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Objective(s): MicroRNAs, which are micro-coordinators of gene expression, have been recently 
investigated as a potential treatment for cancer. The study used computational techniques to identify 
microRNAs that could target a set of genes simultaneously. Due to their multi-target-directed nature, 
microRNAs have the potential to impact multiple key pathways and their pathogenic cross-talk. 
Materials and Methods: We identified microRNAs that target a prostate cancer-associated gene 
set using integrated bioinformatics analyses and experimental validation. The candidate gene set 
included genes targeted by clinically approved prostate cancer medications. We used STRING, GO, 
and KEGG web tools to confirm gene-gene interactions and their clinical significance. Then, we 
employed integrated predicted and validated bioinformatics approaches to retrieve hsa-miR-124-3p, 
16-5p, and 27a-3p as the top three relevant microRNAs. KEGG and DIANA-miRPath showed the 
related pathways for the candidate genes and microRNAs
Results: The Real-time PCR results showed that miR-16-5p simultaneously down-regulated all genes 
significantly except for PIK3CA/CB in LNCaP; miR-27a-3p simultaneously down-regulated all genes 
significantly, excluding MET in LNCaP and PIK3CA in PC-3; and miR-124-3p could not down-
regulate significantly PIK3CB, MET, and FGFR4 in LNCaP and FGFR4 in PC-3. Finally, we used a cell 
cycle assay to show significant G0/G1 arrest by transfecting miR-124-3p in LNCaP and miR-16-5p 
in both cell lines. 
Conclusion: Our findings suggest that this novel approach may have therapeutic benefits and these 
predicted microRNAs could effectively target the candidate genes.
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Introduction
Prostate cancer (PC) is the most prevalent malignancy 

in men in 112 countries (1). Despite advances in diagnosis 
and treatment, PC’s high incidence and mortality rate 
necessitate novel strategies (2, 3). Many anticancer drugs 
currently used in clinical practice follow the concept of 
‘one molecule - one target - one disease’. However, cancer 
is a multifactorial disease that may benefit from treatment 
approaches that target multiple key pathways and/or their 
pathogenic cross-talk. The multi-target drugs strategy has 
great potential in cancer therapy as it may simplify treatment 
regimens, reduce the risk of drug-drug interactions, and 
most importantly, limit the development of drug resistance.

MicroRNA-based therapies, which are nucleic acid-
based therapeutics, have recently been developed and show 
great potential as a pharmacological platform (4). These 
therapies utilize small endogenous noncoding RNAs known 
as microRNAs (miRNAs), which act as post-transcriptional 
silencing factors. The miRNA’s 5′ seed region binds to the 
3′ untranslated region (UTR) of the target mRNA, leading 
to truncation, destabilization, and turning off of the target 
mRNA, thereby stopping its translation.  

 Recent research indicates that miRNAs can bind to gene 

promoters to either activate gene expression or alter protein 
function, which can be utilized for diagnostic, therapeutic, 
and prognostic purposes (5-7). Unlike siRNAs, miRNAs 
only partially bind to target mRNAs through their seed 
sequence. MiRNAs are important epigenetic regulators in 
several cancers, including PC, as they can inhibit multiple 
mRNA targets through a multi-pronged mechanism 
(8). With the recent progress in miRNA studies, a new 
generation of anti-cancer drugs that can inhibit multiple 
pathways is emerging as a significant player.

Pharmaceutical industries have teamed up with 
bioinformatics to search for multi-target drug design. 
Computational studies have become increasingly favored 
as they are more cost-effective and optimize study time. 
Bioinformatics provides powerful tools for predicting 
ligand-receptor interactions at the atomic level without 
requiring extensive experimental setup. Traditional 
methods of discovering new drug molecules have become 
outdated due to the prolonged period required for 
validation through toxicology and pharmacokinetic studies. 
To develop PC therapy platforms, it is crucial to identify and 
predict miRNAs that may be relevant. This prediction can 
be made using web-based bioinformatics tools. There are 
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two main types of miRNA prediction tools: computational 
algorithms and experimentally validated tools. However, 
there is no conclusive evidence that one type always 
outperforms the other. Combining database content has 
the potential to improve accuracy (9, 10). Developing an 
effective treatment for PC requires identifying relevant 
genes that, when blocked, can suppress it. To this end, we 
selected genes targeted by drugs with clinically proven 
efficacy and confirmed their protein-protein interaction 
network using STRING analyses. We also used GO and 
KEGG pathway analyses to support the role of certain genes 
in PC. Additionally, we used integrated bioinformatics 
approaches to identify miRNAs that target the gene set 
simultaneously and verified the role of specific miRNAs in 
PC using DIANA-miRPath. Real-time PCR studies showed 
that these miRNAs suppressed gene expression, and we used 
flow cytometry to determine where these miRNAs caused 
the cell cycle to stop. Figure 1 illustrates the study process.

Materials and Methods
In silico studies
Important drug targets in the development of PC

Identifying potentially therapeutic miRNAs in PC 
involves a crucial first step which is selecting suitable drug 
targets. It’s essential to validate the clinical significance of 
the chosen genes. For our current investigation, we selected 
drug-target genes such as AR, PIK3CA, PIK3CB, MET, 
FGFR4, and EGFR. These genes have demonstrated clinical 
efficacy in many clinical trials (11-18). 

Protein-protein interaction network
The STRING (https://string-db.org/) web tool was used to 

acquire insight into the connections between the candidate 
genes and identify protein-protein interactions (PPI). Both 
indirect (functional) and direct (physical) connections among 
proteins were assessed using the medium confidence scores.

