Natural products as safeguards against monosodium glutamate-induced toxicity

Document Type : Review Article

Authors

1 Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

2 Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

3 Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

4 Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

5 School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

6 Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Monosodium glutamate is a sodium salt of a nonessential amino acid, L-glutamic acid, which is widely used in food industry. Glutamate plays an important role in principal brain functions including formation and stabilization of synapses, memory, cognition, learning, as well as cellular metabolism. However, ingestion of foodstuffs rich in monosodium glutamate can result in the outbreak of several health disorders such as neurotoxicity, hepatotoxicity, obesity and diabetes. The usage of medicinal plants and their natural products as a therapy against MSG used in food industry has been suggested to be protective. Calendula officinalis, Curcuma longa, Green Tea, Ginkgo biloba and vitamins are some of the main natural products with protective effect against mentioned monosodium glutamate toxicity through different mechanisms. This review provides a summary on the toxicity of monosodium glutamate and the protective effects of natural products against monosodium glutamate -induced toxicity.

Keywords


1. Moldes AB, Vecino X, Cruz JM. 6-Nutraceuticals and food additives. In: Pandey A, Sanromán MÁ, Du G, Soccol CR, Dussap C-G, editors. Current Developments in Biotechnology and Bioengineering; 2017. p. 143-164.
2. Martins F, Sentanin MA, De Souza D. Analytical methods in food additives determination: Compounds with functional applications. Food Chem 2019; 272: 732-750.
3. Silva HLA, Balthazar CF, Esmerino EA, Vieira AH, Cappato LP, Neto RPC, et al. Effect of sodium reduction and flavor enhancer addition on probiotic Prato cheese processing. Food Res Int 2017; 99: 247-255.
4. Beyreuther K, Biesalski HK, Fernstrom JD, Grimm P, Hammes WP, Heinemann U, et al. Consensus meeting: monosodium glutamate - an update. Eur J Clin Nutr 2007; 61: 304-313.
5. Husarova V, Ostatnikova D. Monosodium glutamate toxic effects and their implications for human intake: a review. JMED Research; 2013: 1-12.
6. Rhodes J, Titherley AC, Norman JA, Wood R, Lord DW. A survey of the monosodium glutamate content of foods and an estimation of the dietary intake of monosodium glutamate. Food Addit Contam 1991; 8: 663-672.
7. Park E, Yu KH, Kim DK, Kim S, Sapkota K, Kim S-J, et al. Protective effects of N-acetylcysteine against monosodium glutamate-induced astrocytic cell death. Food Chem Toxicol 2014; 67: 1-9.
8. Tome D. The roles of dietary glutamate in the intestine. Ann Nutr Metab 2018; 73 Suppl 5: 15-20.
9. Pavlovic V, Pavlovic D, Kocic G, Sokolovic D, Jevtovic-Stoimenov T, Cekic S, et al. Effect of monosodium glutamate on oxidative stress and apoptosis in rat thymus. Mol Cell Biochem 2007; 303: 161-166.
10.    Ugur Calis I, Turgut Cosan D, Saydam F, Kerem Kolac U, Soyocak A, Kurt H, et al. The effects of monosodium glutamate and tannic acid on adult rats. Iran Red Crescent Med J 2016; 18: e37912.
11.    Farombi EO, Onyema OO. Monosodium glutamate-induced oxidative damage and genotoxicity in the rat: modulatory role of vitamin C, vitamin E and quercetin. Hum Exp Toxicol 2006; 25: 251-259.
12.    Onakewhor JU, Oforofuo IA, Singh SP. Chronic administration of monosodium glutamate induces oligozoospermia and glycoen accumulation in Wistar rat testes. Afr J Reprod Health 2017; 2: 37-43.
13.    Ortiz GG, Bitzer-Quintero OK, Zarate CB, Rodriguez-Reynoso S, Larios-Arceo F, Velazquez-Brizuela IE, et al. Monosodium glutamate-induced damage in liver and kidney: a morphological and biochemical approach. Biomed Pharmacother 2006; 60: 86-91.
14.    Niaz K, Zaplatic E, Spoor J. Extensive use of monosodium glutamate: A threat to public health? EXCLI J 2018; 17: 273-278.
15.    Kurihara K. Glutamate: from discovery as a food flavor to role as a basic taste (umami). Am J Clin Nutr 2009; 90: 719S-722S.
16.    Hernandez Bautista RJ, Mahmoud AM, Konigsberg M, Lopez Diaz Guerrero NE. Obesity: Pathophysiology, monosodium glutamate-induced model and anti-obesity medicinal plants. Biomed Pharmacother 2019; 111: 503-516.
17.    Rim K-T. Toxicological evaluation of MSG for the manufacturing workers’ health: A literature review. J Toxicol Environ Health Sci 2017; 9: 1-11.
18.    Samuels A. The toxicity/safety of processed free glutamic acid (MSG): a study in suppression of information. Account Res 1999; 6: 259-310.
19.    Cetin Kardesler A, Baskale E. Investigation of the behavioral and neurochemical effects of monosodium glutamate on neonatal rats. Turk J Med Sci 2017; 47: 1002-1011.
20.    Onaolapo OJ, Onaolapo AY, Akanmu MA, Gbola O. Evidence of alterations in brain structure and antioxidant status following ‘low-dose’ monosodium glutamate ingestion. Pathophysiology 2016; 23: 147-156.
21.    Stegink LD, Filer LJ, Jr., Baker GL. Plasma glutamate concentrations in adult subjects ingesting monosodium L-glutamate in consomme. Am J Clin Nutr 1985; 42: 220-225.
22.    Shannon M, Wilson J, Xie Y, Connolly L. In vitro bioassay investigations of suspected obesogen monosodium glutamate at the level of nuclear receptor binding and steroidogenesis. Toxicol Lett 2019; 301: 11-16.
23.    Nakamura H, Kawamata Y, Kuwahara T, Torii K, Sakai R. Nitrogen in dietary glutamate is utilized exclusively for the synthesis of amino acids in the rat intestine. Am J Physiol Endocrinol Metab 2013; 304: E100-108.
24.    Rutten EP, Engelen MP, Wouters EF, Deutz NE, Schols AM. Effect of glutamate ingestion on whole-body glutamate turnover in healthy elderly and patients with chronic obstructive pulmonary disease. Nutrition 2006; 22: 496-503.
