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Cancer has been always considered as one of the main human health challenges worldwide. 
One of the main causes of cancer-related mortality is late diagnosis in the advanced stages of the 
disease, which reduces the therapeutic efficiency. Therefore, novel non-invasive diagnostic methods 
are required for the early detection of tumors and improving the quality of life and survival in 
cancer patients. MicroRNAs (miRNAs) have pivotal roles in various cellular processes such as cell 
proliferation, motility, and neoplastic transformation. Since circulating miRNAs have high stability 
in body fluids, they can be suggested as efficient noninvasive tumor markers. MiR-96 belongs to the 
miR-183-96-182 cluster that regulates cell migration and tumor progression as an oncogene or tumor 
suppressor by targeting various genes in solid tumors. In the present review, we have summarized 
all of the studies that assessed the role of miR-96 during tumor progression. This review clarifies 
the molecular mechanisms and target genes recruited by miR-96 to regulate tumor progression 
and metastasis. It was observed that miR-96 mainly affects tumorigenesis by targeting the structural 
proteins and FOXO transcription factors.
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Introduction
Cancer is still one of the main causes of death and remains 

an important health challenge globally. Although, improving 
the quality of life and increasing the life expectancy of 
cancer patients are the main goals of cancer therapy, the 
low efficacy of routine treatment modalities highlights the 
need to introduce novel specific therapeutic strategies (1). 
MicroRNAs (miRNAs) are a class of short non-coding 
RNAs (~22nt) involved in post-transcriptional regulation 
via mRNA degradation or translational suppression. 
They regulate cell proliferation, apoptosis, migration, and 
malignant transformation (2). Therefore, deregulation of 
miRNAs can be associated with tumor progression (3). 
They function as oncogene or tumor suppressors during 
neoplastic transformation. Regarding the tissue-specificity 

of miRNA expressions, there are specific miRNA signatures 
in different tumors (4). Non-invasive or minimally invasive 
markers are required for early-stage tumor detection to 
improve the patient’s survival. Circulating miRNAs have 
high stability in body fluids which can be suggested as 
efficient noninvasive tumor markers (5, 6). MiR-96 belongs 
to the miR-183-96-182 family that regulates cell motility 
and tumor progression as an oncogene or tumor suppressor 
by targeting various genes in solid tumors (7, 8). It can 
be regulated by ZEB1 (9), β‐catenin (10), and epidermal 
growth factor receptor (EGFR) (11). In the present review, 
we discussed all of the miR-96 based tumor reports to 
clarify the molecular mechanisms of miR-96 during tumor 
progressions and metastasis (Figure 1) (Table 1).   

Figure 1. All of the molecular mechanisms and interactions of miR-96 during tumor initiation, progression, and metastasis
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Table 1. Molecular mechanisms of miR-96 during tumor progression
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Structural proteins
Structural proteins are involved in cell migration, 

adhesion, and ion homeostasis that can be regulated by 
miR-96 in tumor cells (Figure 2). EZRIN is a linker protein 
between the actin cytoskeleton and plasma membrane 
proteins participating in cell adhesion and migration. Its 

deregulation has been reported in metastatic tumors (12). 
It has been reported that miR-96 suppressed osteosarcoma 
(OS) cell invasion and proliferation while increasing 
apoptosis through EZRIN targeting. There was also miR-96 
down-regulation in OS tissues in comparison with normal 
tissues (13). There was an inverse correlation between the 

Continued Table 1

 
 

Figure 2. Role of miR-96 in regulation of structural proteins during tumor progressions
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levels of miR-96 expressions and the invasive capability of 
renal cell carcinoma (RCC) cells. MiR-96 reduced the RCC 
cells invasion through EZRIN targeting (14). LMO7 belongs 
to the PDZ/LIM domain-containing family of proteins 
participating in protein-protein interactions by actin binding 
(15). It maintains the epithelial architecture by regulation of 
actin cytoskeleton in normal cells. However, various studies 
have reported LMO7 up-regulation during carcinogenesis 
in different tumor types (16). It has been shown that there 
was miR-96 up-regulation in lung cancer patients that was 
directly correlated with high-grade and metastatic lymph 
node tumors. Silencing of miR-96 reduced lung tumor cell 
migration and cisplatin resistance by LMO7 up-regulation 
(17). CTNND1 is a critical cell adhesion regulator through 
binding with the juxta-membrane region of the cadherin 
cytoplasmic tails. There was miR-96-5p down-regulation 
in BC tissues and cell lines. MiR-96-5p down-regulation 
was also associated with lower overall survival, TNM stage, 
and distant metastasis. MiRNA-95-5p reduced BC cell 
proliferation and metastasis via suppression of CTNND1 
mediated WNT signaling (18). 