Gene-gene interaction analysis
GeneMANIA was used to generate a co-expression 

network by analyzing gene collections and their related 
genes for interaction (19).

Enrichment analysis
In order to determine the clinical significance of the 

selected genes, we conducted two types of analyses. Firstly, 
we performed Gene Ontology (GO) enrichment analysis 
using the Biological Network Gene Ontology tool (BiNGO). 
Secondly, we conducted a Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis using the 
DAVID online tool; this is a web server that can perform 
functional enrichment analysis on a set of genes (20-23). 

MiRNA identification using experimentally validated 
techniques

Using TarBase v. 837 and miRTarBase v. 816, we predicted 
gene-miRNA interactions with more accuracy and less 
false predictions (24). We conducted separate searches in 
multiple databases for each gene and then tallied up the 
results of each search. Subsequently, we assembled a list of 
miRNAs that had multiple gene targets. We ranked these 
miRNAs based on their validated scores. The validated score 
for each predicted miRNA was calculated by summing up 
the number of genes whose targets were identified through 
empirically validated databases.

miRNA identification using computational techniques
Despite their proven reliability, there are only a few 

experimentally validated tools available for predicting 
gene-miRNA interactions. Computational tools are more 
accessible and widely used in comparison to empirical 
techniques. The most common method to predict gene-
miRNA interactions is by identifying seed sequences for 
complementary nucleotides between miRNA and target 
mRNA. Online computational methods, such as examining 
the predicted gene-miRNA duplex’s thermodynamic 
stability, are frequently used for target prediction 
algorithms. In order to minimize erroneous predictions 
and strengthen the accuracy of the predictions made by 
these algorithms, we utilized more than 30 computational 
web-based tools, including PITA(25), TargetScan (26), 
DIANA TOOLS (www.microrna.gr), miRDB (27), and 
MirTar (28). Each gene was individually searched, and the 
findings were then combined. A list of miRNAs that could 
potentially target multiple genes was generated and sorted 
based on their predicted scores. The predicted score for 
each miRNA was determined using several computational 
databases that verified the association between each gene 
and miRNA. Additionally, MIRANDA was used to examine 
the characteristics of miRNA-target gene binding.

Gene and miRNA pathway analysis
The pathways associated with the target genes were 

identified using the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database, which covers a wide range of 
genetic, cellular, metabolic, and environmental processes, as 
well as human disorders.

To study miRNA pathway analysis, we utilized the web 
tool DIANA-miRPath version 3.0, which can be accessed 
via http://www.microrna.gr/miRPathv3. This web server 
integrates several meta-analysis-based miRNA-target 
interactions and identifies KEGG pathways that are 
connected to miRNA-target networks. The program uses 
the DIANA-microT-CDS method, which takes into account 
the conservation of miRNA-binding sites, to make accurate 
predictions about miRNA targets.

In vitro studies
Cell culture
To investigate the impact of miRNAs on target gene 
expression, we used PC-3 and LNCaP cells. The cells were 
cultured in RPMI-1640 medium supplemented with 10% 
FBS under 5% CO2 at 37 °C. The cells were procured from 
the Cell Bank of Pasteur Institute in Tehran, Iran (29). 

Construction and extraction of plasmid
The expression vectors pLenti-III-miR16-GFP, pLenti-

III-miR124-GFP, and pCDH-miR-27a-GFP, as well as 
the control vectors pCDH-GFP and pLenti-III-GFP, 
were purchased from the Stem Cell Technology Research 
Center located in Tehran, Iran. The next step involved the 
cultivation of the vector-bearing strain, Escherichia coli 
Stbl4, in the LB medium. Additionally, plasmid DNA was 
extracted from the overnight-grown E. coli using the Qiagen 
Endo-Free Plasmid Maxi Kit (Qiagen, Hilden, Germany) as 
per the manufacturer’s instructions.

Transfection
LNCaP and PC-3 cells were seeded into 24-well plates 

with 60000 cells per well and incubated at 5% CO2 and 37°C. 
To achieve transfection, pLenti-III-miR16-GFP, pCDH-
miR-27a-GFP, and pLenti-III-miR124-GFP expression 
vectors along with their corresponding control vectors 
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were transfected into LNCaP and PC-3 cells using PolyFect 
(Qiagen, Hilden, Germany) as per the manufacturer’s 
instructions. After 48 hr, fluorescence microscopy was 
employed to assess the transfection efficiency. Upon 
successful transfection, the cells were deemed suitable for 
RNA extraction and qRT-PCR analysis.

RNA extraction and qRT-PCR
To extract mRNA and miRNA, cell pellets were first 

harvested using 0.25% EDTA-trypsin, and an RNX-Plus 
RNA extraction kit was employed (Sinaclon, Iran). The RNA’s 
quality and purity were assessed using a BioPhotometer 
(Eppendorf, Germany). Reverse transcriptase was used to 
generate cDNA from the whole RNA. Stem-loop primers 
and oligo dT primers were employed to reverse-transcribe 
miRNAs and genes, respectively (Table 1). The Roche 
LightCycler® System was used for analysis, and SYBR Premix 
Dimer EraserTM (TaKaRa) was used for PCR. Reverse 
and forward primers for RT-PCR were designed using the 
AlleleID, OLIGO (Version 7), and Gene Runner primer 
analysis tools. Each reaction was carried out three times, 
and the relative levels of miRNA and mRNA expression 
were normalized and determined using the 2−ΔΔCT method 
in relation to the SNORD-47 (U47) and GAPDH control 
genes, respectively (30).

