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Objective(s): Apoptosis is common and often comorbid with aging and stress-related mood disorders. 
Evidence suggests that fresh mitochondria could reverse age-related dysfunctions in organs, especially 
in the brain. Therefore, this study investigated the effect of young mitochondria administration on the 
apoptosis process in the prefrontal cortex (PFC) of aged rats exposed to chronic stress. 
Materials and Methods: Aged (22 months old) male rats were randomly assigned into four groups: aged 
control (AC), aged rats treated with young mitochondria (A+M), aged rats subjected to chronic stress 
for four weeks (A+St), and aged rats subjected to chronic stress and treated with young mitochondria 
(A+St+M). A+M and A+St+M groups received a single ICV injection (10 μl) of fresh mitochondria 
isolated from the brain of young rats for five minutes (2 µl/min). Finally, the levels of Malondialdehyde 
(MDA), Cytochrome c (Cyt c), Bax, Bcl-2, and Caspase-3 expression were investigated in the PFC.
Results: Young mitochondria administration reduced neuronal apoptosis in the PFC, associated 
with down-regulation of MDA, Bax, and Caspase-3 and up-regulation of Bcl-2. Moreover, fresh 
mitochondria partially improved the chronic stress-induced mitochondrial dysfunction in aged rats, 
as indicated by reduced cytochrome c (Cyt c) release from the mitochondria.
Conclusion: These results suggest mitotherapy could reverse cell viability and mitochondrial 
dysfunction-induced apoptosis in the PFC tissue of aged rats subjected to stressful stimuli. 
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Introduction
Stress-related responses gradually change with advancing 

age, and it is evident that the effects of psychological 
stress are exacerbated during aging (1). In addition, 
aging is associated with loss of emotional  and functional 
resilience to stressors in animal models and the human brain 
(2). The prefrontal cortex has shown more vulnerability to 
normal aging (3) and chronic stress, resulting in loss of 
neuron resilience in this brain area (2).

Mitochondria are essential organelles in regulating cellular 
homeostasis by involving bioenergetic changes, reactive 
oxygen species (ROS) generation, signal transduction, and 
apoptosis (4, 5). During aging, cellular characteristics of 
mitochondrial dysfunction, including impaired oxidative 
phosphorylation, increased ROS levels, impaired activity 
of metabolic enzymes, and changes in mitochondrial 
morphology and biogenesis, have been well addressed (6). 
As a well-established hallmark of aging, mitochondrial 
dysfunction contributes to the development of age-related 
pathological changes such as neurodegeneration (7). 
Emerging evidence indicated that impaired mitochondrial 
function plays an essential role in apoptosis and age-related 
physiological and pathophysiological processes (6, 8). A 
number of studies have also demonstrated that mitochondrial 
disturbances lead to an imbalance between oxidant and 
anti-oxidant factors and oxidative damage with advancing 
age (9). Besides, alterations in mitochondrial functions 

such as oxidative phosphorylation and apoptosis have been 
implicated in the development of chronic stress-induced 
mental illness (10). In this regard, oxidative stress markers 
such as MDA are affected by psychosocial stress, and their 
level is increased following mild stress in major depression 
(11). Several  lines  of  evidence  have  demonstrated young 
mitochondrial anti-oxidant, anti-inflammatory, and anti-
aging activities (12, 13). Moreover, mitochondria can 
reverse several aspects of age-related neuropathology at 
the molecular, functional, and cognitive levels in aged mice 
(12).

Apoptosis is conceived as an important process affecting 
neuronal and glial survival in aging (14) and contributes to 
mood changes, especially stress-related depression, which 
consequently reduces the effectiveness of antidepressant 
agents (15). It has been revealed that the number of 
apoptotic cells in the PFC is increased in stress-induced 
depression (16). Thus prefrontal cortical apoptosis could 
play a pathological role in the progression of stress-related 
depressive behaviors (16). Apoptosis is characterized by 
increased expression levels of apoptotic markers such as 
Bax and release of cytochrome-c from mitochondria (17). 
Cytochrome-c is also an important causative factor in the 
activated caspase cascade, which eventually causes caspase-3 
to destroy DNA (18). 

