CREB 
protein (expression) (both form) and BDNF from 
methamphetamine-dependent animals treated with 10 

and 20 mg/kg selegiline compared to animals treated 
with small doses of selegiline (5 mg/kg) (Figures 3A, B 
and C) (P<0.05).

Results of selegiline effects on methamphetamine-
prompted alterations in Akt and GSK3 proteins 
expression 

Methamphetamine (10 mg/kg) therapy significantly 
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Figure 3. Shows alterations in expression/level (ELISA) of CREB (total form)(A), CREB (phosphorylated form) (B), BDNF (C), GSK3(total form)
(D), GSK3 (phosphorylated form)(E), Akt (total form) (F) and Akt (phosphorylated form)(G) in hippocampus of rats under treatments in control 
group and group under treatment with 10 mg/kg of methamphetamine and groups under treatment by methamphetamine in combination with 
selegiline (5, 10, 15 and 20  mg/kg). All data are expressed as Mean±SEM (N=10)  
### P<0.001 vs control group. *** P<0.001 vs 10 mg/kg of methamphetamine
¥ represents statistical significance with P<0.05 vs 10mg/kg of methamphetamine in combination with 5 mg/kg of selegiline 
CREB: Cyclic AMP response element binding protein. BDNF: Brain-derived neurotrophic factor. Akt: Protein kinase B. GSK3: Glycogen synthase 
kinase 3. METH: methamphetamine
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decreased Akt (total and phosphorylated) relative 
protein content (expression) and increased relative 
extent of GSK3 protein (expression) (total and 
phosphorylated) in rat hippocampus compared to the 
control group (P<0.001) (Figure 3D, E, F and G). On the 
other hand, selegiline at elevated doses (15 and 20 mg/
kg) considerably enhanced the protein level (expression) 
of Akt (total and phosphorylated) and reduced the 
level (expression) of GSK3 (total and phosphorylated) 
in animals treated with methamphetamine relative to 
the methamphetamine only-treated group (P<0.001) 
(Figure 3D, E, F and G). Results in methamphetamine-
dependent animals treated with 10 and 20 mg/kg 
selegiline showed significant differences in protein 
level of (expression) Akt (both forms) and reduced 
level (expression) of GSK3 (both form) compared to 
methamphetamine-dependent animals treated with 
small doses of selegiline (5 mg/kg) (P<0.05) (Figure 3D, 
E, F and G).  

Discussion
Present research indicated that selegiline at 

various doses can alter methamphetamine-prompted 
neurotoxicity and the sequels of neurobehavior such 
as mood disorder (anxiety and depression) and 
cognitive defect. According to our results, there is a 
chance that selegiline could inhibit behavioral and 
molecular alterations caused by methamphetamine 
administration by modulating the CREB/BDNF and Akt/
GSK3 signaling paths. Results of the study showed that 
methamphetamine (10 mg/kg) reduced entry and time 
spent in the central square of OFT and also led to distance 
ambulation and rearing disturbances. Data showed that 
the amount of methamphetamine used in this research 
could lead to disruption in motor operation. 

On the other side, our findings showed that in all of 
the above doses, selegiline lowered the OFT behavioral 
parameters in rat treated with methamphetamine. Our 
findings are similar to prior research, which showed 
that selegiline can change depression in rats and can 
modulate disruption of motor activity caused by some 
drug abuse (56, 57). 

Numerous fundamental studies have shown that 
certain brain amines such as norepinephrine and 
dopamine play a critical role in the leadership of motor 
exercise (58, 59). Conferring to this fundamental 
notion, it can be interpreted that methamphetamine 
can persuade behavioral illnesses in OFT through 
disturbance in this form of amine. It can therefore be 
suggested that selegeline, possibly through modulation 
of norepinephrine and dopamine release, disrupted by 
methamphetamine, can prevent adverse effects and 
normalize OFT in rat treated with methamphetamine 
(13, 60, 61). The results of current research have 
shown that Methamphetamine 10 mg/kg can decrease 
swimming time in FST and time of spent in open arms 
(sec) in EPM, while selegiline (10, 15 and 20 mg/kg) may 
reduce this form of depression (immobility sign) in FST 
and anxiety (less time spent in open arms). Selegiline 
(15 and 20 mg/kg) can also increase swimming time 
in FST and the quantity of time spent in the open arm. 
Long-term abuse of methamphetamine may decrease 
amine-based neurotransmitters engaged in anxiety and 

