Protective effect of crocin on bisphenol A - induced spatial learning and memory impairment in adult male rats: Role of oxidative stress and AMPA receptor

Document Type: Original Article

Authors

1 Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

2 Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

10.22038/ijbms.2020.41097.9714

Abstract

Objective(s): Bisphenol A (BPA), a xenoestrogenic endocrine disrupting agent, is widely used in the production of polycarbonate plastics and has potential adverse effects on the developing nervous system, memory and learning abilities. The protective effect of the crocin, an important active constituent in Crocus sativus L, on memory impairment induced by BPA in rat was determined through evaluation of oxidative stress and the level of NMDA (N-methyl-D-aspartate receptors) and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicd acid) receptors.
Materials and Methods: Rats were orally treated  with BPA (100 mg/kg) or sesame seed oil in control group for 28 days.  Crocin (10, 20, and 40 mg/kg, IP) was administrated in BPA-orally treated groups for 28 days. Memory and learning functions were evaluated by Morris water maze. The level of malondialdehyde (MDA) and glutathione (GSH) contents were determined in rat hippocampus. Additionally, the expression of NMDA and AMPA receptors were analyzed using Western blot method.
Results: Administration of BPA significantly reduced memory and learning functions. Crocin significantly protected against learning and memory impairments induced by BPA. BPA administration markedly reduced GSH content and induced lipid peroxidation, while crocin was able to increase GSH content in rat hippocampus. The expression of NMDA receptor did not change in BPA-treated rats, while the significant reduction in AMPA receptor expression was observed. Moreover, crocin (20 mg/kg) significantly elevated the expression of AMPA receptor.
Conclusion: Crocin recovered spatial learning and memory defects induced by BPA in part through anti-oxidant activity and modulation the expression of AMPA receptor in rat hippocampus.