Given the pivotal role of the mitochondria in aging 
and stress-related mood changes (19), the current study 
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has been conducted to develop a novel protective strategy 
against chronic stress-induced pathophysiological changes 
in mitochondrial functions and apoptosis. We aimed to 
investigate the effect of the administration of young rats’ 
mitochondria on apoptosis in the PFC, a highly vulnerable 
brain area to aging and stress, in the stress-induced 
depression model of aged rats.

Materials and Methods
Ethics approval

All animals were cared for according to the Guide for 
the Care and Use of Laboratory Animals of the National 
Institute of Health (8th edition, Washington DC, National 
Academies Press (US); 2011) standards of the National 
Institutes of Health for Laboratory Animals Care and Use 
(NIH Publication No. 85-23, revised 1996). The procedures 
were approved by the Ethics Committee of Animal Research 
of Tabriz University of Medical Sciences [IR.TBZMED.
VCR.REC.1400.003]. 

Animals housing and experimental design
Twenty-four (22 months old, weighing 450–550 g) 

and seven young (3 months old) male Wistar rats were 
randomly divided into four groups:   Aged control (AC), 
Aged rats treated with young mitochondria (A+M), Aged 
rats subjected to chronic mild stress (A+St), and Aged rats 
subjected to chronic mild stress and treated with young 
mitochondria (A+St+M). Each rat in A+M and A+St+M 
groups received a single ICV injection (10 μl) of fresh 
mitochondria isolated from the brain of young rats for five 
minutes (2 µl/min).  The other two groups received the 
same volume of saline (vehicle). In stress-exposed groups, 
the standard light/dark cycle (12:12 hr) was changed in the 
course of the stress paradigm only. Additionally, food and 
water were available  ad libitum  except when food and/or 
water deprivation was applied as a stressor. The experimental 
design and timeline are presented in Figure 1.

Chronic unpredictable mild stress protocol
In stress groups, chronic mild unpredictable stressors 

were performed every day for four weeks. This protocol 
involves exposure to various stressors, including water 
and food deprivation (for 20 hr), tilt cage (45°, for 7 hr), 
intermittent white noise (85 dB, for 7 hr), strobe lighting 
(300 flashes/min, for 7 hr), and wet cage (150 ml water in 
bedding, for 17 hr) (20). 

Mitochondrial isolation
Young mitochondria were isolated from the brain of a 

young rat, according to a previous report (21). Briefly, the 
rat was euthanized, and the brain was dissected immediately. 
The brain was washed with cold PBS (0.01 M, pH 7.4), then 
cut into pieces. Homogenization of the brain samples was 
perfumed in cold isolation buffer. The homogenate was 
centrifuged at 1000 g for 5 min at 4 °C. The supernatant was 
collected and resuspended in the isolation buffer for another 
centrifugation at 3500 g for 10 min. The mitochondria 
pellet was washed with a second isolation buffer containing 
sucrose (70 mmol/L) and mannitol (210 mmol/L) in Tris/
HCl (50 mmol/L) (pH=7.4) twice. Before injection, the 
number and concentration of extracted mitochondria were 
estimated under an optical microscope (Olympus, Tokyo, 
Japan) using a Bradford assay kit.

Animal assignment and mitochondrial administration
After labeling, the isolated mitochondria were 

administered into the right cerebral ventricle (10  µl in 
saline suspension) according to the following coordinates 
from Bregma: AP=−0.8 mm; ML=−1.5 mm; DV=−4 mm 
(21). Evidence of mitochondrial internalization  into the 
brain cells was obtained by labeling with a mitochondrial-
specific indicator, MitoTracker® Green FM (Cell signaling; 
9074), according to the manufacturer’s protocol. Fourteen 
days after transplantation, the brain was sectioned using a 
freezing microtome, and tissue fluorescence was detected 
under a fluorescence microscope (AXIOM, BM-600 LED 
EPI, Germany).

Tissue sampling
After induction of deep anesthesia with  ketamine  and 

xylazine (80 and 10 mg/kg IP, respectively),  the rats were 
sacrificed, and the whole brain tissue was dissected. Then 
PFC was carefully isolated on a cold plate according to 
Spijker et al. method (22) and stereotaxic atlas (23) and kept 
at −80 °C for molecular assessments. 