MTSS1 regulates cytoskeletal dynamics and promotes 
membrane ruffle formation by interaction with actin and 
Rac proteins (19). It is an inhibitor of tumor metastasis 
by interaction with actin cytoskeleton associated with 
tumor progression in different organs (20, 21). There was  
significant miR-96 up-regulation in cholangiocarcinoma 
(CCA) tissues in comparison with normal margins that 
was significantly correlated with advanced TNM stage, 
shorter overall survival, lymph node metastasis, and poor 
differentiation. MiR-96 induced CCA cell proliferation 
and motility through MTSS1 targeting (22). There was a 
significantly higher serum miR96 level in breast cancer 
(BC) cells in comparison with controls that were reduced 
in patients with chemotherapy. MiR-96 down-regulated and 
up-regulated CDH1 and CDH2 in BC cells, respectively. It 
also inhibited BC cell migration through MTSS1 targeting 
(23). There was also a negative association between the 
serum levels of miR-96 and MTSS1 that was associated with 
survival in prostate cancer (PCa) patients (24). Long non-
coding RNAs (lncRNAs) are involved in tumor progression 
and metastasis (25). Maternally expressed 3(MEG3) is a 
tumor suppressor lncRNA that is down-regulated in many 
cancers (26, 27). LncRNA MEG3 suppressed glioma cell 
proliferation and migration via miR96-5p sponging that 
resulted in MTSS1 up-regulation. Moreover, there was 
significant MEG3 down-regulation in glioma cells and 
tissues (28). MEG3 suppresses cell proliferation via p53 
induction and TGF-β targeting (29, 30). Tropomyosin 
(TPM) is an actin-binding protein involved in inhibition 
of cellular transformation (31). TPM1 regulates the actin-
myosin interaction (32). It has been reported that MEG3 
inhibited bladder cancer (BCa) progression by regulating 
the miR-96/TPM1 axis. There was MEG3 down-regulation 
in BCa tissues that was correlated with high-grade and 
muscular invasion. MEG3 inhibited BCa proliferation while 
inducing apoptosis by miR-96 sponging and subsequent 
TPM1 up-regulation (33). There was miR-96 up-regulation 
in colorectal cancer (CRC) tissues. Suppression of miR96 
increased oxaliplatin sensitivity in CRC cells by Bcl-2 down-
regulation and the TPM1 and BAX up regulations (34).  

Glypican-1 (GPC1) is a membrane-bound proteoglycan 
that is involved in organ development via regulation 

of extracellular growth factors, tumorigenesis, and 
angiogenesis (35).  There was a significant miR-96-5p 
down-regulation in pancreatic cancer (PC) tissues that was 
associated with larger tumor sizes, poorer differentiation, 
and reduced survival. MiR-96 inhibited PC cell proliferation 
via GPC1 targeting (36). GPC3 belongs to the integral 
membrane proteoglycan family that is anchored with 
the membrane by a glycosylphosphatidylinositol. It is an 
important member of the extracellular matrix (ECM) 
involved in regulation of heparin-binding growth factor (37, 
38). There was miR-96 up-regulation in non-small cell lung 
carcinoma (NSCLC) tissues in comparison with normal 
margins. MiR-96 increased NSCLC cell migration through 
GPC3 suppression (39). Caveolae1 (CAV1) is a structural 
component of caveolae involved in signal transduction and 
vesicular trafficking (40, 41). It has anti-tumor or oncogenic 
functions in different cancers (42, 43). There were significant 
miR-96-5p up-regulations in ovarian cancer (OC) tissues 
and cell lines in comparison with normal margins and 
cell lines. MiR-96-5p induced OC cell proliferation and 
migration via CAV1 targeting. It also up-regulated CCND1 
by phosphorylation of AKT (44). 