Keywords


1. Lynch MA. Long-term potentiation and memory. Physiol Rev 2004; 84: 87-136.
2. McEwen B. Estrogen actions throughout the brain. Recent Prog Hormone Rese 2002; 57: 357-384.
3. Kelly SJ, Ostrowski NL, Wilson MA. Gender differences in brain and behavior: hormonal and neural bases. Pharmacol. Biochem Behav 1999; 64: 655-664.
4. Seney M, Forger N. Sexual differentiation of the nervous system: Where the action is. Endocrinology 2009; 150: 2991-2993.
5. Mukai H, Kimoto T, Hojo Y, Kawato S, Murakami G, Higo S, et al. Modulation of synaptic plasticity by brain estrogen in the hippocampus. Biochim Biophys Acta Gen Subj 2010; 1800: 1030-1044.
6. Foy MR, Baudry M, Brinton RD, Thompson RF. Estrogen and hippocampal plasticity in rodent models. J Alzheimers Dis 2008; 15: 589-603.
7. Tanaka M, Sokabe M. Continuous de novo synthesis of neurosteroids is required for normal synaptic transmission and plasticity in the dentate gyrus of the rat hippocampus. Neuropharmacology 2012; 62: 2373-2387.
8. Nakazawa K. McHugh TJ, Wilson MA, Tonegawa S. NMDA receptors, place cells and hippocampal spatial memory. Nature Rev Neurosci 2004; 5: 361-372.
9. Tsien JZ, Huerta PT, Tonegawa, S. The essential role of hippocampal CA1 NMDA receptor–dependent synaptic plasticity in spatial memory. Cell 1996; 87: 1327-1238.
10. Chater TE, Goad Y. The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. Front Cell Neurosci 2014; 8: 1-14.
11.    Maalouf M, Rho JM. Oxidative impairment of hippocampal long-term potentiation involves activation of protein phosphatase 2A and is prevented by ketone bodies. J Neurosci Res 2008; 86: 3322-3330.
12.    Bettio LEB, Rajendran L, Gil-Mohapel J. The effects of aging in the hippocampus and cognitive decline. Neurosci Biobehav Rev 2017; 79: 66-86.
13.    Anetor J. Anetor G. Iyanda AA, Adeniyi FAA. Environmental chemicals and human neurotoxicity: Magnitude, prognosis and markers. Afr J Biomed Res 2008; 11: 1-12.
14.    Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. Human exposure to bisphenol A (BPA). Reprod Toxicol 2007; 24: 139-177.
15.    Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Ekong J, Needham LL. Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environ Health Perspec 2005;  113: 391-395.
16.    Joskow R, Barr DB, Barr JR, Calafat AM, Needham LL, Rubin C. Exposure to bisphenol A from bis-glycidyl dimethacrylate-based dental sealants. J Am Den Assoc 2006;  137: 353-362.
17.    Ikezuki Y, Tsutsumi O, Takai Y, Kamei Y, Taketani Y. Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Human Reprod 2002; 17: 2839-2841.
18.    Mendonca K, Hauser R., Calafat AM, Arbuckle TE, Duty S. MBisphenol A concentrations in maternal breast milk and infant urine. Int Arch Occup Environ Health 2014; 87: 13-20.
19.    Bindhumol V, Chitra KC, Mathur PP. Bisphenol A induces reactive oxygen species generation in the liver of male rats. Toxicology 2003; 188: 117-124.
20.    Kabuto H, Hasuike S, Minagawa N, Shishibori T. Effects of bisphenol A on the metabolisms of active oxygen species in mouse tissues. Environ Res 2003; 93: 31-35.
21.    Vahdati Hassani F, Abnous K, Mehri S, Jafarian A, Birner-Gruenberger R, Yazdian Robati R, Hosseinzadeh H. Proteomics and phosphoproteomics analysis of liver in male rats exposed to bisphenol A: Mechanism of hepatotoxicity and biomarker discovery. Food Chem Toxicol 2018; 112: 26-38.
22.    Vahdati Hassani F, Mehri S, Abnous K, Birner-Gruenberger R, Hosseinzadeh H. Protective effect of crocin on BPA-induced liver toxicity in rats through inhibition of oxidative stress and down-regulation of MAPK and MAPKAP signaling pathway and miRNA-122 expression. Food Chem Toxicol 2017; 107, 395-405.