Western blot analysis 
To determine the protein levels of caspase-3, Bax, Bcl-

2, and cytochrome c, the prefrontal cortex of the right 
hemispheres was homogenized on ice in lysis buffer (500 
µl, Tris-HCL, pH=8, 0.003 gr EDTA, 0.08 gr NaCl, 0.025 
gr sodium deoxycholate, 0.01 gr SDS, one tablet protease 
inhibitor cocktail, 10 µl Triton NP40 (1%)) and was left 
for 20 min at 4 °C, then centrifuged (Eppendorf 5415 R) 
at 12,000×g for 10 min at 4 °C. The supernatant was stored 
at −20 °C. Proteins were separated by SDS-PAGE and 
transmitted onto PVDF membrane and then incubated for 
2 hr at room temperature with primary antibodies against 
Caspase-3 (SANTA CRUZ, sc-7272), Bax (SANTA CRUZ, 
sc-7480), Bcl-2 (SANTA CRUZ, sc-492), cytochrome c 
(SANTA CRUZ, sc-13156), and β-actin (SANTA CRUZ, 
sc-47778) in the antibody buffer. Subsequently, a secondary 
antibody (donkey anti-goat; Santa Cruz, sc-2020) was used 
to incubate blots for 1 hr. All protein bands were normalized 
against β-actin protein, and the density of the bands was 
quantified using Image J software (3).

Malondialdehyde (MDA) detection
MDA level was determined in the PFC by Biocore 

Diagnostik (ZellBio) MDA assay Kit (Ulm GmbH,
Germany) according to the manufacturer’s protocol.

Statistical analysis
Data were expressed in terms of mean ± SEM. The 

differences between groups were assessed using two-way 
ANOVA and Tukey’s test for post hoc comparisons (P<0.05). 
All statistical analyses were performed with Prism 8 software 
(GraphPad, La Jolla, CA, USA). Of note, authors involved in 
data analysis were blinded to the experimental groups.

Results
Effect of young mitochondria administration on oxidative 
stress marker in the PFC

The two-way ANOVA of MDA levels showed a 
significant difference main effect of treatment [F (1, 
20) =43.22, P<0.0001] and St [F (1, 20) =116.4, P<0.0001] 
but no main effect of treatment × stress interaction [F 
(1,20) =1.246,  P=0.2775] between study groups (Figure 
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2). Post-hoc analysis showed that MDA levels significantly 
(P<0.001) decreased in the A+M group compared with the 
vehicle-received aged rats. Moreover, animals in the A+St 
group had significantly (P<0.001) higher MDA levels than 
the aged control group. However, treatment with young 
mitochondria in the A+St+M group significantly (P<0.01) 
decreased MDA levels compared with the A+St group. 
Moreover, MDA levels were significantly higher than in the 
aged control (P<0.05) and A+M (P<0.001) groups.

Effect of mitotherapy on cytosolic cytochrome c levels in the 
PFC tissue

Based on the results of two-way ANOVA, there 
was a significant main effect of treatment [F (1, 
8)  =66.51,  P<0.0001] and St [F (1, 8) =16.92,  P=0.0034] 
but no main effect of treatment × stress interaction [F (1,8) 
=0.9164,  P=0.3665] on the cytosolic Cyt c protein levels 
between study groups. As shown in Figure 3, mitochondria-
treated animals exhibited a significant (P<0.001) decrease in 
the cytosolic Cyt c levels in the PFC compared with the aged 
control rats, indicating a decline in the release of Cyt c from 
the mitochondria. Young mitotherapy also significantly 
decreased the cytosolic Cyt c levels in the PFC of the 
A+St+M group compared with the A+St group (P<0.01). In 
contrast, the A+St+M group showed a significant (P<0.05) 
increase in Cyt c compared with the A+M group.

Young mitochondria reduced apoptosis in the PFC of 
stress-exposed aged rats 
Bax, Bcl-2, and caspase-3 expression levels

As shown in Figure 4B,  a two-way ANOVA showed a 
significant main effect of treatment [F (1, 8) =75.79, P<0.0001] 
and stress [F (1, 8)  =46.21,  P=0.0001] and a significant 
main effect of their interaction [F (1, 8) =10.04, P=0.0132] 
for Bax in the PFC tissue. Multiple comparisons indicated 

that mitotherapy significantly (P<0.05) decreased Bax in 
the A+M group compared with the aged control group. 
Moreover, chronic stress significantly (P<0.001) increased 
Bax compared with the aged control group. However, 
mitotherapy significantly (P<0.001) reduced Bax levels in the 
A+St+M group compared with the stress-subjected aged rats.