25.    Graham TE, Sgro V, Friars D, Gibala MJ. Glutamate ingestion: the plasma and muscle free amino acid pools of resting humans. Am J Physiol Endocrinol Metab 2000; 278: E83-89.
26.    Boisrobert C OS, Stjepanovic A, Lelieveld H. Ensuring global food safety: Exploring global harmonization: Academic Press; 2009.
27.    Caccia S, Garattini S, Ghezzi P, Zanini MG. Plasma and brain levels of glutamate and pyroglutamate after oral monosodium glutamate to rats. Toxicol lett 1982; 10: 169-175.
28.    Hawkins RA. The blood-brain barrier and glutamate. Am J Clin Nutr 2009; 90: 867S-874S.
29. Dehghani S, Mehri S, Hosseinzadeh H. The effects of crataegus pinnatifida (Chinese hawthorn) on metabolic syndrome: A review. Iran J Basic Med Sci 2019; 22: 460-468
30.    Hajian-Tilaki K, Heidari B. Variations in the pattern and distribution of non-obese components of metabolic syndrome across different obesity phenotypes among Iranian adults’ population. Diabetes Metab Syndr 2019; 13: 2419-2424.
31.    Dow C, Balkau B, Bonnet F, Mancini F, Rajaobelina K, Shaw J, et al. Strong adherence to dietary and lifestyle recommendations is associated with decreased type 2 diabetes risk in the AusDiab cohort study. Prev Med 2019; 123: 208-216.
32.    Leshchenko IV, Shevchuk VH, Falalieieva TM, Beregova TV. [The influence of long-term monosodium glutamate feeding on the structure of rats pancreas]. Fiziol Zh 2012; 58: 59-65.
33.    He K, Zhao L, Daviglus ML, Dyer AR, Van Horn L, Garside D, et al. Association of monosodium glutamate intake with overweight in Chinese adults: the INTERMAP Study. Obesity 2008; 16: 1875-1880.
34.    Hermanussen M, Garcia AP, Sunder M, Voigt M, Salazar V, Tresguerres JA. Obesity, voracity, and short stature: the impact of glutamate on the regulation of appetite. Eur J Clin Nutr 2006; 60: 25-31.
35.    Seiva FR, Chuffa LG, Braga CP, Amorim JP, Fernandes AA. Quercetin ameliorates glucose and lipid metabolism and improves antioxidant status in postnatally monosodium glutamate-induced metabolic alterations. Food Chem Toxicol 2012; 50: 3556-3561.
36.    Nagata M, Suzuki W, Iizuka S, Tabuchi M, Maruyama H, Takeda S, et al. Type 2 diabetes mellitus in obese mouse model induced by monosodium glutamate. Exp Anim 2006; 55: 109-115.
37.    Nakanishi Y, Tsuneyama K, Fujimoto M, Salunga TL, Nomoto K, An JL, et al. Monosodium glutamate (MSG): a villain and promoter of liver inflammation and dysplasia. J Autoimmun 2008; 30: 42-50.
38.    Umukoro S, Oluwole GO, Olamijowon HE, Omogbiya AI, Eduviere AT. Effect of monosodium glutamate on behavioral phenotypes, biomarkers of oxidative stress in brain tissues and liver enzymes in mice. World J Neurol 2015; 5: 339-349.
39.    Saeidnia S, Abdollahi M. Toxicological and pharmacological concerns on oxidative stress and related diseases. Toxicol Appl Pharmacol 2013; 273: 442-455.
40.    Pavlovic V, Cekic S, Sokolovic D, Djindjic B. Modulatory effect of monosodium glutamate on rat thymocyte proliferation and apoptosis. Bratisl Lek Listy 2006; 107: 185-191.
41.    Rosa SG, Chagas PM, Pesarico AP, Nogueira CW. Monosodium glutamate induced nociception and oxidative stress dependent on time of administration, age of rats and susceptibility of spinal cord and brain regions. Toxicol Appl Pharmacol 2018; 351: 64-73.
42.    Ahluwalia P, Tewari K, Choudhary P. Studies on the effects of monosodium glutamate (MSG) on oxidative stress in erythrocytes of adult male mice. Toxicol Lett 1996; 84: 161-165.
43.    Elshafey M, Eladl MA, El-Sherbiny M, Atef H, El Morsi DA. Hepatotoxicity of monoglutamate sodium: Oxidative stress and histopathlogical study. FASEB J 2017; 31: lb31-lb.
44.    Onyema OO, Farombi EO, Emerole GO, Ukoha AI, Onyeze GO. Effect of vitamin E on monosodium glutamate induced hepatotoxicity and oxidative stress in rats. Indian J Biochem Biophys 2006; 43: 20-24.
45.    Eweka A, Om’iniabohs F. Histological studies of the effects of monosodium glutamate on the ovaries of adult Wistar rats. Ann Med Health Sci Res 2011; 1: 37-43.
46.    Babu GN, Bawari M, Ali MM. Lipid peroxidation potential and antioxidant status of circumventricular organs of rat brain following neonatal monosodium glutamate. Neurotoxicology 1994; 15: 773-777.
47.    Sadek K, Abouzed T, Nasr S. Lycopene modulates cholinergic dysfunction, Bcl-2/Bax balance, and antioxidant enzymes gene transcripts in monosodium glutamate (E621) induced neurotoxicity in a rat model. Can J Physiol Pharmacol 2016; 94: 394-401.
48.    Abdel Moneim WM, Yassa HA, Makboul RA, Mohamed NA. Monosodium glutamate affects cognitive functions in male albino rats. Egypt J Forensic Sci 2018; 8: 9.
49.    Lucas DR, Newhouse JP. The toxic effect of sodium L-glutamate on the inner layers of the retina. Arch Ophthalmol 1957; 58: 193-201.
50.    Olney JW, Sharpe LG. Brain lesions in an infant rhesus monkey treated with monsodium glutamate. Science 1969; 166(3903): 386-388.
51.    Burde RM, Schainker B, Kayes J. Acute effect of oral and subcutaneous administration of monosodium glutamate on the arcuate nucleus of the hypothalamus in mice and rats. Nature 1971; 233: 58-60.
52.    Bodnár I, Göõz P, Okamura H, Tóth BE, Vecsernyé M, Halász B, et al. Effect of neonatal treatment with monosodium glutamate on dopaminergic and L-DOPA-ergic neurons of the medial basal hypothalamus and on prolactin and MSH secretion of rats. Brain Res Bull 2001; 55: 767-774.