Ion channels are important structural proteins during 
tumor progression (45, 46). HERG1 belongs to the family 
of voltage-gated potassium channels that are up-regulated 
in various cancers (47, 48). It regulates cell proliferation 
and apoptosis (49, 50). HERG1 up-regulations in pancreatic 
tumor tissues were significantly associated with lymph node 
metastasis, TNM stage, and grade of differentiation. MiR-
96 significantly inhibited pancreatic tumor cell proliferation 
and migration via HERG1 targeting (51). 

SYVN1 is an E3 ubiquitin-protein ligase involved in 
elimination of unfolded proteins that are accumulated during 
ER stress. It promotes unfolded protein transportation 
to the cytoplasm where it uses the ubiquitin-proteasome 
process for protein degradation (52). There was significant 
CASC2 up-regulation in BC tissues compared with normal 
margins. CASC2 promoted apoptosis while inhibiting BC 
cell migration by miR-96-5p sponging that resulted in 
SYVN1 up-regulation (53). 

As a deubiquitinase, CYLD has pivotal roles in 
microtubule stabilization by alpha-tubulin acetylation that 
is associated with cell proliferation, cytokinesis, migration, 
and angiogenesis (54-56). It has been reported that GMDS-
AS1 inhibited lung tumor cell proliferation while inducing 
apoptosis. GMDS-AS1 up-regulated CYLD through miR-
96-5p sponging (57). 

CircPTPRA is a circular RNA transcribed from 
PTPRA. RASSF8 is a tumor suppressor with pivotal roles 
in maintenance of adherence junctions in epithelial cells 
and migration. There was circPTPRA down-regulation in 
NSCLC tumors compared with controls that was associated 
with invasive tumors and shorter survival rates. It sponged 
miR-96-5p to inhibit EMT in NSCLC cells through 
RASSF8 up-regulation (58). CCDC67 is a component of 
the deuterostome complex that is involved in centriole 
amplification in multi-ciliated cells. There were significant 
miR-96-5p up-regulations in papillary thyroid cancer 
(PTC) tissues and cell lines compared with normal margins 
and cells. MiR-96-5p induced PTC cell proliferation and 
migration by CCDC67 targeting (59). 

Transcription factors
Forkhead transcription factors are critical factors during 
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embryogenesis (60). They are mainly considered tumor 
suppressors during tumor progressions (61). The Forkhead 
box O (FOXO) protein family has a critical role in regulation 
of PI3K/AKT signaling that mediates cell proliferation, 
differentiation, and tumorigenesis (62). FOXO proteins 
are involved in cell cycle regulation by up-regulations of 
p21Cip1 and p27Kip1 cell-cycle inhibitors, while CCND1 
down-regulation results in G1/S arrest (63, 64). They also 
promote apoptosis by regulation of proapoptotic factors 
such as Bim and Fas ligand (65, 66). FOXO phosphorylation 
can result in DNA release and nucleus to cytoplasm 
translocation via 14-3-3 chaperones (67). FOXO1 is known 
as a tumor suppressor in the majority of cancers (68, 69), 
while it has an oncogenic function in female genital tract 
tumors (70). FOXO1 is mainly regulated by the PI3K/
AKT pathway during thyroid tumorigenesis (71). There 
was miR-96 up-regulation in PTC tissues in comparison 
with normal samples. MiR-96 significantly induced PTC 
cell proliferation, while reducing 5FU mediated apoptosis 
by FOXO1 targeting that resulted in suppression of AKT/
FOXO1/ Bim axis (72). There was miR-96 up-regulation 
in hepatocellular carcinoma (HCC) tissues and cell lines. 
MiR-96 induced AKT/GSK-3β/β-catenin axis via FOXO1 
suppression in HCC cells. FOXO1 decreased tumor cell 
proliferation, invasion, and in vivo growth promoted by 
miR-96 in HCC. MiR-96 increased HCC progression via 
FOXO1 targeting. It also promoted β-catenin nuclear 
translocation (73). MiR-96 induced apoptosis via FOXO1 
targeting in BCa cells (7), while suppressing camptothecin-
induced apoptosis by FOXO1 targeting in PCa cells (74). 
p21 and p27 are critical factors involved in cell cycle 
regulation. MiR-96 was shown to induce cervical cancer 
(CC) cell proliferation through FOXO1 targeting. There 
were significant miR-96 up-regulations in CC tissues and 
cell lines that were associated with stage, grade, and lymph 
node invasion. MiR96 induced G1/S transition and cell 
proliferation in CC cells. Suppression of miR-96 increased 
apoptosis via p21 and p27 up-regulations (75). Another study 
showed that miR-96 was up-regulated by chemotherapeutic 
treatment that reduced the levels of FOXO1 expression and 
subsequent p21 down-regulation in GC cells (76). MiR-96 
up-regulation was observed in PCa tissues in comparison 
with normal samples. MiR-96 induced PCa cell proliferation 
and clonogenicity through FOXO1 targeting (77). 