In addition, according to the results of two-way ANOVA 
of Bcl-2 protein levels (Figure 4C) using treatment and 
stress as factors, there was a significant main effect of 
treatment [F (1, 8)  =42.50,  P=0.0002] and stress [F (1, 

 

  
Figure 1. Timeline of the study procedures

 

  
Figure 2. Effects of chronic stress and mitotherapy on MDA levels in the 
PFC of aged rats. Data are expressed as mean ± SEM (n=3). *P<0.05 and 
***P<0.001 vs Aged control group, ## P<0.01 vs A+St group, +++P<0.001 
vs A+M group. MDA, malondialdehyde; AC, Aged control group; A+M, 
Aged + mitochondria group; A+St, Aged + chronic stress group; A+St+M, 
Aged + chronic stress + mitochondria group

 

  Figure 3. Effects of chronic stress and mitotherapy on Cyt c levels in the 
PFC of aged rats. Data are expressed as mean ± SEM (n=3). ***P<0.001 
vs Aged control group, ##P<0.01 vs A+St group, + P<0.05 vs A+M group. 
Cyt c, cytochrome c; AC, Aged control group; A+M, Aged + mitochondria 
group; A+St, Aged + chronic stress group; A+St+M, Aged + chronic stress 
+ mitochondria group

 

Figure 4. Effects of chronic stress and mitotherapy on Bax (A), Bcl-
2 (B), and caspase-3 expression levels in the PFC of aged rats. Data are 
expressed as mean±SEM (n=3). *P<0.05 and ***P<0.001 vs Aged control 
group, ##P<0.01 and ###P<0.001 vs A+St group, +P<0.05 vs A+M group, 
and ++P<0.01 vs A+M group. AC, Aged control group; A+M, Aged + 
mitochondria group; A+St, Aged + chronic stress group; A+St+M, Aged + 
chronic stress + mitochondria group



Iran J Basic Med Sci, 2023, Vol. 26, No. 6

Javani et al. Mitotherapy improves apoptosis

728

8) =26.90, P=0.0008], but no significant main effect of their 
interaction [F (1, 8)  =0.2477,  P=0.6321] for Bcl-2 in the 
PFC. An intergroup comparison revealed that mitotherapy 
significantly (P<0.05) increased Bcl-2 expression in the 
A+M group compared with the aged control group. Notably, 
prefrontal protein levels of Bcl-2 significantly (P<0.05) 
decreased in the A+ St group compared with the AC group. 
Nevertheless, mitotherapy significantly (P<0.01) increased 
the protein expression of Bcl-2 compared with the A+St 
group. Besides, there was a significant (P<0.05) decrease in 
PFC Bcl-2 protein levels in the A+St+M group compared 
with the A+M groups.

The potential effect of young mitotherapy on the protein 
expression of caspase-3 (Figure 4C) was also investigated. 
The results of two-way ANOVA demonstrated significant 
main effects of treatment [F (1, 8)  =107.1,  P<0.0001] and 
Stress [F (1, 8) =32.09, P=0.0005], while no main effect of 
their interaction [F (1, 8)  =0.1636,  P=0.6965] among the 
experimental groups. The intergroup comparison revealed 
that young mitotherapy significantly (P<0.001) decreased 
caspase-3 expression in the A+M group compared with the 
aged control group. Notably, PFC protein levels of caspase-3 
significantly (P<0.05) increased by chronic stress exposure 
compared with the aged control rats. Nevertheless, young 
mitotherapy significantly decreased protein expression 
of caspase-3 in A+St+M compared with the AC (P<0.05) 
and A+St (P<0.001) groups. Besides, there was a significant 
(P<0.01) decrease in PFC caspase-3 protein levels in the 
A+St+M group compared with the A+M.

Discussion
The results of the present study demonstrated that the 

transplantation of young mitochondria ameliorated oxidative 
stress in the PFC of aged and chronic stress-exposed aged 
rats, as indicated by diminished MDA levels and reduced 
Cyt c release. Young mitochondria also markedly attenuated 
apoptosis markers in the PFC of aged and chronic stress-
exposed aged groups, which  was  characterized  by  down-
regulated expression levels of pro-apoptotic proteins, Bax 
and caspase-3, and up-regulated expression levels of anti-
apoptotic protein Bcl-2. 