depressive behavior, and it appears that these kinds 
of depletion are accountable for depressive animal 
behavior under methamphetamine therapy in our 
research (62). Selegiline, owing to its antidepressant 
impact, can enhance dopamine in brain synapses and 
regulate depressive conduct in rats and can compensate 
for methamphetamine-induced dopamine depletion 
(13, 63). Conferring our information and previous 
outcomes, it is verified that even sub-therapeutic doses 
of selegiline can be efficient in FST and EPM and can 
enhance mood (13). 

According to our research, extended 
methamphetamine administration at the mentioned 
doses can cause enhancement of latency escaped and 
distance traveled throughout four days of MWM. Practice 
and these behaviors were statistically important in all 
four days. With regard to learning time and information, 
it may be suggested that methamphetamine at the 
aforementioned dose may reduce learning activity and 
the proportion of probe day presence in the target quarter 
of MWM. Our finding confirms the outcomes of prior 
research that indicated that chronic methamphetamine 
administration can disrupt spatial cognitive ability by 
depletion of dopamine, serotonin and adrenaline in 
rats (10, 64). On the other side, our data showed that 
selegiline could influence changes in learning and 
spatial memory induced by methamphetamine at each 
of the listed doses, particularly in high doses (15 and 20 
mg/kg). In line with our information, many past trials 
have shown that selegiline and other MAO-B inhibitors 
have an important beneficial effect in enhancement of 
cognition (61, 65). According to this research, selegiline 
can behave as an efficient antidepressant, anxiolytic 
and also cognitive enhancer, and can be used against 
methamphetamine and other drug abuse-induced 
behavioral disturbances. With regard to the optimal 
dose of selegiline in the management of behavioral 
parameters, our data showed that all the mentioned 
doses of selegiline could modulate OFT behaviors. 
However, high doses (15 and 20 mg/kg) of selegiline 
could prevent methamphetamine-induced mood 
disorder and impairment of cognition in FST, EPM, and 
MWM. This information is consistent with previous 
outcomes showing that selegiline in sub-therapeutic 
doses can change motor activity in experimental scales 
(66, 67). While, greater doses of selegiline are efficient 
for enhancing cognition and mood-related behavior 
(13). Consistent with our behavioral outcomes, our 
molecular findings have shown that methamphetamine 
(10 mg/kg) can change the condition of oxidative stress 
and neuro-inflammation. The current research stated 
that methamphetamine may reduce SOD, GPx, and GR 
activities, while improving the amount of MDA as a 
marker of lipid peroxidation, as well as TNF-α and IL-1β in 
rat hippocampus. Some parts of methamphetamine toxic 
impacts can be asserted to be modulated by inhibition 
of SOD, GPx and GR actions, depletion of antioxidant 
enzymes, induction of lipid peroxidation, induction of 
neuro-inflammation, and disturbance of mitochondrial 
function (62, 63). Our data are compatible with earlier 
research that stated that chronic methamphetamine 
administration induced mitochondrial dysfunction 
and modification in respiratory chain proteins, as well 
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as activation of neuro-inflammation in rodent brain 
cells (68, 69).  Nevertheless, the precise mechanism 
of methamphetamine action in this respect remains 
uncertain (69). The results of the present research are 
also comparable to prior findings on methamphetamine-
induced lipid peroxidation and neuro-inflammation 
in brain cells (10, 70). The results of recent studies 
have shown that methamphetamine consumption 
prevents antioxidant activity and stimulates neuro-
inflammation in various cells, and these impacts trigger 
methamphetamine-induced degenerative impacts on 
body cells such as brain, liver, heart, and other cells 