FOXO3 belongs to the forkhead transcription factors 
involved in apoptosis, metabolism, and DNA repair (78). 
MiR-96 induced BC cell proliferation through FOXO3a 
targeting that reduced the levels of p27Kip1 and p21Cip1 
expressions, while up-regulating CCND1. A significant miR-
96 up-regulation was also reported in BC tissues compared 
with normal specimens (79). There was Urothelial Cancer 
Associated 1 (UCA1) up-regulation in PC tissues that was 
inversely associated with miR-96 expression. Silencing of 
UCA1 or FOXO3 inhibited pancreatic tumor cell invasion 
while promoting apoptosis. UCA1 increased pancreatic 
tumor cell invasion by miR-96 sponging that resulted in 
FOXO3 up-regulation (80). There was a significant miR-96 
up-regulation in NSCLC tissues in comparison with normal 
specimens that was associated with TNM stage, grade of 
differentiation, and lymph node involvement. MiR-96 also 
induced NSCLC growth by FOXO3 targeting (81). The 
miRNA-96-5p up-regulation was also shown in BC tissues 
that induced cell proliferation through FOXO3 inhibition 

(82). There was miR-96 up-regulation in CRC tissues 
compared with corresponding normal samples. MiR-96 
also induced CRC cell proliferation through FOXO1 and 
FOXO3a targeting (83). FOXF2 has tumor suppressor 
function in a variety of tumors such as breast, gastric, and 
colorectal cancers (84-86). 

Proteolytic enzymes with ECM degradation ability 
are also essential factors during tumor cell invasion (87). 
Matrix metalloproteinases (MMPs) are a family of proteases 
that degrade ECM during angiogenesis and invasion (88). 
There was miR-96-5p up-regulation in oral squamous cell 
carcinoma (OSCC) tissues in comparison with normal 
margins. MiR-96-5p significantly induced OSCC cell 
proliferation via CDK4 and CCND1 up-regulations while 
p27 down-regulation. MiR-96-5p also reduced the levels of 
MMP-2 and MMP-9 expressions, while up-regulating TIMP-
1 in OSCC cells. It induced the EMT of OSCC cells through 
CDH1 down-regulation and CDH2 up-regulation. MiR-96-
5p exerted all of the oncogenic functions in OSCC cells by 
FOXF2 targeting (89). There was also miR-96 up-regulation 
in PCa tissues in comparison with normal specimens which 
was associated with lymph node involvement, distant 
metastasis, and high PSA levels. MiR-96 increased PCa cell 
proliferation via FOXF2 targeting. Moreover, miR-96 down-
regulation reduced PCa cell proliferation by suppressing the 
expressions of CCNA1, CDK2, and CDK4 (90).