Cell cycle assay
PC-3 and LNCaP cells were cultured in 24-well plates 

with 65000 cells in each well. The cells were treated with 5% 
CO2 at 37 °C for 24 hr. Next, each cell group was transfected 
with empty vectors, miR-27a-3p, miR-124-3p, and miR-16-

5p in fresh serum-free media. The plates were incubated 
for 48 hr and then the harvested cells were treated with 
PI solution. Using flow cytometry by Becton-Dickinson 
(San Jose, CA, USA), the distribution of the cell cycle was 
investigated.

Statistical analysis
The results of at least three experiments are presented 

as the mean ± standard deviation (SD). To determine the 
significance of group differences, one-way ANOVA and 
Tukey’s post hoc analysis were performed using IBM SPSS 
Statistics V22.0. The data from each experiment were 
standardized by comparing it to the empty vector treatment, 
and the significance of the results was then evaluated. 
Furthermore, using the Kolmogorov-Smirnov technique, 
normality test analysis was conducted in SPSS. The 
significance values for differences were denoted by *P<0.05.

Results
Drug-target genes

We selected genes that target drugs that have been 
clinically shown to treat PC, to identify those which may 
inhibit PC. In this research work, candidate genes included 
AR, PIK3CA, PIK3CB, MET, FGFR4, and EGFR (Table 2). 

PPI analysis
The STRING web tool was used to demonstrate the 

network of interactions between candidate genes. The 
network presents each gene as a node, and it uses distinct 
colors to represent different clusters and edges to represent 

 

Name Primer sequence (5′-3′) 

hsa-miR-124-3p 

RT primer: 

GTCGTATGCAGAGCAGGGTCCGAGGTATTCGCACTGCATACGACTTGGCA 

 

F primer: CTAAGGCACGCGGTGAA 

hsa-miR-16-5p 

RT primer: 

GTCGTATGCAGAGCAGGGTCCGAGGTATTCGCACTGCATACGACCGCCAA 

F primer: GCCTAGCAGCACGTAAATA 

hsa-miR-27a-3p 

RT primer: 

GTCGTATGCAGAGCAGGGTCCGAGGTATTCGCACTGACGACGCGGAA 

F primer : CCGTTCACAGTGGCTAAG 

SNORD 47 

RT primer: 

GTCGTATGCAGAGCAGGGTCCGAGGTATTCGCACTGCATACGACAACCTC 

F primer: ATCACTGTAAAACCGTTCCA 

Universal Revers 

miR 
GAGCAGGGTCCGAGG 

AR 
F primer: GACATGCGTTTGGAGACTG 

R primer: CAATCATTTCTGCTGGCGC 

PIK3CA 
F primer: CTCCTCTAAACCCTGCT 

R primer: CATATCTTGCCGTAAATCATCCC 

PIK3CB 
F primer: TGCGACAGATGAGTGATGAAGAA 

R primer: AACTGCCCTATCCTCCGATTAC 

MET 
F primer: GCTAATCTTGGGACATCAG 

R primer: ATCTTCGTGATCTTCTTCC 

FGFR4 
F primer: CTTGATTACAGGTGACTCC 

R primer: TGGACAGCGGAACTTGAC 

EGFR 
F primer: CGCAAAGTGTGTAACGGAATAGG 

R primer: AGAGGAGGAGTATGTGTGAAGG 

GAPDH 
F primer: CCTCAAGATCATCAGCAATG 

R primer: CATCACGCCACAGTTTCC 

 

  

Table 1. For qRT-PCR and cDNA synthesis, F and R primers were used for each miRNA or gene, along with oligo-dT and specific stem-loop primers, 
respectively. R (reverse primer), F (forward primer)
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the functional relationships that exist between genes. 
Additional evidence is used to suggest which edges are 
likely to exist, and the predicted connections are further 
distinguished. Figure 2 shows the PPI network with a 
medium degree of confidence.

Gene-gene interaction analysis
After selecting specific genes, we used GeneMANIA’s 

vast functional interaction datasets to create a co-expression 

 

Symbol Gene name Drug Pathway Alterations 

AR Androgen receptor 
Xtandi/MDV3100/enzalutamide, 

ODM-201, ARN509 
Androgen receptor signaling 

Amplification, Mutations, 

Variant splicing 

PIK3CA & PIK3CB 

Phosphatidylinositol-4,5-

bisphosphate 3-kinase catalytic 

subunit alpha & beta 

BKM120, GDC0980, 

GSK2636771, 

BEZ235 

PI3K signal transduction, Co-operates with the AR 

pathway in the pathogenesis of PCa 

Overexpression, 

Mutations 

MET 
MET proto-oncogene, receptor 

tyrosine kinase 

Cabozantinib /XL184, Tivantinib 

ARQ 197, Onartuzumab 

Growth factor-induced signaling, activation of PI3K and 

MAPK pathways, and AR signaling 
Activation 

FGFR4 Fibroblast growth factor receptor 4 Dovitinib/TKI258 

Developmental pathways, Growth factor-induced 

signaling, activation of PI3K and MAPK pathways, and 

AR signaling 

Overexpression, 

Activation 

EGFR Epidermal growth factor receptor 
BIBW 2992/Afatinib, Lapatinib, 

PLX3397 

Growth factor-induced signaling, activation of PI3K and 

MAPK pathways, and AR signaling 
Activation 

 

 

  

Table 2. Based on clinical studies, there is supporting evidence for the importance of the selected crucial genes 

Figure 1. A schematic representation of the workflow of the study in three dashed-line boxes
The gene targets have been selected, and their interaction network was confirmed using STRING, GO, and KEGG (upper box); using integrated bioinformatics approaches, 
candidate miRNAs were identified (middle box). Real-time PCR and flow cytometry showed that these miRNAs suppressed gene expression and caused the cell cycle to stop 
(lower box).