53.    Moreno G, Perello M, Gaillard RC, Spinedi E. Orexin a stimulates hypothalamic-pituitary-adrenal (HPA) axis function, but not food intake, in the absence of full hypothalamic NPY-ergic activity. Endocrine 2005; 26: 99-106.
54.    Perello M, Gaillard RC, Chisari A, Spinedi E. Adrenal enucleation in MSG-damaged hyperleptinemic male rats transiently restores adrenal sensitivity to leptin. Neuroendocrinology 2003; 78: 176-184.
55.    Gobel CH, Tronnier VM, Munte TF. Brain stimulation in obesity. Int J Obes (2005) 2017; 41: 1721-1727.
56.    Miranda RA, Torrezan R, de Oliveira JC, Barella LF, da Silva Franco CC, Lisboa PC, et al. HPA axis and vagus nervous function are involved in impaired insulin secretion of MSG-obese rats. J Endocrinol 2016; 230: 27-38.
57.    Rosa SG, Quines CB, da Rocha JT, Bortolatto CF, Duarte T, Nogueira CW. Antinociceptive action of diphenyl diselenide in the nociception induced by neonatal administration of monosodium glutamate in rats. Eur J Pharmacol 2015; 758: 64-71.
58.    Appaiah KM. Chapter 13 - Monosodium Glutamate in Foods and its Biological Effects. In: Boisrobert CE, Stjepanovic A, Oh S, Lelieveld HLM, editors. Ensuring Global Food Safety. San Diego: Academic Press; 2010. p. 217-26.
59.    Schmidt-Kastner R, Freund TF. Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 1991; 40: 599-636.
60.    Ali MM, Bawari M, Misra UK, Babu GN. Locomotor and learning deficits in adult rats exposed to monosodium-l-glutamate during early life. Neurosci Lett 2000; 284: 57-60.
61.    Olvera-Cortés E, López-Vázquez MA, Beas-Zárate C, González-Burgos I. Neonatal exposure to monosodium glutamate disrupts place learning ability in adult rats. Pharmacol Biochem Behav 2005; 82: 247-251.
62.    Beas-Zarate C, Flores-Soto ME, Armendariz-Borunda J. NMDAR-2C and 2D subunits gene expression is induced in brain by neonatal exposure of monosodium L-glutamate to adult rats. Neurosci Lett 2002; 321: 9-12.
63.    Ramalho JB, Izaguirry AP, Soares MB, Spiazzi CC, Pavin NF, Affeldt RF, et al. Selenofuranoside improves long-term memory deficits in rats after exposure to monosodium glutamate: Involvement of Na+, K+-ATPase activity. Physiol Behav 2018; 184: 27-33.
64.    Lestari B, Novitasari D, Putri H, Haryanti S, Sasmito E, Meiyanto E. Evaluation of the genotoxicity of three food additives using CHO-K1 Cells under in vitro micronucleus flow cytometry assay. IJCC 2017; 8: 74-80.
65.    Adeyemo OA, Farinmade AE. Genotoxic and cytotoxic effects of food flavor enhancer, monosodium glutamate (MSG) using Allium cepa assay. Afr J Biotechnol 2013; 12: 1459-1466.
66.    Khatab HA, Elhaddad NS. Evaluation of mutagenic effects of monosodium glutamate using Allium cepa and antimutagenic action of Origanum majorana L. and Ruta chalepensis medical plants. Biotechnol J 2015; 8: 1-11.
67.    Ataseven N, Yuzbasioglu D, Keskin AC, Unal F. Genotoxicity of monosodium glutamate. Food Chem Toxicol 2016; 91: 8-18.
68.    Turkoglu S. Evaluation of genotoxic effects of five flavour enhancers (glutamates) on the root meristem cells of Allium cepa. Toxicol Ind Health 2015; 31: 792-801.
69.    Ismail N. Assessment of DNA damage in testes from young Wistar male rat treated with monosodium glutamate. Life Sci J 2012; 9: 930-939.
70.    Walker R, Lupien JR. The safety evaluation of monosodium glutamate. J Nutr 2000; 130: 1049S-1052S.
71.    Mohammed S. Monosodium glutamate-induced genotoxicity in rat palatal mucosa. Tanta Dent J 2017; 14: 112-119.
72.    Rogers MD. Monosodium glutamate is not likely to be genotoxic. Food Chem Toxicol 2016; 94: 260-261.
73.    Shibata MA, Tanaka H, Kawabe M, Sano M, Hagiwara A, Shirai T. Lack of carcinogenicity of monosodium L-glutamate in Fischer 344 rats. Food Chem Toxicol 1995; 33: 383-391.
74.    Alalwani AD. Monosodium glutamate induced testicular lesions in rats (histological study). Middle East Fertil Soc J 2014; 19: 274-280.
75.    Joseph U.E Onakewhor Iaoo, Sarrjit P. Singh. Chronic administration of monosodium glutamate induces oligozoospermia and glycoen accumulation in Wistar rat testes. Onakewhor 1998; 2: 1-3.
76.    Igwebuike UM OI, Ihedinihu BC, Ikokide JE, Idika IK. . The effects of oral administration of monosodium glutamate (MSG) on the testicular morphology and cauda epididymal sperm reserves of young and adult male rats. Veterinarski Arhiv 2011; 81: 525-234.
77.    Kadir RE OG, Balogun TJ, Oyewopo AO. Effects of monosodium glutamate on semen quality and the cytoarchitecture of the testis of adult Wistar rats. Int J Biol Sci 2011; 7: 39-46.
78.    Oforofuo IAO OJ, Idaewor PE. The effect of chronic administration of MSG on the histology of the Adult Wister rat testes. Bios Resch Comms 1997; 9: 12–14.
79.    Giovambattista A, Suescun MO, Nessralla CCDL, França LR, Spinedi E, Calandra RS. Modulatory effects of leptin on leydig cell function of normal and hyperleptinemic rats. Neuroendocrinology 2003; 78: 270-279.
80.    NA V, AK N, Damodara Gowda KM, Ahamed B, C Ramaswamy, Shabarinath, et al. Effect of monosodium induced oxidative damage on rat testis. J Chin Clin Med 2008; 3: 370-373.
81.    Shivasharan BD, Nagakannan P, Thippeswamy BS, Veerapur VP. Protective effect of Calendula officinalis L. flowers against monosodium glutamate induced oxidative stress and excitotoxic brain damage in rats. Indian J Clin Biochem 2013; 28: 292-298.