Signaling pathways
WNT is a developmental signaling pathway that has 

critical roles in normal tissue homeostasis and neoplastic 
transformation (91, 92). MiR-96 is involved in regulation 
of the WNT signaling pathway during tumor initiation 
and metastasis (Figure 3). It has been shown that miR-
96 induced the WNT pathway and glioma cell growth by 
suppression of HBP1 as an inhibitor of the WNT pathway 
(93). SFRP4 belongs to the secreted frizzled related proteins 
(SFRPs) associated with regulation of cell proliferation 
and motility through the WNT signaling pathway (94). 
There was miR-96-5p up-regulation in CC tissues that 
was significantly associated with clinical stages and lymph 
node invasion. MiR-96-5p induced cell migration, while 
inhibiting apoptosis in CC cells via SFRP4 targeting 
(95). CTNNB1 is the main downstream effector of the 

 
 
 
 
Figure 3. MiR-96 is involved in tumor progression and invasion 
through regulation of the WNT signaling pathway



Iran J Basic Med Sci, Vol. 25, No. 1, Jan 2022

Rahimi et al. MicroRNA-96: a therapeutic and diagnostic tumor marker

8

canonical WNT pathway. It forms a complex with AXIN/
APC/GSK3B in the absence of WNT ligands that results 
in CTNNB1 phosphorylation and subsequent degradation 
by the ubiquitin-proteasome system. However, WNT-
FZD interaction prevents CTNNB1 degradation, and its 
nuclear accumulation causes the activation of TCF/LEF 
transcription factors and regulation of WNT target genes 
(96, 97). 

Hypoxia is a pivotal feature of the tumor 
microenvironment during tumor progression (98). It 
promotes adaptive mechanisms by activation of hypoxia-
inducible transcription factors that up-regulate various 
genes associated with angiogenesis, metastasis, and immune 
evasion (99, 100). AMOTL2 is an anti-angiogenic factor 
that regulates the actin cytoskeleton. It also suppresses the 
WNT signaling pathway via prevention of CTNNB1 nuclear 
translocation. It has been reported that there were higher 
levels of serum exosomal UCA1 in PC patients compared 
with healthy controls that were significantly associated with 
poor prognosis. Hypoxic pancreatic tumor cell-derived 
exosomal UCA1 promoted angiogenesis through regulation 
of miR-96-5p/AMOTL2/ERK1/2 axis (101). 

During the EMT process, epithelial cells lose their 
polarity to convert to invasive mesenchymal cells (102). 
Astrocyte elevated gene-1 (AEG-1) is the activator of EMT-
related signaling pathways such as SHH, TGF-b, and WNT 
(103-105). PI3K/AKT induction by AEG-1 can result in 
chemoresistance by MDR1 subsequent up-regulation 
(106). AEG-1 also increases the levels of LEF-1 expression 
as one of the critical WNT transcription factors. Moreover, 
AEG-1 promotes CTNNB1 nuclear translocation. Since, 
CTNNB1 phosphorylation by GSK3β results in its 
proteasomal degradation, AEG-1 can also induce CTNNB1 
nuclear accumulation via GSK3β phosphorylation and 
inactivation (107). MiR-96 inhibited EMT and cell 
proliferation while inducing apoptosis via AEG-1 targeting 
in GBM cells (108). Neuronal pentraxin 2 (NPTX2) has a 
pivotal role in synapse formation and immune response 
(109). It also induces CRC cell proliferation and metastasis 
by a direct interaction with FZD6 that results in activation 
of the WNT signaling pathway (110). There was miR‐96 
down-regulation in RCC samples. MiR‐96 reduced RCC 
cell invasion and proliferation via NPTX2 down-regulation 
(111). 

PTEN is a protein phosphatase that suppresses the PI3K/
AKT pathway by dephosphorylation of phosphoinositides. 
A significant STXBP5-AS1 up-regulation was observed 
in CC patients that was associated with poor prognosis. 
STXBP5-AS1 also inhibited CC cell proliferation by miR-
96-5p sponging that resulted in PTEN up-regulation. 
Therefore, STXBP5-AS1 suppressed PI3K/AKT pathway 
via PTEN up-regulation in CC cells (112). There was 
miR-96-5p up-regulation in head and neck squamous cell 
carcinoma (HNSCC) specimens in comparison with normal 
margins. There were significantly higher levels of miR-96-
5p expressions in HNSCC patients with TP53 mutations 
compared with wild types. MiR-96-5p up-regulation in 
mutant p53 carriers induced cell migration and chemo-
resistance via PTEN targeting and activation of PI3K-AKT 
pathway in HNSCC (113). Succinate dehydrogenase (SDH) 
is a complex comprising SDHA-D components that is 
involved in the citric acid cycle of mitochondria by oxidation 
of succinate to fumarate (114, 115). It has also an important 