Figure 2. The network of protein-protein interactions (PPIs) depicts the 
interactions between the selected genes' proteins
The lines representing evidence of co-occurrence, text mining, fusion, experimental 
validation, co-expression, database records, and neighborhood are colored blue, 
yellow, red, purple, black, light blue, and green, respectively. The thickness of a line 
indicates the strength of the evidence. The edges illustrate the connections between 
proteins and their predicted functional relationships, while the circles represent the 
proteins expressed by the relevant genes

Figure 3. The co-expression network of the selected genes was generated 
using the GeneMANIA plugin in Cytoscape
The target proteins were represented by the black nodes, while the different colors of 
the links indicated diverse associations. The genes inside the central circles that are 
crosshatched refer to the query terms, while the black genes represent those associated 
with the query genes. Purple connections indicate co-expression, while gold lines 
represent predictions. Blue lines depict various pathways, and green lines indicate 
conserved protein domains.
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network. Figure 3 illustrates 20 nodes surrounding our 
target genes. We also identified several other genes that 
were connected to the chosen set of genes. Among these 
genes, the top five crucial genes that showed the strongest 
correlation with our targets were ROS proto-oncogene 1, 
phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), 
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic 
subunit delta (PIK3CD), receptor tyrosine kinase (ROS1), 
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic 
subunit gamma (PIK3CG), and neurofibromin 2 (NF2). 

Enrichment analysis
The Cytoscape BiNGO Plugin was utilized to identify 

crucial genes involved in the pathophysiology of PC. 
This tool employs Java to identify genes with significantly 

overrepresented Gene Ontology (GO) categories. Each 
node in the analysis represents a biological process, with 
darker shaded nodes indicating the most noteworthy 
processes. These processes include signaling pathways, cell 
growth, EGF, and AR pathways, post-translational protein 
modification, phosphorylation, and more (Figure 4).

DAVID analysis revealed that six genes in PC were 
overrepresented. This platform utilizes DISGENET, KEGG, 
Reactome, and GO for forecasting signaling pathways and 
complex biological processes. As per FDR, Table 3 lists 
the top three enriched phrases. All six candidate genes are 
included in the top-ranked enriched terms. The FDR was set 
to 0.05 to detect enriched terms.

KEGG pathway enrichment analysis yielded a network of 
six candidate genes for PC (Figure 5). 

MiRNA identification using experimentally validated and 
computational tools

We compiled a list of the three most promising miRNAs 
that were predicted and experimentally verified to target 
specific genes. Using advanced algorithms, we were able to 
identify three miRNAs for each of the six targeted genes. 
Among the top-scoring miRNAs were hsa-miR-27a-3p, 
124-3p, and 16-5p, which were then selected for further 

Figure 4. TThe BINGO analysis of six potential genes reveals a biological mechanism
The node size corresponds to the number of genes implicated in the process, while the darker color signifies a smaller P-value. Statistical significance is demonstrated by colored 
nodes, which usually have a P-value lower than 0.05. White nodes function as intermediaries between biological processes but do not possess statistical significance.

 

 

 

 

 

  

Category Term Count FDR 

DISGENET Malignant neoplasm of the prostate 6 1.12E-04 

DISGENET Prostatic neoplasms 6 1.12E-04 

KEGG_PATHWAY Pathways in cancer 6 3.04E-05 

Table 3. DAVID analyzed the GO and KEGG pathways. Enriched terms 
were organized by FDR. Terms with FDR < 0.05 were considered significant.

Figure 5. The KEGG analysis results
After conducting a KEGG pathway enrichment analysis, a network of six potential genes for PC was identified. For improved visibility, the candidate genes have been highlighted 
in red.	
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analysis (Table 4).
Additionally, MIRANDA was used to determine the 

location, region, and free energy of miRNA-mRNA 
interactions. Table 5 shows the binding pattern and the 
resultant parameters. Only the top three miRNA-mRNA 
interactions are displayed, ranked by free energy.

Pathway analysis
We used DIANA-miRPath to identify miRNA-gene 

interactions related to PC pathways. The analysis revealed 
that miR-16-5p, miR-27a-3p, and miR-124-3p are associated 
with pathways related to PC. These miRNAs target genes 

that play a crucial role in androgen metabolism, which is a 
key process in PC (Figure 6).

Overexpression of miR-27a-3p, miR-16-5p, and miR-124-
3p

Transfection efficiency was determined by the GFP-
expressing plasmid. The presence of GFP-expressing cells 
was detected through fluorescent microscopy. To confirm 
the effects of miR-27a-3p, miR-16-5p, and miR-124-3p 
in LNCaP and PC-3 cells, the empty vectors or plasmids 
encoding these miRNAs were transfected. Optimal 
expression was observed 48 hr later through GFP signal 
monitoring (Figure 7). Subsequently, overexpression of 
miR-27a-3p, miR-16-5p, and miR-124-3p was confirmed 
through qRT-PCR. We found that the candidate miRNAs 
were significantly overexpressed in both PC-3 and LNCaP 
cells (*P<0.05) (Figure 8).

Effect of the selected miRNAs on target gene expression in 
LNCaP cells

Following the transfection of either empty control vectors 
or miR-16-5p, miR-124-3p, and miR-27a-3p in the LNCaP 
cells, the expression of target genes was measured using 
qRT-PCR. The results showed that miR-16-5p significantly 
down-regulated AR, EGFR, FGFR4, and MET, miR-124-3p 
down-regulated AR, EGFR, and PIK3CA, while miR-27a-3p 
down-regulated AR, EGFR, FGFR4, PIK3CA, and PIK3CB 
relative to the control group (P-value<0.05) (Figure 9 A, B, 
and C).