82.    Babaee N, Moslemi D, Khalilpour M, Vejdani F, Moghadamnia Y, Bijani A, et al. Antioxidant capacity of Calendula officinalis flowers extract and prevention of radiation induced oropharyngeal mucositis in patients with head and neck cancers: a randomized controlled clinical study. Daru 2013; 21: 18-32.
83.    Preethi KC, Kuttan G, Kuttan R. Antioxidant potential of an extract of Calendula officinalis flowers in vitro. and in vivo. Pharm Biol 2006; 44: 691-697.
84.    Preethi KC, Kuttan G, Kuttan R. Anti-inflammatory activity of flower extract of Calendula officinalis Linn. and its possible mechanism of action. Indian J Exp Biol 2009; 47: 113-120.
85.    Parente LML, Lino Júnior RdS, Tresvenzol LMF, Vinaud MC, de Paula JR, Paulo NM. Wound healing and anti-Inflammatory effect in animal models of Calendula officinalis L. growing in Brazil. Evid Based Complement Alternat Med2012; 2012: 1-7.
86.    Lima MdR, Lopes AP, Martins C, Brito GAC, Carneiro VC, Goes P. The effect of Calendula officinalis on oxidative stress and bone loss in experimental periodontitis. Front physiol 2017; 8: 1-9.
87.    Fonseca YM, Catini CD, Vicentini FT, Nomizo A, Gerlach RF, Fonseca MJ. Protective effect of Calendula officinalis extract against UVB-induced oxidative stress in skin: evaluation of reduced glutathione levels and matrix metalloproteinase secretion. J Ethnopharmacol 2010; 127: 596-601.
88.    Della Loggia R, Tubaro A, Sosa S, Becker H, Saar S, Isaac O. The role of triterpenoids in the topical anti-inflammatory activity of Calendula officinalis flowers. Planta Med 1994; 60: 516-520.
89.    Hernández-Bautista RJ, Alarcón-Aguilar FJ, Del C Escobar-Villanueva M, Almanza-Pérez JC, Merino-Aguilar H, Fainstein MK, et al. Biochemical alterations during the obese-aging process in female and male monosodium glutamate (MSG)-treated mice. Int J Mol Sci 2014; 15: 11473-11494.
90.    Mozes S, Sefcikova Z, Lenhardt L, Racek L. Obesity and changes of alkaline phosphatase activity in the small intestine of 40- and 80-day-old rats subjected to early postnatal overfeeding or monosodium glutamate. Physiol Res 2004; 53: 177-186.
91.    Bhattacharya T, Bhakta A, Ghosh SK. Long term effect of monosodium glutamate in liver of Albino mice after neo-natal exposure. Nepal Med Coll J 2011; 13: 11-16.
92.    Court-Brown CM, Duckworth AD, Ralston S, McQueen MM. The relationship between obesity and fractures. Injury 2019; 50: 1423-1428.
93.    Miranda-Perez ME, Ortega-Camarillo C, Del Carmen Escobar-Villanueva M, Blancas-Flores G, Alarcon-Aguilar FJ. Cucurbita ficifolia Bouche increases insulin secretion in RINm5F cells through an influx of Ca(2+) from the endoplasmic reticulum. J Ethnopharmacol 2016; 188: 159-166.
94.    Fortis-Barrera A, Garcia-Macedo R, Almanza-Perez JC, Blancas-Flores G, Zamilpa-Alvarez A, Flores-Saenz JL, et al. Cucurbita ficifolia (Cucurbitaceae) modulates inflammatory cytokines and IFN-gamma in obese mice. Can J Physiol Pharmacol 2017; 95: 170-177.
95.    Virdi J, Sivakami S, Shahani S, Suthar AC, Banavalikar MM, Biyani MK. Antihyperglycemic effects of three extracts from Momordica charantia. J Ethnopharmacol 2003; 88: 107-111.
96.    Shakeri A, Sahebkar A. Optimized curcumin formulations for the treatment of Alzheimer’s disease: A patent evaluation. J Neurosci Res 2016; 94: 111-113.
97.    Shakeri A, Ward N, Panahi Y, Sahebkar A. Anti-angiogenic activity of curcumin in cancer therapy: A narrative review. Curr Vasc Pharmacol 2019; 17: 262-269.
98.    Karimian MS, Pirro M, Majeed M, Sahebkar A. Curcumin as a natural regulator of monocyte chemoattractant protein-1. Cytokine Growth Factor Rev 2017; 33: 55-63.
99.    Sahebkar A, Cicero AFG, Simental-Mendía LE, Aggarwal BB, Gupta SC. Curcumin downregulates human tumor necrosis factor-α levels: A systematic review and meta-analysis ofrandomized controlled trials. Pharmacol Res 2016; 107: 234-242.
100. Cicero AFG, Colletti A, Bajraktari G, Descamps O, Djuric DM, Ezhov M, et al. Lipid-lowering nutraceuticals in clinical practice: Position paper from an International Lipid Expert Panel. Nutr Rev 2017; 75: 731-767.
101. Rezaee R, Momtazi AA, Monemi A, Sahebkar A. Curcumin: A potentially powerful tool to reverse cisplatin-induced toxicity. Pharmacol Res 2017; 117: 218-227.
102. Shakeri A, Sahebkar A. Opinion Paper: Phytosome: A fatty solution for efficient formulation of phytopharmaceuticals. Recent Pat Drug Deliv Formul 2016; 10: 7-10.
103. Khalil RM, Khedr NF. Curcumin protects against monosodium glutamate neurotoxicity and decreasing NMDA2B and mGluR5 expression in rat hippocampus. Neuro-Signals 2016; 24: 81-87.
104. Vucic M, Cojbasic I, Vucic J, Pavlovic V. The effect of curcumin and PI3K/Akt inhibitor on monosodium glutamate-induced rat thymocytes toxicity. Gen Physiol Biophys 2018; 37: 329-336.
105. Sakr S, Badawy G. Protective effect of curcumin on monosodium glutamate-induced reproductive toxicity in male albino rats.  Global J Pharmacol 2013; 7: 416-422.
106. Riaz G, Chopra R. A review on phytochemistry and therapeutic uses of Hibiscus sabdariffa L. Biomed Pharmacother 2018; 102: 575-586.
107. Olaleye MT. Cytotoxicity and antibacterial activity of methanolic extract of Hibiscus sabdariffa. J Med Plant Res 2007; 1: 9-13.