role in electron transport (116). Deregulation of SDHB has 
been associated with reduced oxidative phosphorylation 
and tumor progression in which SDHB deficiency results in 
increased cell migration and invasion (117). SDHB is also 
involved in regulation of the AKT/mTOR signaling pathway 
by inhibition of AKT. There was miR-96-3p up-regulation 
in PTC tissues in comparison with benign tissues. The 
advanced stage PTC patients had higher levels of miR-96-3p 
in tumor tissues compared with normal margins. MiR96-
3p induced PTC cell invasion and migration through 
regulation of the SDHB/AKT/mTOR axis (118). 

Tumor necrosis factor-alpha (TNF-α) is a cytokine 
involved in apoptosis and inflammation. TNF-α activates 
the TNF receptors which subsequently triggers various 
signal transduction pathways including MAPK, ERK, and 
JNK (119). SAMD9 as an effector of TNF-α signaling is 
involved in inflammatory responses. It has been shown 
that miR-96 suppressed cisplatin-induced apoptosis 
through SAMD9 in NSCLC cells (120). KRAS is a GTPase 
belonging to the RAS oncogene family that is involved in 
cell growth and differentiation (121). It induces pancreatic 
tumorigenesis by activation of PI3K/AKT, ERK, and NF-
κB signaling pathways (122-125). It has been reported that 
miR-96 targeted KRAS oncogene in pancreatic tumor cells. 
MiR-96 inhibited AKT signaling and cell migration while 
inducing apoptosis via KRAS down-regulation (126).

Phosphatases, kinases, and matrix metalloproteinases
 Protein tyrosine phosphatases (PTPs) are considered 

pivotal regulators of different cellular processes and 
signal transductions. PTPN9 belongs to the classic PTPs 
involved in different cellular processes (127). It is involved 
in dephosphorylation and suppression of EGFR, ErbB2, 
and STAT3 (128, 129). Since, these factors have important 
functions during BC progression (130, 131); PTPN9 can 
be suggested as a tumor suppressor via inhibition of ErbB 
and STAT3 signaling pathways. A significant miR-96 up-
regulation was shown in BC tissues. MiR-96 promoted 
breast tumor in vivo growth, proliferation, and motility by 
PTPN9 sponging (132). There was miR-96 up-regulation in 
CC tissues that was inversely related to the levels of PTPN9 
expression. MiR-96 increased CC cellular proliferation via 
PTNP9 targeting (133). 

NUAK1 belongs to the AMPK-related kinase (ARK) 
family that is activated by AKT. It regulates cell survival 
during glucose deprivation and also inhibits apoptosis 
mediated by nutrient starvation (134). It regulates death 
receptors via CASP8 and pro-CASP6 suppressions (135, 
136). MiR-96 repressed PC cell proliferation and migration 
through NUAK1 targeting (137). Chronic myeloid 
leukemia (CML) is a neoplastic transformation associated 
with (9; 22) translocation that generates a constitutively 
active BCR-ABL1 tyrosine kinase (138). ABL1  is a proto-
oncogene involved in cell proliferation, migration, and stress 
response. MiR-96 suppressed the BCR-ABL1 oncogene in 
CML (139). EGFR is another tyrosine kinase receptor that 
is activated by EGF that triggers several signal transduction 
pathways such as MAPK and AKT. Therefore, EGFR is a 
pivotal regulator of cell growth and migration. Aberrant 
EGFR signaling is commonly observed during tumor 
progression (140). ETV6 has a tumor suppressor function 
by TWIST1 down-regulation in metastatic PCa (141). It has 
been reported that there was a converse association between 
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the levels of ETV6 and miR-96 expressions in PCa tissues 
in which nuclear EGFR was correlated with ETV6 down-
regulation. Nuclear EGFR increased the levels of miR-96 
expressions that resulted in ETV6 targeting in PCa cells (11). 
EphrinA5 is a ligand for Eph receptors of tyrosine kinases 
that have important roles in regulation of angiogenesis and 
cell motility. It is an inhibitor of EGFR via inducing c-CBL 
binding and ubiquitylation (142). A significant miR-96 up-
regulation was shown in HCC tissues in comparison with 
normal controls. MiR-96 increased HCC cell invasion and 
proliferation through ephrinA5 targeting (143). 