(70). In the present research, selegiline therapy (in all 
doses used) was discovered to be efficient in reversing 
this methamphetamine-induced rise in MDA, TNF-α 
and IL-1β and in reversing SOD, GPx and GR changes 
in hippocampal tissue (71, 72). Selegiline may be 
suggested to modulate methamphetamine-induced 
neurodegeneration and neurotoxicity by activation 
of mitochondrial biogenesis, antioxidant enzymes 
or inhibition of inflammation and lipid peroxidation 
(73). Numerous trials have endorsed the function of 
selegiline in activating antioxidant defense, inhibiting 
inflammation and also increasing the activity of 
antioxidant enzymes (72). Many researches have shown 
that selegiline and other comparable agents can act as 
mitochondrial enzyme activators and these properties 
involve the effects of selegiline preventive effects on 
neurotoxicity caused by morphine and amphetamine 
(71, 72, 74).  We assessed the molecular basis and the 
likely signaling paths involved in this action in order 
to identify the mechanism of neuroprotective behavior 
of selegiline toward methamphetamine-induced 
behavioral and molecular effects. Thus, we assessed 
the signaling pathways for P-CREB / BDNF and Akt / 
GSK3. According to our data, methamphetamine (10 
mg/kg) can reduce the expression levels of CREB and 
Akt proteins in complete and phosphorylated forms 
and decrease BDNF. Our findings also showed that 
methamphetamine can increase the expression level 
of GSK3 protein in complete and phosphorylated 
forms. These findings are consistent with prior work 
showing that methamphetamine type stimulant can 
inhibit P-CREB and Akt phosphorylation in brain 
cells and inhibit BDNF production and enhance GSK3 
phosphorylation leading to neurodegeneration (64, 75, 
76). Our data also showed that selegiline can inhibit 
methamphetamine-induced decline in the expression 
level of CREB protein in complete and phosphorylated 
form, thus increasing the output of BDNF in rats treated 
with methamphetamine. These selegiline impacts were 
shown at 10, 15, and 20 mg/kg doses. Our data also 
shows that selegiline, particularly at greater doses 
(15 and 20 mg/kg), can prevent methamphetamine-
prompted rises in GSK3 and reduction in protein 
expression level of Akt  (33). Based on this finding, it 
can be discussed that selegiline can likely handle and 
reverse methamphetamine-induced neurodegeneration 
through activation of P-CERB formation, induction 
of BDNF manufacturing, and modulation of GSK3 
(inhibition) and Akt (activation)(77, 78). With regard 
to the role of small and high doses of selegiline in the 
management of molecular parameters, our finding 

showed that all the aforementioned doses of selegiline 
could modulate oxidative stress and inflammatory 
biomarkers in accordance with previous information 
showing their neuroprotective effects at low doses (71). 
Selegiline could modulate methamphetamine-induced 
changes in P-CREB / BDNF at doses of 10, 15 and 20 
mg/kg and alter Akt / P-GSK3 proteins at doses of 15 
and 20 mg/kg to verify its role in signaling pathway 
modifications at mild to elevated doses (79). Conferring 
to the current results, selegiline and other comparable 
agents may behave via P-CREB / BDNF or P-Akt / 
P-GSK3 paths, and activate neuroprotection. These novel 
findings offer new insights into the molecular basis of 
protective impacts of selegiline and also toxic impacts of 
methamphetamine in hippocampal cells.

Conclusion
The present research showed that the signaling 

pathway for P-CREB / BDNF and P-Akt/P-GSK3 could 
be engaged in selegiline protective impacts against 
methamphetamine-prompted behavioral and molecular 
sequels. Although these data give new insights about 
unknown mechanisms of methamphetamine-prompted 
neurotoxicity, but further precise molecular and cellular 
assessment of protective role of selegiline against 
methamphetamine-prompted sequels seems necessary.
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