108. Gheller AC, Kerkhoff J, Vieira Junior GM, de Campos KE, Sugui MM. Antimutagenic effect of Hibiscus sabdariffa L. aqueous extract on rats treated with monosodium glutamate. Sci World J 2017; 2017: 1-8.
109. Rosa RM, Melecchi MIS, Abad FC, Simoni CR, Caramão EB, Henriques JAP, et al. Antioxidant and antimutagenic properties of Hibiscus tiliaceus L. methanolic extract. J Agric Food Chem 2006; 54: 7324-7330.
110. Rodriguez-Medina IC, Beltran-Debon R, Molina VM, Alonso-Villaverde C, Joven J, Menendez JA, et al. Direct characterization of aqueous extract of Hibiscus sabdariffa using HPLC with diode array detection coupled to ESI and ion trap MS. J Sep Sci 2009; 32: 3441-3448.  
111. Tseng TH, Kao TW, Chu CY, Chou FP, Lin WL, Wang CJ. Induction of apoptosis by hibiscus protocatechuic acid in human leukemia cells via reduction of retinoblastoma (RB) phosphorylation and Bcl-2 expression. Biochem Pharmacol 2000; 60: 307-315.
112. Dickel ML, Rates SMK, Ritter MR. Plants popularly used for loosing weight purposes in Porto Alegre, South Brazil. J Ethnopharmacol 2007; 109: 60-71.
113. Da-Costa-Rocha I, Bonnlaender B, Sievers H, Pischel I, Heinrich M. Hibiscus sabdariffa L. - a phytochemical and pharmacological review. Food Chem 2014; 165: 424-443.
114. Alarcon-Aguilar FJ, Zamilpa A, Perez-Garcia MD, Almanza-Perez JC, Romero-Nunez E, Campos-Sepulveda EA, et al. Effect of Hibiscus sabdariffa on obesity in MSG mice. J Ethnopharmacol 2007; 114: 66-71..
115. Huang J, Wang Y, Xie Z, Zhou Y, Zhang Y, Wan X. The anti-obesity effects of green tea in human intervention and basic molecular studies. Eur J Clin Nutr 2014; 68: 1075-1087.
116. Hursel R, Viechtbauer W, Westerterp-Plantenga MS. The effects of green tea on weight loss and weight maintenance: a meta-analysis. Int J Obes 2009; 33: 956-961.
117. Bártíková H, Boušová I, Matoušková P, Szotáková B, Skálová L. Effect of green tea extract-enriched diets on insulin and leptin levels, oxidative stress parameters and antioxidant enzymes activities in obese mice. Pol J Food Nutr Sci 2017; 67: 233-240.
118. Bousova I, Matouskova P, Bartikova H, Szotakova B, Hanusova V, Tomankova V, et al. Influence of diet supplementation with green tea extract on drug-metabolizing enzymes in a mouse model of monosodium glutamate-induced obesity. Eur J Nutr 2016; 55: 361-371.
119. Ibegbulem CO, Chikezie PC, Ukoha AI, Opara CN. Effects of diet containing monosodium glutamate on organ weights, acute blood steroidal sex hormone levels, lipid profile and erythrocyte antioxidant enzymes activities of rats. J Acute Dis 2016; 5: 402-407.
120. Rani J, Savalagimath MP. Effect of dooshivishari agada over MSG-induced reproductive toxicity w.s.r. ovary and follicle count. Ayu 2017; 38: 88-92.
121. Ruder EH, Hartman TJ, Goldman MB. Impact of oxidative stress on female fertility. Curr Opin Obstet Gynecol 2009; 21: 219-222.
122. Ali A, El-Seify G, El Haroun H, Mohammed Soliman M. Effect of monosodium glutamate on the ovaries of adult female Albino rats and the possible protective role of green tea. Menoufia Med J 2014; 27: 793-800.
123. Yulianti S, Andarini S, Keman K. Effects of green tea extract on graafian follicles and serum 17β-estradiol in monosodium glutamate-exposed rats. Baqai J Health Sci 2018; 21: 1-7.
124. Ahmed M. Effect of some food additives consumption on the body weight and toxicity and the possible ameliorative role of green tea extract. Sciences 2016; 6: 716-730.
125. Westerterp-Plantenga MS. Green tea catechins, caffeine and body-weight regulation. Physiol Behav 2010; 100: 42-46.
126. Helal EG, El-Sayed RA, Gomaa M-H, El-Gamal MS. Effects of some food additives on some biochemical parameters in young male Albino rats and the ameliorative role of royal jelly. Egypt J Hosp Med 2017; 67: 605- 613.
127. Hamza RZ, Al-Salmi FA, El-Shenawy NS. Nanoparticles effects on zinc oxide/green tea complex on the lipid profile and liver functions of rats after monosodium glutamate treatment. J Appl Sci 2018; 18: 65-70.
128. Anthony C. Cemaluk E, E Ejike G. Effect of pulverized Mangifera indica (mango) seed kernel on monosodium glutamate-intoxicated rats’ serum antioxidant capacity, brain function and histology. EC Pharmacol Toxicol 2007; 4: 228-243.
129. Egbuonu A, Ekwuribe G. Pulverized Mangifera indica (mango) seed-kernel modulated serum lipid profile in monosodium glutamate-challenged rats. J APPL Biotech 2017; 5: 72-87.
130. Egbuonu ACC, Oriji SO. Pulverized Mangifera indica (mango) seed kernel mitigated monosodium glutamate-intoxicated rats’ kidney histology and bio-functions. J Nutr Health Food Sci 2017; 5: 1-7.
131. Wirandoko IH, Apriyani C, Apriyanto DR. Effectivity of tomato (Solanum lycopersicum) and zinc combination to sperms of male white rats (Rattus norvegicus) exposed to monosodium glutamate. J Phys 2019; 1146: 1-3.
132. Malekiyan R, Abdanipour A, Sohrabi D, Jafari Anarkooli I. Antioxidant and neuroprotective effects of lycopene and insulin in the hippocampus of streptozotocin-induced diabetic rats. Biomed Rep 2019; 10: 47-54.
133. Sayed Badawi M. Assessment of the possible protective effect of lycopene on monosodium glutamate-induced nephrotoxicity in adult male albino rat. Eur J Anat 2019; 23: 215-221.
134. Chen J, Song Y, Zhang L. Effect of lycopene supplementation on oxidative stress: an exploratory systematic review and meta-analysis of randomized controlled trials. J Med Food 2013; 16: 361-74.