MMPs are calcium-dependent proteases that have 
important roles in tissue remodeling, angiogenesis, and 
tumor cell metastasis. RECK is an MMP inhibitor involved 
in tumor metastasis by regulation of MMP-2 and MMP-9 
(144, 145). Reduced levels of RECK expression are related 
to poor survival in different tumors (146). MiR-96 up-
regulations were reported in esophageal cancer (EC) tissues 
and cell lines which was associated with clinical tumor 
stage and depth of invasion. MiR-96 reduced drug or 
irradiation responses in EC cells by RECK targeting (147). 
Significant miR-96 up-regulation was also shown in BC 
tissues in comparison with corresponding normal tissues. 
It also increased BC cell motility and proliferation by RECK 
inhibition (148). MiR-96 induced NSCLC cell growth and 
migration via RECK targeting. There was also miR-96 up-
regulation in NSCLC tissues in comparison with normal 
tissues. Moreover, suppression of miR-96 reduced NSCLC 
cell proliferation (149).

Apoptosis and cell cycle regulation
Apoptosis and autophagy are the main cellular 

processes involved in regulation of the cell fate by protein 
and organelle turnovers. CASP9 is an initiator caspase 
required for the intrinsic apoptosis pathway. Due to the 
intracellular apoptotic stimuli, cytochrome c is released 
by mitochondria that form apoptosome by binding with 
Apaf-1. Then CASP9 will be activated by apoptosome 
that can subsequently activate executioner caspases to 
trigger apoptosis. A significant miR-96-5p up-regulation 
was observed in HCC tissues in comparison with normal 
samples. MiR-96-5p reduced the levels of FOXO1 expression 
in HCC cells. It increased doxorubicin resistance while 
inhibiting apoptosis through CASP9 targeting in HCC 
tumor cells (150). Programmed Cell Death 4 (PDCD4)  is 
a tumor suppressor that activates BAX  pro-apoptotic 
factors followed by cytochrome C mediated apoptosis 
(151).  There was a significant miR-96 up-regulation in 
GBM cells. MiR-96 reduced GBM radiosensitivity through 
PDCD4 targeting (152). Autophagy is responsible for 
the maintenance of cellular homeostasis by elimination 
of dysfunctional cellular components using a lysosomal-
mediated pathway. Therefore, this process can be associated 
with various biological processes and diseases (153, 154). 
Normally autophagy is an anti-apoptotic mechanism that 
maintains cell survival. Therefore, pro-apoptotic proteins 
should be inhibitors of autophagy. ATG7 belongs to the 
E1-like enzymes that suppress CASP9 translocation to the 
apoptosome resulting in apoptosis blocking (155, 156). It has 
been observed that UCA1 increased AML cell proliferation 
and autophagy by miR-96-5p sponging that resulted in 
ATG7 up-regulation (157).  CDKN1A is a pivotal regulator 
of cell cycle progression that suppresses Cyclin/CDK2 

complexes to mediate growth arrest due to DNA damages 
(158). There was miR-96 up-regulation in BCa tissues. MiR-
96 reduced BCa cell proliferation while inducing apoptosis 
through CDKN1A down-regulation (159).

Conclusion
In the present review, we discussed all of the reports 

that have assessed the role of miR-96 in tumor initiation, 
progression, and invasion. This review clarifies the molecular 
mechanisms that are recruited by miR-96 to regulate tumor 
progression and metastasis. MiR-96 mainly exerts its role 
during tumorigenesis through targeting the structural 
proteins and FOXO transcription factors. Indeed, this review 
suggests miR-96 as an efficient diagnostic tumor marker in 
different cancers. Based on miR-96 as an oncogene or tumor 
suppressor, miR-96 or its inhibitors can be also suggested as 
novel therapeutic agents in cancer therapy. However, it is 
still required to perform animal studies in future research 
to find the efficiency of miR-96 targeted tumor therapy. 
More studies are also required to assess the miR-96 delivery 
method and long-term safety prior to medical practice as a 
novel therapeutic modality in cancer patients. 
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