Effect of the selected miRNAs on target gene expression in 
PC-3 cells

After transfecting the PC-3 cell line with miR-16-5p, 
miR-27a-3p, miR-124-3p, and empty control vectors, we 
measured the expression of target genes using qRT-PCR. 
Our findings revealed that miR-16-5p significantly down-
regulated the entire gene set, while miR-124-3p down-
regulated all genes except for FGFR4. On the other hand, 
miR-27a-3p significantly down-regulated the entire gene set 
except for PIK3CA, as compared to controls (P-value<0.05) 
(Figure 9 D, E, and F).

Effect of miR-124-3p, miR-27a-3p, and miR-16-5p on cell 
cycle distribution in PC-3 cells

The distribution of cell cycle in PC-3 cells transfected with 
miR-16-5p, miR-124-3p, 27a-3p, and empty vectors was 
investigated using flow cytometry. All miRNA treatments 
stopped the S-phase, but only miR-16-5p arrested the G0/
G1 phase. The G2/M arrest was significant in all cases except 
for miR-16-5p. The results are presented as means ± SD with 
a P-value of less than 0.05 (Figure 10, A).

Effect of miR-124-3p, miR-27a-3p, and miR-16-5p on cell 
cycle distribution in LNCaP cells

Using flow cytometry, we investigated the distribution 

 

miRNA Integrated score Number of sources Number of predicted genes Positive evidence Negative evidence Net Number of validated genes 

Hsa-miR-124-3p 1.568098 32 6 7 2 5 6 

Hsa-miR-16-5p 1.0621409 26 6 15 1 14 6 

Hsa-miR-27a-3p 1.6773427 39 4 6 2 4 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 4. After analyzing the data from mirDip, TarBase v8, and miRTarbase, we were able to identify potential miRNAs

 

 

 

 

 

 

 

GENE  miRNA START-END  Region BINDING 

AR hsa-miR-27a-3p 4506 -4526 -26.68 

 

3'UTR 

 

 

hsa-miR-16-5p 

 

153 -171 

 

-25.59 

 

CDS 

 

hsa-miR-124-3p 

 

910 -931 

 

-23.41 

 

5'UTR 

 

EGFR hsa-miR-27a-3p 

 

2620 -2640 

 

-25 

 

3'UTR 

 

hsa-miR-16-5p 

 

2028 -2049 

 

-21.29 

 

CDS 

 

hsa-miR-124-3p 

 

1506 -1527 

 

-19.1 CDS 

 

FGFR4 hsa-miR-124-3p 

 

1962 -1983 

 

-23.66 

 

CDS 

 

hsa-miR-27a-3p 

 

146 -167 

 

-21.49 

 

3'UTR 

 

hsa-miR-16-5p 

 

1412- 1433 

 

-21.48 

 

CDS 

 

MET hsa-miR-124-3p 

 

320- 344 

 

-22.91 

 

5'UTR 

 

hsa-miR-27a-3p 

 

1369- 1387 

 

-20.62 

 

3'UTR 

 

hsa-miR-16-5p 

 

24 -45 

 

-16.33 

 

CDS 

 

PIK3CA hsa-miR-124-3p 

 

137- 158 

 

-21.46 

 

5'UTR 

 

hsa-miR-27a-3p 

 

3067 -3088 

 

-20.04 

 

3'UTR 

 

hsa-miR-16-5p 

 

24 -47 

 

-19.85 

 

5'UTR 

 

PIK3CB hsa-miR-27a-3p 

 

1405 -1424 

 

-26.17 

 

3'UTR 

 

hsa-miR-124-3p 

 

2495- 2516 

 

-18.89 

 

CDS 

 

hsa-miR-16-5p 

 

726 -747 

 

-18.63 

 

CDS 

 

Table 5. Characteristics of miRNA-mRNA interactions that create a strong 
connection
The graphical representation shows the pattern of binding and the resulting 
parameters. Only the miRNA-mRNA interactions with the highest three rankings in 
terms of free energy are shown.
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of the cell cycle in LNCaP cells that had been transfected 
with either miR-16-5p, miR-124-3p, and 27a-3p or empty 
vectors. We found that miR-124-3p and miR-16-5p caused 
G0/G1 arrest and miR-124-3p and miR-27a-3p treatment 
led to S-phase arrest. However, only miR-124-3p treatment 
resulted in a significant G2/M arrest. Our findings are 
presented as mean ± standard deviation (P<0.05) (Figure 
10, B).

Figure 6. miR-27a-3p, miR-124-3p, and miR-16-5p target genes participate in PC-related pathways

Figure 7. GFP expression of plasmids used as a reporter for miRNA 
expression in PC3 and LNCap cells
A & B, fluorescence microscopy imaging; C & D, light microscopy imaging at 48 hr 
post-transfection

Figure 8. Following transfection with miR-27a-3p, miR-16-5p, and miR-
124-3p, gene expression was measured for 48 hr
Overexpression of miR-27a-3p, miR-16-5p, and miR-124-3p was observed in LNCaP 
and PC-3 cells at 48 hr post-transfection (*P<0.05).