23.    Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE, et al. In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol 2007;  24: 199-224.
24.    Wetherill YB, Akingbemi BT, Kanno J, McLachlan JA, Nadal A, Sonnenschein C, et al. In vitro molecular mechanisms of bisphenol A action. Reprod Toxicol 2007; 24: 178-198.
25.    MacLusky NJ, Hajszan T, Leranth C. The environmental estrogen bisphenol A inhibits estradiol-induced hippocampal synaptogenesis. Environ Health Perspec 2005; 113: 675-679.
26.    Eilam-Stock T, Serrano P, Frankfurt M, Luine V. Bisphenol-A impairs memory and reduces dendritic spine density in adult male rats. Behavi Neurosci 2012; 126: 175-185.
27.    Xu X, Tian D, Hong X, Chen, L, Xie L. Sex-specific influence of exposure to bisphenol-A between adolescence and young adulthood on mouse behaviors. Neuropharmacology 2011;  61: 565-573.
28.    Xu X, Liu X, Zhang Q, Zhang G, Lu Y, Ruan Q, et al. Sex-specific effects of bisphenol-A on memory and synaptic structural modification in hippocampus of adult mice. Horm Behav 2013; 63: 766-675.
29.    Leranth C, Szigeti-Buck K, Maclusky NJ, Hajszan T. Bisphenol A prevents the synaptogenic response to testosterone in the brain of adult male rats. Endocrinology 2008; 149: 988-994.
30.    Hajszan T, Leranth C. Bisphenol A interferes with synaptic remodeling. Front Neuroendocrinol 2010; 31: 519-530.
31.    Leranth C, Hajszan T, Szigeti-Buck K, Bober J, MacLusky NJ. Bisphenol A prevents the synaptogenic response to estradiol in hippocampus and prefrontal cortex of ovariectomized nonhuman primates. Proc Natl Acad Sci USA 2008; 105: 14187-14191.
32. Shaterzadeh-Yazdi H, Samarghandian S, Farkhondeh T. Effects of crocins in the management of neurodegenerative pathologies: a review. Neurophysiology 2018; 50: 302-308.
33.    Mollazadeh H, Emami SA, Hosseinzadeh H. Razi’s Al-Hawi and saffron (Crocus sativus): a review. Iran J Basic Med Sci 2015; 18: 1153-1166.
34. Li L, Zhang H, Jin S, Liu C. Effects of crocin on inflammatory activities in human fibroblast-like synoviocytes and collagen-induced arthritis in mice. Immunol Res 2018; 66: 406-413.
35.    Tamaddonfard E, Farshid AA, Eghdami K, Samadi F, Erfanparast A. Comparison of the effects of crocin, safranal and diclofenac on local inflammation and inflammatory pain responses induced by carrageenan in rats. Pharmacol Report 2013; 65: 1272-1280.
36. Akbari G, Mard SA, Dianat M. Effect of crocin on cardiac anti-oxidants, and hemodynamic parameters after injuries induced by hepatic ischemia-reperfusion in rats. J Basic Med Sci 2019; 22: 277-281.
37.    Razavi M, Hosseinzadeh H, Abnous K, Motamedshariaty VS, Imenshahidi M. Crocin restores hypotensive effect of subchronic administration of diazinon in rats. Iran J Basic Med Sci 2013; 16: 64-72.
38.    Imenshahidi M, Razavi BM, Faal A, Gholampoor A, Mousavi SM, Hosseinzadeh H. Effects of chronic crocin treatment on desoxycorticosterone acetate (doca)-salt hypertensive rats. Iran J Basic Med Sci 2014; 17: 9-13.
39.    Razavi BM, Hosseinzadeh H. Saffron as an antidote or a protective agent against natural or chemical toxicities. DARU 2015; 23: 31.
40. Jam IN, Sahebkar AH, Eslami S, Mokhber N, Nosrati M, Khademi M, et al. The effects of crocin on the symptoms of depression in subjects with metabolic syndrome. Adv Clin Exp Med 2017; 26:925-930.
41.    Vahdati Hassani F, Naseri V, Razavi BM, Mehri S, Abnous K, Hosseinzadeh H. Antidepressant effects of crocin and its effects on transcript and protein levels of CREB, BDNF, and VGF in rat hippocampus. DARU 2014; 22:16.
42.    Ghasemi T, Abnous K, Vahdati Hassani F, Mehri S, Razavi BM, Hosseinzadeh H. Antidepressant effect of Crocus sativus aqueous extract and its effect on CREB, BDNF, and VGF transcript and protein levels in rat hippocampus. Drug Res 2015; 65: 337-343.