135. Basu A, Imrhan V. Tomatoes versus lycopene in oxidative stress and carcinogenesis: conclusions from clinical trials. Eur J Clin Nutr 2006; 61: 295-303.
136. Lu CW, Hung CF, Jean WH, Lin TY, Huang SK, Wang SJ. Lycopene depresses glutamate release through inhibition of voltage-dependent Ca(2+) entry and protein kinase C in rat cerebrocortical nerve terminals. Can J Physiol Pharmacol 2018; 96: 479-484.
137. Delaviz H, Mohammadi J, Ghalamfarsa G, Mohammadi B, Farhadi N. A review study on phytochemistry and pharmacology applications of Juglans regia plant. Pharmacogn Rev 2017; 11: 145-152.
138. Liang X, Chen D, Cao L, Zhao S. Effects of pressed degreased walnut meal extracts on lipid metabolism in postnatally monosodium glutamate-induced mice and 3T3-L1 preadipocytes. J Funct Foods 2017; 31: 89-96.
139. Rock CL, Flatt SW, Barkai H-S, Pakiz B, Heath DD. Walnut consumption in a weight reduction intervention: effects on body weight, biological measures, blood pressure and satiety. Nutr J 2017; 16: 76-85.
140. Totani N, Tateishi S, Takimoto T, Maeda Y, Sasaki H. Gallic acid glycerol ester promotes weight-loss in rats. J Oleo Sci 2011; 60: 457-462.
141. Doan KV, Ko CM, Kinyua AW, Yang DJ, Choi YH, Oh IY, et al. Gallic acid regulates body weight and glucose homeostasis through AMPK activation. Endocrinology 2015; 156: 157-168.
142. Lete I, Allue J. The effectiveness of ginger in the prevention of nausea and vomiting during pregnancy and chemotherapy. Integr Med Insights 2016; 11: 11-17.
143. Hussein UK, Hassan NEY, Elhalwagy MEA, Zaki AR, Abubakr HO, Nagulapalli Venkata KC, et al. Ginger and propolis exert neuroprotective effects against monosodium glutamate-induced neurotoxicity in rats. Molecules 2017; 22: 1928-1952
144. Waggas AM. Neuroprotective evaluation of extract of ginger (Zingiber officinale) root in monosodium glutamate-induced toxicity in different brain areas male albino rats. Pak J Biol Sci 2009; 12: 201-212.
145. Gomar A, Hosseini A, Mirazi N, Gomar M. Effect of Zingiber Officinale (ginger rhizomes) hydroethanolic extract on hyoscine-induced memory impairment in adult male rats. ICNSJ 2015; 2: 105-110.
146. Stoilova I, Krastanov A, Stoyanova A, Denev P, Gargova S. Antioxidant activity of a ginger extract (Zingiber officinale). Food Chem 2007; 102: 764-770.
147. Soliman AF, Anees LM, Ibrahim DM. Cardioprotective effect of zingerone against oxidative stress, inflammation, and apoptosis induced by cisplatin or gamma radiation in rats. Naunyn Schmiedebergs Arch Pharmacol 2018; 391: 819-832.
148. Sapkota A, Park SJ, Choi JW. Neuroprotective effects of 6-shogaol and its metabolite, 6-paradol, in a mouse model of multiple sclerosis. Biomol Ther 2019; 27: 152-159.
149. Kobayashi MS, Han D, Packer L. Antioxidants and herbal extracts protect HT-4 neuronal cells against glutamate-induced cytotoxicity. Free Radic Res 2000; 32: 115-124.
150. Zaghlool SS, Hanaf LK, Afifi NM, Ibrahim ER. Histological and immunohistochemical study on the protective effect of Ginkgo biloba extract against glutamate-induced neurotoxicity in male albino rat retinal cells. Egypt J Histol 2012; 35: 176-188.
151. Elatrash AM, Abd El-Haleim SZ. Protective role of Ginkgo biloba on monosodium glutamate: Induced liver and kidney toxicity in rats. Res J Pharm Biol Chem Sci 2015; 6: 1433-1441.
152. Arafa NMM. A Study on the antioxidative properties of Ginkgo biloba leaf extract in Albino rats exposed to gamma radiation or monosodium glutamate. 2014; 48:223-231.
153. Zhao Z, Liu N, Huang J, Lu P-H, Xu X-M. Inhibition of cPLA2 activation by Ginkgo biloba extract protects spinal cord neurons from glutamate excitotoxicity and oxidative stress-induced cell death. J Neurochem 2011; 116: 1057-1065.
154.Chandrasekaran K, Mehrabian Z, Spinnewyn B, Chinopoulos C, Drieu K, Fiskum G. Neuroprotective effects of bilobalide, a component of Ginkgo biloba extract (EGb 761) in global brain ischemia and in excitotoxicity-induced neuronal death. Pharmacopsychiatry 2003; 36: S89-S94.
155. Lang D, Kiewert C, Mdzinarishvili A, Schwarzkopf TM, Sumbria R, Hartmann J, et al. Neuroprotective effects of bilobalide are accompanied by a reduction of ischemia-induced glutamate release. Brain Res 2011; 1425: 155-163.
156. Chandrasekaran K, Mehrabian Z, Spinnewyn B, Chinopoulos C, Drieu K, Fiskum G. Bilobalide, a component of the Ginkgo biloba extract (EGb 761), protects against neuronal death in global brain ischemia and in glutamate-induced excitotoxicity. Cell Mol Biol 2002; 48: 663-669.
157. El makawy A, Abdou.H a. Modulatory effect of ascorbic acid against food additive monosodium glutamate genotoxicity in rats. J Genetic Eng Biotechnol 2005; 3: 229-253.
158. Kuznetsova EG, Amstislavskaya TG, Bulygina VV, Il’nitskaya SI, Tibeikina MA, Skrinskaya YA. Effects of administration of sodium glutamate during the neonatal period on behavior and blood corticosterone levels in male mice. Neurosci Behav Physiol 2007; 37: 827-833.
159. Ciric M, Najman S, Bojanic V, Cekic S, Nesic M, Puskas N. Neonatal influence of monosodium glutamate on the somatometric parameters of rats. Gen Physiol Biophys 2009; 28: 155-161.
160. Eweka AO, Eweka A, Om’iniabohs FA. Histological studies of the effects of monosodium glutamate of the fallopian tubes of adult female Wistar rats. N Am J Med Sci 2010; 2: 146-149.
161. Bishop W, Zubeck H. Evaluation of microalgae for use as nutraceuticals and nutritional supplements. J Nutr Food Sci 2012; 2: 1-6.