Figure 9. Here are the results of gene expression 48 hr after transfection
The impact of miR-16-5p, miR-124-3p, and miR-27a-3p on target gene expression 
was observed in LNCaP cells (A, B, and C) and PC-3 cells (D, E, and F), respectively. 
The data presented shows the mean ± SD of at least three replicates. We used one-way 
ANOVA and Tukey's post-hoc analysis to evaluate statistically significant differences 
between the groups. The control vector was used to determine statistical significance 
(*P<0.05).
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Discussion
Drug discovery involves the development of ligands that 

selectively target specific drug targets. However, for complex 
diseases such as cancer, a single medication targeted at 
a single activity may not be sufficient. MiRNA-based 
therapeutics can modulate the expression of numerous 
disease-related genes, making them a powerful tool for 
fighting diseases. However, miRNA interactions with 
mRNA are not yet fully understood and miRNAs may have 
off-target effects on other pathways. In this work, we used 
a combined bioinformatics approach to address this issue. 
Over the past few years, various miRNA-gene interaction 
prediction databases and algorithms have been established. 
Although experimentally verified databases may be more 
accurate, there is not enough empirical data to develop 
them. Computational approaches can help determine the 
association between compounds and targets before any 
chemical synthesis or biological testing but depend on prior 
identification of clinically and biologically validated targets. 
Combining validated and predicted techniques can limit 
off-target effects and help identify the best miRNAs for 
therapy.

Multi-target drugs are being developed to treat complex 
diseases like cancer that require therapies that address 
multiple targets. This shift in cancer therapy is due to the 
specificity of the disease. To predict anti-PC miRNAs against 
several PC cell lines, a new approach using a multi-target 
strategy has been presented. The study uses six drug target 
genes found in clinical trials—AR, PIK3CA, PIK3CB, MET, 
FGFR4, and EGFR—to identify effective miRNAs. These 
genes’ strong protein-protein interactions were validated 
through STRING analysis. The miRNAs miR-124-3p, miR-
27a-3p, and miR-16-5p were found to have the potential to 
target the candidate gene set simultaneously. Bioinformatics 
findings were confirmed through in vitro evaluation of miR-
124-3p, miR-27a-3p, and miR-16-5p.

A recent study by Kalofonou et al. found that miR-27a-
3p acts as a modulator for the AR (31). Further research has 
shown that miR-27a-3p plays a crucial role in regulating the 
epithelial-mesenchymal transition, tumor immune system 
response, and chemoresistance (32). Targeting EGFR, which 
is a direct target of miR-27a-3p, could potentially help 
reduce PC (33). Additionally, it has been found that miR-
27a-3p inhibits invasion and proliferation both in vivo and 
in vitro (34). In this regard, our results indicate that miR-
27a-3p down-regulates almost all examined genes in both 
cells.

Our study revealed that the expression of miR-124-3p 

led to the significant suppression of PIK3CA, FGFR4, and 
AR genes in LNCaP cells, while in PC-3 cells, it suppressed 
all genes except FGFR4. MiR-124-3p has been identified 
as a prognostic marker for PC, and its prognostic value is 
independent of other factors (35). Research has suggested 
that the development of  PC is inhibited by miR-124-3p 
through the targeting of AR and p53 (36-38). It is reported 
that PC  cells express less miR-124-3p than normal cells, 
and their onset and development may be associated with 
the decline in miR-124-3p (39). Shi et al. also observed that 
PC often declines miR-124-3p expression (37). Previous 
studies have demonstrated that miR-124-3p overexpression 
altered the cell population’s percentage in human PC cell 
lines. Wu and colleagues’ study reported that miR-124-3p 
overexpression impedes the proliferation and migration of 
PC cells and induces G0/G1 cell cycle arrest, thus inhibiting 
apoptosis (40). Our study suggests that miR-124-3p may 
be capable of slowing down the progression of PC. Hence, 
miR-124-3p overexpression could be considered a potential 
treatment option for PC.

Our research has revealed that miR-16-5p targets almost 
all of the selected genes. Consistent with previous studies, 
miR-16-5p arrested the cell cycle in the G0/G1 phase (41). 
These findings imply that miR-16-5p has a suppressive effect 
on tumors (42). In addition, the majority of Musumeci et 
al.’s 23 PC patients showed down-regulation of miR-16-
5p. Furthermore, it has been reported that various types 
of cancer display down-regulation of this miRNA (43). 
A study discovered that miR16 blocked TGF-β signaling 
pathways in LNCaP cells, which may have an impact on 
the growth and metastasis of PCs (44). Overall, previous 
research suggests that miR-16-5p acts as a tumor suppressor 
in PC, controlling cell invasion, proliferation, and survival, 
which is consistent with our findings (45). 

Since we had experimental limitations, we need to 
uncover how these miRNAs inhibit protein levels in the 
target genes. In addition, more in vivo and animal studies 
are necessary to discover the therapeutic and adverse effects 
of these three miRNAs. In addition, in vivo, delivering 
miRNAs to target sites could minimize toxicity and side 
effects, as well as enhance the efficacy of treatment.

Conclusion
Our study aimed to address the limitations of current PC 

treatments. We identified three microRNAs, namely miR-
124-3p, miR-27a-3p, and miR-16-5p, which can effectively 
target up to six key genes in PC. These candidate genes 
are crucial for PC, and reducing their expression could 

Figure 10. Cell cycle analysis was performed 48 hr post-transfection with miR-124-3p, miR-27a-3p, and miR-16-5p
The proportion of the cell population was compared to controls (mean ± SD from three separate trials; *P<0.05).
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potentially treat the disease. The inhibitory effects of these 
microRNAs were also confirmed in vitro. However, further 
research is required to validate these findings. 

Acknowledgment
The results presented in this paper were part of a student 

thesis. This work was supported by Mashhad University of 
Medical Sciences (Grant numbers: 961465 and 941849), and 
Iran National Science Foundation (INSF), which funded 
this work (Grant No. 97012645), is acknowledged by the 
authors.