It has been revealed that stressful stimuli impair the 
detoxification capacity through an imbalance between 
oxidant and anti-oxidant factors, resulting in oxidative stress 
(24, 25). Oxidative stress may facilitate the development of 
physiological dysfunction and the incidence of physical and 
mental diseases (26). Evidence supports the notion that 
the brain is especially sensitive to oxidative stress, which 
contributes to the development of emotional stress (27). 
Brain activity and neuronal function are altered through 
oxidative stress, associated with behavioral changes and 
neuropsychiatric diseases such as depression and anxiety 
disorders (27, 28). Therefore, oxidative damage in the 
brain is considered a risk factor for neuropsychiatric 
disorders (27, 29). It has also been established that aged 
people are more susceptible  to the deteriorating effects 
of oxidative stress, mainly leading to the accumulation 
of ROS-induced damages (30). Notably, a correlation 
between behavioral changes and cell oxidative status has 
been reported in human and animal models during aging 
(28, 31). Consistently, in the present study, chronic stress 
exposure increased MDA levels in the PFC of aged rats. 
However, treatment with young mitochondria alleviated 
chronic stress-induced oxidative damage. Anti-oxidative 

effects of mitochondria transplantation have been reported 
in several studies (32–34). In addition, the levels of NO and 
3-nitrotyrosine (3-NT) as oxidative injury signatures have 
been reduced in the spinal cord injury models following 
mitochondrial transplantation (35). It has been suggested 
that the protective effects of injected mitochondria against 
oxidative stress are possibly mediated through alterations in 
mitochondrial dynamics (fusion and fission) (32).

It has been documented that mitochondria play a crucial role 
in regulating the apoptotic pathway and that mitochondrial 
malfunction contributes to the hyperactivation of apoptotic 
signaling with advancing age (36). This phenomenon is 
characterized by increased Cyt c release from mitochondria, 
enhanced Bax/Bcl-2 ratio, and activation of caspase-3 
(37, 38). Cyt c release from mitochondria initiates the 
apoptosis cascade by augmentation of caspase activity (39, 
40). In addition, Bax is a pro-apoptotic protein that exerts 
an essential role in mitochondria-dependent apoptotic 
cell death through induction of Cyt c release and reduced 
mitochondria membrane potential (41, 42). During 
aging, these mitochondrial dysfunctions and apoptotic 
pathway dysregulations play a pivotal role in the etiology 
of neurodegenerative disorders (43, 44). Consistent with 
these data, the current study pointed out mitochondrial 
dysfunction and exacerbated aging related-apoptosis in the 
PFC of aged rats subjected to chronic stress. Moreover, our 
results indicated that mitotherapy could modulate these 
alterations in the PFC region.

It has been accepted that chronic stress can aggravate 
apoptosis by enhancing  the expression levels of caspase 
proteins in the cerebral cortex of aged rats (45). In 
addition, the involvement of the apoptosis process in 
the psychopathology of stress-related mood disorders is 
evident, especially in the PFC (16), a brain region involved 
in response to the stress stimuli and the pathogenesis of 
stress-induced mood disorders (46).

The administration of isolated mitochondria has recently 
been regarded as a potential therapeutic strategy for 
many diseases associated with mitochondrial dysfunction 
(21). Previous studies have also reported evidence that 
mitochondria transplantation exerts an anti-apoptotic 
effect in spinal cord injury and cardiac ischemia models (35, 
47, 48). In these studies, healthy mitochondria treatment 
has been shown to increase the expression levels of Bcl-2 
and reduce Bax and cleaved caspase-3. In addition, ICV 
injection of exogenous mitochondria attenuated oxidative 
stress and neuronal apoptosis and increased mitochondrial 
number and function in diabetic mice (49). Furthermore, 
mitochondrial transplantation increased cellular viability 
via mechanisms by which the apoptosis rate was suppressed 
in an oxygen-dependent manner (50). Based on the data, the 
anti-apoptotic effects of mitochondria administration could 
partially contribute to improving chronic stress-induced 
cellular and molecular changes in the PFC of old adults.

Conclusion
This study highlighted the protective effects of 

mitotherapy against oxidative stress and apoptosis during 
aging and provided novel evidence that the injection of 
young mitochondria could alleviate aging and chronic 
stress-induced apoptotic changes in the PFC region by 
suppressing oxidative stress.
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