162. Abdel-Aziem SH, Abd El-Kader HAM, Ibrahim FM, Sharaf HA, El makawy AI. Evaluation of the alleviative role of Chlorella vulgaris and Spirulina platensis extract against ovarian dysfunctions induced by monosodium glutamate in mice. Genet Eng Biotechnol J 2018; 16: 653-660.
163. Abd-Elmoneim OM, Darwish AM. Potential modulator role of Chlorella vulgaris and Spirulina platensis on monosodium glutamate oxidative stress, genotoxicity, apoptotic gene expression and histopathological alterations. Int J Pharmtech Res 2016; 9: 161-177.
164. Upasani CD, Balaraman R. Protective effect of Spirulina on lead induced deleterious changes in the lipid peroxidation and endogenous antioxidants in rats. Phytother Res 2003; 17: 330-334.
165. El-Meghawry El-Kenawy A, Osman HE, Daghestani MH. The effect of vitamin C administration on monosodium glutamate induced liver injury. An experimental study. Exp Toxicol Pathol 2013; 65: 513-521.
166. Frömberg A, Gutsch D, Schulze D, Vollbracht C, Weiss G, Czubayko F, et al. Ascorbate exerts anti-proliferative effects through cell cycle inhibition and sensitizes tumor cells towards cytostatic drugs. Cancer Chemoth Pharm 2011; 67: 1157-1166.
167. Belin S, Kaya F, Duisit G, Giacometti S, Ciccolini J, Fontes M. Antiproliferative effect of ascorbic acid is associated with the inhibition of genes necessary to cell cycle progression. PloS one 2009; 4: e4409.
168. Waiz SA, Raies-ul-Haq M, Waiz HA, Gupta S, Pathak AK. Preliminary study on the protective effect of vitamin C on monosodium glutamate-induced hepatotoxicity in rats. Comp Clin Path 2015; 24: 1063-1068.
169. Ekaluo U, Ikpeme E, Ibiang Y, Amaechina O. Attenuating role of vitamin C on sperm toxicity Induced by monosodium glutamate in albino rats. J Biol Sci 2013; 13: 298-301.
170. Pavlovic V, Pavlovic D, Kocic G, Sokolovic D, Sarac M, Jovic Z. Ascorbic acid modulates monosodium glutamate induced cytotoxicity in rat thymus. Bratisl Lek Listy 2009; 110: 205-209.
171. Anbarkeh Rahimi F, Baradaran R, Ghandy N, Jalali M, Nikravesh MR, Soukhtanloo M. Effects of monosodium glutamate on apoptosis of germ cells in testicular tissue of adult rat: An experimental study. Int J Reprod Biomed 2019; 17: 261-270.
172. Mohtashami L, Shakeri A, Javadi B. Neuroprotective natural products against experimental autoimmune encephalomyelitis: A review. Neurochem Int 2019; 129: 104516.
173. Ibrahim MA, Buhari GO, Aliyu AB, Yunusa I, Bisalla M. Amelioration of monosodium glutamate-induced hepatotoxicity by vitamin C. Eur J Sci Res 2011; 60: 159-165.
174. Patil S, Prakash T, Kotresha D, Rao NR, Pandy N. Antihyperlipidemic potential of Cedrus deodara extracts in monosodium glutamate induced obesity in neonatal rats. Indian J Pharmacol 2011; 43: 644-647.
175. Narayanan SN, Kumar RS, Paval J, Nayak S. Effect of ascorbic acid on the monosodium glutamate-induced neurobehavioral changes in periadolescent rats. Bratisl Lek Listy 2010; 111: 247-252.
176. Nandan P, Nayanatara AK, Poojary R, Bhagyalakshmi K, Nirupama M, Kini RD. Protective role of co-administration of vitamin D in monosodium glutamate induced obesity in female rats. J Natl Med Assoc 2018; 110: 98-102.
177. Elbassuoni EA, Ragy MM, Ahmed SM. Evidence of the protective effect of l-arginine and vitamin D against monosodium glutamate-induced liver and kidney dysfunction in rats. Biomed Pharmacother 2018; 108: 799-808.
178. Nandan P, Nirupama M, Nayanatara Arun K, Bhagyalakshmi K, Jyoti Ramnath K, Roopesh P. Ameliorative role of vitamin D on prenatal and postnatal exposure of monosodium glutamate induced steatohepatitis in rat pups. Pharmacogn Res 2018; 10: 371-375.
179. Rizvi S, Raza ST, Ahmed F, Ahmad A, Abbas S, Mahdi F. The role of vitamin E in human health and some diseases. Sultan Qaboos Univ Med J 2014; 14: e157-e165.
180. Rohmawati W, Istiananingsih Y, Nurdiana N, Barlianto W, Dwijayasa PM. Concomitant exposure to vitamin C and E inhibited monosodium glutamate-induced ovarian toxicity in female rats. Cukurova Med J 2014; 39: 517-524.
181. Namiki M. Nutraceutical functions of sesame: a review. Crit Rev Food Sci Nutr 2007; 47: 651-673.
182. Hareeri NA, Alrasheedi AA, Eassaw MM. Effect of sesame on liver enzymes and lipid profile inrats exposed to oxidative stress induced by monosodium glutamate. J Am Sci 2017; 13: 71-78.
183. Paul MV, Abhilash M, Varghese MV, Alex M, Nair RH. Protective effects of alpha-tocopherol against oxidative stress related to nephrotoxicity by monosodium glutamate in rats. Toxicol Mech Methods 2012; 22: 625-630.
184. Paul S, Mohanan A, Varghese MV, Alex M, H N. Ameliorative effect of α-tocopherol on monosodium glutamate-induced cardiac histological alterations and oxidative stress. J Sci Food Agric 2012; 92: 3002-3006.
185. Xue H, Ren H, Zhang L, Sun X, Wang W, Zhang Sh, et al. Alpha-tocopherol ameliorates experimental autoimmune encephalomyelitis through the regulation of Th1 cells. Iran J Basic Med Sci 2016; 19:561-566.
186. Newaz MA, Nawal NN. Effect of alpha-tocopherol on lipid peroxidation and total antioxidant status in spontaneously hypertensive rats. Am J Hypertens 1998; 11: 1480-1485.