43.    Dorri SA, Hosseinzadeh H, Abnous K, Vahdati Hassani V, Robati RY, Razavi BM. Involvement of brain-derived neurotrophic factor (BDNF) on malathion induced depressive-like behavior in subacute exposure and protective effects of crocin. Iran J Basic Med Sci 2015; 18: 958-966.
44.    Behravanfar N, Abnous K, Razavi BM, Hosseinzadeh H. Effects of crocin on spatial memory impairment induced by hyoscine and its effects on BDNF, CREB, and p-CREB protein and mRNA levels in rat hippocampus. Jundishapur J Nat Pharm Prod 2017; 12: e64315.
45.    Hosseinzadeh H, Sadeghnia HR, Ghaeni FA, Motamedshariaty
VS, Mohajeri SA Effects of saffron (Crocus sativus L.) and its active constituent, crocin, on recognition and spatial memory after chronic cerebral hypoperfusion in rats. Phytother Res 2012; 26, 381-386.
46.    Hosseinzadeh H, Ziaei T. Effects of Crocus sativus stigma extract and its constituents, crocin and safranal, on intact memory and scopolamine-induced learning deficits in rats performing the Morris water maze task. J Med Plants 2006; 5: 40-50.
47.    Ahmadi M, Rajaei Z, Hadjzadeh MA, Nemati H, Hosseini M. Crocin improves spatial learning and memory deficits in the Morris water maze via attenuating cortical oxidative damage in diabetic rats. Neurosci Lett 2017; 642: 1-6.
48.    Hadizadeh F, Mohajeri SA, Seifi M. Extraction and purification of crocin from saffron stigmas employing a simple and efficient crystallization method. Pak J Biol Sci 2010; 13: 691-698.
49.    Izzotti A, Longobardi M, Cartiglia C, D’Agostini F, Kanitz S, De Flora S. Pharmacological modulation of genome and proteome alterations in mice treated with the endocrine disruptor bisphenol A. Current Cancer Drug Targets 2010; 10: 147-54.
50.    Lari P, Abnous K, Imenshahidi M, Rashedinia M, Razavi M, Hosseinzadeh H. Evaluation of diazinon-induced hepatotoxicity and protective effects of crocin. Toxicol Indust Health 2015; 31: 367-376.
51.    Heidari S, Mehri S, Hosseinzadeh H. Memory enhancement and protective effects of crocin against D-galactose aging model in the hippocampus of Wistar rats. Iran J Basic Med Sci 2017; 20: 1250-1259.
52.    Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 2006; 1: 848-858.
53.    Al-Hiyasat AS, Darmani H, Elbetieha AM. Effects of bisphenol A on adult male mouse fertility. Eur J Oral Sci 2006; 110: 163-167.
54.    Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta Gen Subj 1979; 582: 67-78.
55.    El-Missiry MA, Othman AI, Al-Abdan MA, El-Sayed AA. Melatonin ameliorates oxidative stress, modulates death receptor pathway proteins, and protects the rat cerebrum against bisphenol-A-induced apoptosis. J Neurol Sci 2014; 347: 251-256.
56.    Huang TT, Leu D, Zou Y. Oxidative stress and redox regulation on hippocampal-dependent cognitive functions. Arch Biochem Biophys 2015; 576: 2-7.
57.    Chitra KC, Latchoumycandane C, Mathur PP. Induction of oxidative stress by bisphenol A in the epididymal sperm of rats. Toxicology 2003; 185: 119-127.
58.    Patil S, Tawari S, Mundhada D, Nadeem S. Protective effect of berberine, an isoquinoline alkaloid ameliorates ethanol-induced oxidative stress and memory dysfunction in rats. Pharmacol Biochem Behav 2015; 136: 13-20.
59.    Hosseinzadeh H, Sadeghnia HR, Ghaeni FA, Motamedshariaty
VS, Mohajeri SA. Effects of saffron (Crocus sativus L.) and its active constituent, crocin, on recognition and spatial memory after chronic cerebral hypoperfusion in rats. Phytother Rese 2012; 26: 381-386.
60.    Mohammadi HS, Goudarzi I, Lashkarbolouki T, Abrari K, Elahdadi Salmani M. Chronic administration of quercetin prevent spatial learning and memory deficits provoked by chronic stress in rats. Behav Brain Res 2014; 270: 196-205.