Authors’ Contributions
SH AB, A J, and R KO contributed to the study conception 

and/or design. S A and MH JN performed the experiment 
and analysis and interpretation of results. S A and MJ B 
helped with draft manuscript preparation and visualization.  
SH AB, A J, and R KO conducted the critical revision of the 
article. S A, MH JN, MJ B, A J, R KO & SH AB approved 
the final version to be published. SH AB supervised and 
acquired funds.

Conflicts of Interest
No declarations were made.

References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram 
I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN 
estimates of incidence and mortality worldwide for 36 cancers in 
185 countries. CA: CA Cancer J Clin 2021; 71:209-249.
2. Rezaei S, Mahjoubin Tehran M, Sahebkar A, Jalili A, Aghaee‐
Bakhtiari SH. Androgen receptor‐related micro RNAs in prostate 
cancer and their role in antiandrogen drug resistance. J Cell 
Physiol 2020; 235:3222-3234.
3. Leung DK-W, Chiu PK-F, Ng C-F, Teoh JY-C. Novel strategies 
for treating castration-resistant prostate cancer. Biomedicines 
2021; 9:339-Last page.
4. Rezaei S, Jalili A, Aghaee-Bakhtiari SH, Sahebkar A. Decoy 
oligodeoxynucleotide technology: an emerging paradigm for 
breast cancer treatment. Drug Discov. Today 2020; 25:195-200.
5. Mahjoubin-Tehran M, Rezaei S, Jalili A, Sahebkar A, Aghaee-
Bakhtiari SH. A comprehensive review of online resources 
for microRNA–diseases associations: the state of the art. Brief 
Bioinform 2022; 23:bbab381.
6. von Brandenstein M, Bernhart SH, Pansky A, Richter C, Kohl T, 
Deckert M, et al. Beyond the 3′ UTR binding–microRNA-induced 
protein truncation via DNA binding. Oncotarget 2018; 9:32855.
7. Krupa R, Malecki W, Czarny P, Strycharz J, Jablkowski M, Kordek 
R, et al. MicroRNA profile and iron-related gene expression in 
hepatitis C-related hepatocellular carcinoma: a preliminary study. 
Arch Med Sci: AMS 2021; 17:1175-1183.
8. Bajan S, Hutvagner G. RNA-based therapeutics: from antisense 
oligonucleotides to miRNAs. Cells 2020; 9:137-163.
9. Huang H-Y, Lin Y-C-D, Li J, Huang K-Y, Shrestha S, Hong H-C, 
et al. miRTarBase 2020: updates to the experimentally validated 
microRNA–target interaction database. Nucleic Acids Res. 2020; 
48:D148-D154.
10. Monga I, Kumar M. Computational resources for prediction and 
analysis of functional miRNA and their targetome. Computational 
Biology of Non-Coding RNA 2019: pp 215-250.
11. Mostaghel EA. Abiraterone in the treatment of metastatic 
castration-resistant prostate cancer. Cancer Manag Res 2014; 6:39-
51.
12. Sridhar SS, Hotte SJ, Chin JL, Hudes GR, Gregg R, Trachtenberg 
J, et al. A multicenter phase II clinical trial of lapatinib (GW572016) 

in hormonally untreated advanced prostate cancer. Am J Clin 
Oncol 2010; 33:609-613.
13. Sonpavde GP, Pond GR, Fizazi K, de Bono JS, Basch EM, Scher 
HI, et al. Cabozantinib for progressive metastatic castration-
resistant prostate cancer following docetaxel: combined analysis of 
two phase 3 trials. Eur Urol Oncol 2020; 3:540-543.
14. Monk P, Liu G, Stadler WM, Geyer S, Huang Y, Wright J, et 
al. Phase II randomized, double-blind, placebo-controlled study of 
tivantinib in men with asymptomatic or minimally symptomatic 
metastatic castration-resistant prostate cancer (mCRPC). Invest 
New Drugs 2018; 36:919-926.
15. Choi YJ, Kim HS, Park SH, Kim BS, Kim KH, Lee HJ, et al. Phase 
II study of Dovitinib in patients with castration-resistant prostate 
cancer (KCSG-GU11-05). Cancer Res Treat 2018; 50:1252-1259.
16. Rescigno P, de Bono J, Aparicio A, Chowdhury S, Twardowski 
P, Dawson N, et al. Phase I, open-label, dose-finding study of 
GSK2636771, a phosphoinositide 3-kinase (PI3K) β inhibitor, in 
combination with enzalutamide in male subjects with metastatic 
castration-resistant prostate cancer (mCRPC). Ann Oncol 2017; 
28:v273.
17. Nandana S, Chung LW. Prostate cancer progression and 
metastasis: potential regulatory pathways for therapeutic targeting. 
AJCEU 2014; 2:92-101.
18. Shtivelman E, Beer TM, Evans CP. Molecular pathways and 
targets in prostate cancer. Oncotarget 2014; 5:7217-7259.
19. Franz M, Rodriguez H, Lopes C, Zuberi K, Montojo J, Bader 
GD, et al. GeneMANIA update 2018. Nucleic Acids Res 2018; 
46:W60-W64.
20. Maere S, Heymans K, Kuiper M. BiNGO: A Cytoscape plugin to 
assess overrepresentation of gene ontology categories in biological 
networks. Bioinformatics 2005; 21:3448-3449.
21. Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et 
al. DAVID: A web server for functional enrichment analysis and 
functional annotation of gene lists (2021 update). Nucleic Acids 
Res 2022; 50:W216-W221.
22. Huang DW, Sherman BT, Lempicki RA. Systematic and 
integrative analysis of large gene lists using DAVID bioinformatics 
resources. Nat. Protoc. 2009; 4:44-57.
23. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and 
genomes. Nucleic Acids Res. 2000; 28:27-30.
24. Karagkouni D, Paraskevopoulou MD, Chatzopoulos S, 
Vlachos IS, Tastsoglou S, Kanellos I, et al. DIANA-TarBase v8: a 
decade-long collection of experimentally supported miRNA–gene 
interactions. Nucleic Acids Res. 2018; 46:D239-D245.
25. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of 
site accessibility in microRNA target recognitionrget recognition. 
Nat Genet 2007; 39:1278-1284.
26. McGeary SE, Lin KS, Shi CY, Pham TM, Bisaria N, Kelley 
GM, et al. The biochemical basis of microRNA targeting efficacy. 
Science 2019; 366:eaav1741.
27. Liu W, Wang X. Prediction of functional microRNA targets by 
integrative modeling of microRNA binding and target expression 
data. Genome Biol. 2019; 20:1-10.
28. Hsu JB-K, Chiu C-M, Hsu S-D, Huang W-Y, Chien C-H, Lee 
T-Y, et al. miRTar: an integrated system for identifying miRNA-
target interactions in human. BMC bioinformatics 2011; 12:1-12.
29. Mahjoubin-Tehran M, Aghaee-Bakhtiari SH, Sahebkar A, 
Butler AE, Oskuee RK, Jalili A. In silico and in vitro analysis of 
microRNAs with therapeutic potential in atherosclerosis. Sci Rep 
2022; 12:20334.
30. Livak KJ, Schmittgen TD. Analysis of relative gene expression 
data using real-time quantitative PCR and the 2− ΔΔCT method. 
methods 2001; 25:402-408.
31.Kalofonou F, Sita-Lumsden A, Leach D, Fletcher C, Waxman 
J, Bevan CL. MiR-27a-3p: An AR-modulatory microRNA with a 
distinct role in prostate cancer progression and therapy. ASCO; 
2020.