187. Li H, Han W, Wang H, Ding F, Xiao L, Shi R, et al. Tanshinone IIA inhibits glutamate-induced oxidative toxicity through prevention of mitochondrial dysfunction and suppression of MAPK activation in SH-SY5Y human neuroblastoma cells. Oxid Med Cell Longev; 2017; 2017: 1-13.
188. Owoeye O, Salami OA. Monosodium glutamate toxicity: Sida acuta leaf extract ameliorated brain histological alterations, biochemical and haematological changes in Wistar rats. Afr J Biomed Res 2017; 20: 173- 182.
189. Swamy AH, Patel NL, Gadad PC, Koti BC, Patel UM, Thippeswamy AH, et al. Neuroprotective activity of Pongamia pinnata in monosodium glutamate-induced neurotoxicity in rats. Indian J Pharm Sci 2013; 75: 657-663.
190. Xu X-H, Ma C-M, Han Y-Z, Li Y, Liu C, Duan Z-H, et al. Protective effect of naringenin on glutamate-induced neurotoxicity in cultured hippocampal cells. Arch Biol Sci 2015; 67: 639-646.
191. Mohan M, Gangurde SK, Kadam V. Protective effect of Solanum torvum on monosodium glutamate-induced neurotoxicity in mice. Indian J Nat Prod Resour 2018; 8: 351-359.
192. Zhang Y, Huang Z, Yu L, Zhang L. Protective effects of tetramethylpyrazine on glutamate-induced neurotoxicity in mice. J Behav Brain Sci 2012; 2: 326-332.
193. Mahran HA, Arisha SM. The ameliorative effects of the aqueous extract of rosemary against monosodium glutamate neurotoxicity in adult male albino rats: Histological, ultrastructural and biochemical studies. Eur J Pharm Med Res 2018; 5: 79-90.
194. Omar AI, Farag EA, Yousry MM. The possible protective effect of piperine versus vitamin C on monosodium glutamate-induced cerebellar toxicity in adult male rats: a histological and immunohistochemical study. Egypt J Histol 2016; 39: 362-371.
195. Sharma A, Kaur G. Tinospora cordifolia as a potential neuroregenerative candidate against glutamate induced excitotoxicity: an in vitro perspective. BMC Complement Altern Med 2018; 18: 268.
196. Nurmasitoh T, Sari DCR, Partadiredja G. The effects of black garlic on the working memory and pyramidal cell number of medial prefrontal cortex of rats exposed to monosodium glutamate. Drug Chem Toxicol 2018; 41: 324-329.
197. Albrahim T, Binobead MA. Roles of Moringa oleifera Leaf extract in improving the impact of high dietary intake of monosodium glutamate-induced liver toxicity, oxidative stress, genotoxicity, DNA damage, and PCNA alterations in male rats. Oxid Med Cell Longev 2018; 2018: 1-11.
198. Kumar P, Bhandari U. Protective effect of Trigonella foenum-graecum Linn. on monosodium glutamate-induced dyslipidemia and oxidative stress in rats. Indian J Pharmacol 2013; 45: 136-140.
199. Gao W, Xiao C, Hu J, Chen B, Wang C, Cui B, et al. Qing brick tea (QBT) aqueous extract protects monosodium glutamate-induced obese mice against metabolic syndrome and involves up-regulation Transcription Factor Nuclear Factor-Erythroid 2-Related Factor 2 (Nrf2) antioxidant pathway. Biomed Pharmacother 2018; 103: 637-644.
200. Kianifard D, Saiah GV, Rezaee F. Study of the protective effects of quince (Cydonia Oblonga) leaf extract on fertility alterations and gonadal dysfunction induced by monosodium glutamate in adult male Wistar rats. Rom J Diabetes Nutr Metab Dis 2015; 22: 375-384.
201. Ramanathan M, Sivakumar S, Anandvijayakumar PR, Saravanababu C, Pandian PR. Neuroprotective evaluation of standardized extract of Centella asciatica in monosodium glutamate treated rats. Indian J Exp Biol 2007; 45: 425-431.
202. Thomas M, Sujatha KS, George S. Protective effect of Piper longum Linn. on monosodium glutamate induced oxidative stress in rats. Indian J Exp Biol 2009; 47: 186-192.
203. Obochi G, Malu S, Obi-Abang M, Alozie Y, Iyam M. Effect of garlic extracts on monosodium glutamate (MSG) induced fibroid in Wistar rats. Pak J Nutr 2009; 8: 970-976.
204. Youness ER, Hussein JS, Ibrahim AM, Agha FE. Flaxseed oil attenuates monosodium glutamate-induced brain injury via improvement of fatty acids contents. Biomed Pharmacol J 2019; 12: 527-532.
205. França LM, Ferreira Coêlho CF, Costa Freitas LN, Santos Souza IL, Chagas VT, et al. Syzygium cumini leaf extract reverts hypertriglyceridemia via downregulation of the hepatic XBP-1s/PDI/MTP axis in monosodium L-glutamate-induced obese rats. Oxid Med Cell Longev 2019; 2019: 1-14.
206. Sanches JR, França LM, Chagas VT, Gaspar RS, Dos Santos KA, Gonçalves LM, et al. Polyphenol-rich extract of Syzygium cumini leaf dually improves peripheral insulin sensitivity and pancreatic islet function in monosodium L-glutamate-induced obese rats. Front Pharmacol 2016; 10: 48-63.
207. Gao W, Xiao C, Hu J, Chen B, Wang C, Cui B, et al. Qing brick tea (QBT) aqueous extract protects monosodium glutamate-induced obese mice against metabolic syndrome and involves up-regulation transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) antioxidant pathway. Biomed Pharmacother 2018; 103: 637-644.
208. Aliff MH, Nooraain H, Nurdiana S. Ameliorating effects of coconut water on sperm quality and selected organs histology in monosodium glutamate pre treated male mice (Mus musculus). Malays Appl Biol 2017; 46: 27-35.
209. Kumar P, Bhandari U. Fenugreek seed extract prevents fat deposition in monosodium glutamate (MSG)-obese rats. Drug Res 2016; 66: 174-180.
210. Suneetha D, Banda SDT, Ali F. Antiobesity values of methanolic extract of Sapindus emariganatus on monosodium glutamate induced model in rats. IJPPR 2013; 14: 267-270.
211. Nagakannan P, Shivasharan B, Thippeswamy B, Veerapur V. Restoration of brain antioxidant status by hydroalcoholic extract of Mimusops elengi flowers in rats treated with monosodium glutamate. J Environ Pathol Toxicol Oncol 2012; 31: 213-221.