61.    Lee S, Suk K, Kim IK, Jang IS, Park JW, Johnson VJ, et al. Signaling pathways of bisphenol A-induced apoptosis in hippocampal neuronal cells: role of calcium-induced reactive oxygen species, mitogen-activated protein kinases, and nuclear factor-kappaB. J Neurosci Res 2008; 86: 2932-3942.
62.    Jain S, Kumar CH, Suranagi UD, Mediratta PK. Protective effect of N-acetylcysteine on bisphenol A-induced cognitive dysfunction and oxidative stress in rats. Food Chem Toxicol 2011; 49:1404-1409.
63.    Aydogan M, Korkmaz A, Barlas N, Kolankaya D. The effect of vitamin C on bisphenol A, nonylphenol and octylphenol induced brain damages of male rats. Toxicology 2008; 249: 35-39.
64.    Mehri S, Abnous K, Khooei A, Mousavi SH, Shariaty VM, Hosseinzadeh, H. Crocin reduced acrylamide-induced neurotoxicity in Wistar rat through inhibition of oxidative stress. Iran J Basic Med Sci 2015; 18: 902-908.
65.    Dastgerdi AH, Radahmadi M, Pourshanazari AA, Dastgerdi HH. Effects of crocin on learning and memory in rats under chronic restraint stress with special focus on the hippocampal and frontal cortex corticosterone levels. Adv Biomed Rese 2017; 6: 157.
66.    Hadipour M, Kaka G, Bahrami F, Meftahi GH, Pirzad Jahromi G, Mohammadi A, et al. Crocin improved amyloid beta induced long-term potentiation and memory deficits in the hippocampal CA1 neurons in freely moving rats. Synapse 2018; 72: e22026. doi: 10.1002/syn.22026
67.    Asadi F, Jamshidi AH, Khodagholi F, Yans A, Azimi L, Faizi M, et al. Reversal effects of crocin on amyloid beta-induced memory deficit: Modification of autophagy or apoptosis markers. Pharmacol Biochem Behav 2015; 139: 47-58.
68.    Carr R, Bertasi F, Betancourt A, Bowers S, Gandy BS, Ryan P, et al. Effect of neonatal rat bisphenol a exposure on performance in the Morris water maze. J Toxicol Environ Health Part A 2003; 66: 2077-2088.
69.    Xu X, Liu Y, Sadamatsu M, Tsutsumi S, Akaike M, Ushijima H, et al. Perinatal bisphenol A affects the behavior and SRC-1 expression of male pups but does not influence on the thyroid hormone receptors and its responsive gene. Neurosci Res 2007; 58: 149-155.
70.    Kim ME, Park HR, Gong EJ, Choi SY, Kim HS, Lee J. Exposure to bisphenol A appears to impair hippocampal neurogenesis and spatial learning and memory. Food Chem Toxicol 2011; 49: 3383-3389.
71.    Hosseinzadeh H, Talebzadeh F. Anticonvulsant evaluation of safranal and crocin from Crocus sativus in mice. Fitoterapia 2005; 76: 722-724.
72.    Hosseinzadeh H, Noraei NB. Anxiolytic and hypnotic effect of Crocus sativus aqueous extract and its constituents, crocin and safranal, in mice. Phytother Res 2009; 23: 768-774.
73.    Adams MM, Fink SE, Janssen WG, Shah RA, Morrison JH. Estrogen modulates synaptic N-methyl-D-aspartate receptor subunit distribution in the aged hippocampus. J Comp Neurol 2004; 474: 419-426.
74.    Sanderson DJ, McHugh SB, Good MA, Sprengel R, Seeburg PH, Rawlins JN, et al. Spatial working memory deficits in GluA1 AMPA receptor subunit knockout mice reflect impaired short-term habituation: Evidence for Wagner’s dual-process memory model. Neuropsychologia 2010; 48: 2303-2315.
75.    Hu F Li, Gong H, Chen Z, Jin Y, Xu G, Wang M. Bisphenol a impairs synaptic plasticity by both pre- and postsynaptic mechanisms. Adv Sci 2017; 4: 1600493.
76.    Abe K, Sugiura M, Shoyama Y, Saito H. Crocin antagonizes ethanol inhibition of NMDA receptor-mediated responses in rat hippocampal neurons. Brain Res 1998; 787: 132-138.
77. Adabizadeh M, Mehri S, Rajabpour M, Abnous Kh, Rashedinia M, Hosseinzadeh H. The effects of crocin on spatial memory impairment induced by hyoscine: Role of NMDA, AMPA, ERK and CaMKII proteins in rat hippocampus. Iran J Basic Med Sci 2019; 22: 601-609.