Iran J Basic Med Sci, 2024, Vol. 27, No. 5

Rezaei et al. Bioinformatics prediction of multi-target miRNAs

620

32. Zhang J, Cao Z, Yang G, You L, Zhang T, Zhao Y. MicroRNA-
27a (miR-27a) in solid tmors: a review based on mechanisms and 
clinical observations. Front Oncol 2019; 9:893.
33. Li Y, Li J, Sun X, Chen J, Sun X, Zheng J, et al. MicroRNA‑27a 
functions as a tumor suppressor in renal cell carcinoma by targeting 
epidermal growth factor receptor. Oncol Lett 2016; 11:4217-4223.
34. Jiang Y, Duan Y, Zhou H. MicroRNA-27a directly targets KRAS 
to inhibit cell proliferation in esophageal squamous cell carcinoma. 
Oncol Lett 2015; 9:471-477.
35. Lee HK, Finniss S, Cazacu S, Bucris E, Ziv-Av A, Xiang C, et 
al. Mesenchymal stem cells deliver synthetic microRNA mimics to 
glioma cells and glioma stem cells and inhibit their cell migration 
and self-renewal. Oncotarget 2013; 4:346-361.
36. Jafari Najaf Abadi MH, Khorashadizadeh M, Zarei Jaliani 
H, Jamialahmadi K, Aghaee‐Bakhtiari SH. miR‐27 and miR‐124 
target AR coregulators in prostate cancer: Bioinformatics and in 
vitro analysis. Andrologia 2022:e14497.
37. Shi XB, Xue L, Ma AH, Tepper CG, Gandour-Edwards R, Kung 
HJ, et al. Tumor suppressive miR-124 targets androgen receptor 
and inhibits proliferation of prostate cancer cells. Oncogene 2013; 
32:4130-4138.
38. Shi X-B, Xue L, Ma A-H, Tepper CG, Gandour-Edwards R, Kung 
H-J, et al. Tumor suppressive miR-124 targets androgen receptor 
and inhibits proliferation of prostate cancer cells. Oncogene 2013; 

32:4130-4138.
39. Ged Y, Horgan AM. Management of castrate-resistant prostate 
cancer in older men. J Geriatr Oncol 2016; 7:57-63.
40. Wu Z, Huang W, Chen B, Bai P, Wang X, Xing J. Up-regulation 
of miR-124 inhibits invasion and proliferation of prostate cancer 
cells through mediating JAK-STAT3 signaling pathway. Eur Rev 
Med Pharmacol Sci 2017; 21:2338-2345.
41. Linsley PS, Schelter J, Burchard J, Kibukawa M, Martin MM, 
Bartz SR, et al. Transcripts targeted by the microRNA-16 family 
cooperatively regulate cell cycle progression. Mol Cell Biol. 2007; 
27:2240-2252.
42. miR-15a and miR-16-1 microRNAs are prostate cancer 
suppressors. Nat Clin Pract Urol. 2009; 6:4-4.
43. Aqeilan RI, Calin GA, Croce CM. miR-15a and miR-16-1 in 
cancer: discovery, function and future perspectives. Cell Death 
Differ. 2010; 17:215-220.
44. Jin W, Chen F, Wang K, Song Y, Fei X, Wu B. miR-15a/miR-
16 cluster inhibits invasion of prostate cancer cells by suppressing 
TGF-β signaling pathway. Biomed Pharmacother 2018; 104:637-
644.
45. Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, 
Memeo L, et al. The miR-15a-miR-16-1 cluster controls prostate 
cancer by targeting multiple oncogenic activities. Nat Med 2008; 
14:1271-1277.


