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Diabetic peripheral neuropathy (DPN) poses a significant threat, affecting half of the global 
diabetic population and leading to severe complications, including pain, impaired mobility, and 
potential amputation. The delayed manifestation of diabetic neuropathy (DN) makes early diagnosis 
challenging, contributing to its debilitating impact on individuals with diabetes mellitus (DM). 
This review examines the multifaceted nature of DPN, focusing on the intricate interplay between 
oxidative stress, metabolic pathways, and the resulting neuronal damage. It delves into the challenges 
of diagnosing DN, emphasizing the critical role played by hyperglycemia in triggering these cascading 
effects. Furthermore, the study explores the limitations of current neuropathic pain drugs, prompting 
an investigation into a myriad of pharmaceutical agents tested in both human and animal trials over 
the past decade. The methodology scrutinizes these agents for their potential to provide symptomatic 
relief for DPN. The investigation reveals promising results from various pharmaceutical agents tested 
for DPN relief, showcasing their efficacy in ameliorating symptoms. However, a notable gap persists 
in addressing the underlying problem of DPN. The results underscore the complexity of DPN and 
the challenges in developing therapies that go beyond symptomatic relief. Despite advancements in 
treating DPN symptoms, there remains a scarcity of options addressing the underlying problem. This 
review consolidates the state-of-the-art drugs designed to combat DPN, highlighting their efficacy in 
alleviating symptoms. Additionally, it emphasizes the need for a deeper understanding of the diverse 
processes and pathways involved in DPN pathogenesis.
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Introduction
Diabetic peripheral neuropathy (DPN) is a common 

and disabling chronic complication of diabetes, with high 
prevalence in type II DM patients, with about a quarter 
of them experiencing pain (1). DPN is tightly linked with 
increased mortality and leads to morbidity, and mostly leads 
to two main clinical concerns: diabetic foot ulceration and 
neuropathic pain (2). A complicated interplay of risk factors 
and patient behavior leads to diabetic foot ulceration, but 
sensory loss related to DPN is frequently the underlying 
cause (3). Furthermore, painful neuropathic symptoms affect 
up to 50% of DPN patients (4). These painful sensations are 
commonly harsh and usually lead to psychological events, 
the most important of which are depression, anxiety, and 
sleep disorders, as well as impairment of quality of life 
(QOL)(2). 

Furthermore, diabetes-related lower-limb problems 
result in distressing and serious clinical consequences such 
as leg amputation and ultimately death (5). Unfortunately, 
DPN is generally often diagnosed after permanent nerve 
damage has already taken place and its initial manifestation 
could be a diabetic foot ulcer. Typically, neuropathy is 
nerve damage that proceeds proximally, beginning with 
the longest nerves that innervate the limbs appearing as 
numbness, tingling, discomfort, and/or weakness beginning 
in the distal lower limbs (6).

Diabetes mellitus (DM) is known as the most important 
metabolic risk factor for neuropathy, however, treatment of 
hyperglycemia is not enough to avoid neuropathy in those 

with type II DM (7). There is strong evidence that type I DM 
patients with strict glycemic management have a lower risk 
of developing DPN. Nevertheless, in DPN, symptomatic 
treatments are frequently insufficient and neither glucose 
control nor pharmacological treatments are successful. The 
prevalence of DM, DPN, and foot amputations is increasing 
at an alarming rate. The condition must be diagnosed early 
and accurately so that measures may be implemented to 
reduce the risk of diabetic foot complications. Metabolic 
syndrome, which is tightly related to obesity and insulin 
resistance, has been implicated in the development of 
peripheral neuropathy independent of hyperglycemia (6, 
8). However, Stino and Smith suggested that many patients 
diagnosed with idiopathic peripheral neuropathy may have 
pre-diabetic neuropathy (8).

Classification
Diabetic neuropathy is divided into diffuse and focal 

neuropathies. Diffuse neuropathies are subdivided 
into DPN and diabetic autonomic neuropathy.   Nerves 
in the extremities are typically affected by peripheral 
neuropathies, which affect both small and large nerve 
fibers. Damage to the large nerve fibers restricts the body 
position and movement, whereas demyelination of smaller 
nerve fibers in the peripheral region causes neuropathic 
pain dysesthesias and paresthesia (9). DPN can take several 
different forms, with distal symmetry diabetic sensorimotor 
polyneuropathy being the most prevalent type. Seventy to 
ninety percent of all DN instances are caused by diabetic 
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sensorimotor polyneuropathy, which can be painful DPN 
(pDPN). Burning, stabbing, numbing, or deep aching 
pains are experienced in the periphery of pDPN due to the 
involvement of many neurons (10). Unfortunately, pDPN is 
the most common subtype of DN. It is described as “pain 
resulting from somatosensory system damage attributable 
to DM. “ The other subtypes are diabetic lumbosacral 
radiculoplexus neuropathy, mononeuropathy, small fiber 
neuropathy, and mononeuritis multiplex neuropathy (11).

Symptoms
Diabetic peripheral neuropathy has a variety of clinical 

symptoms. Both negative and positive sensory symptoms are 
possible. Numbness or “deadness” are negative symptoms 
that patients may compare to the sensation of wearing gloves 
or socks. Aching, tingling, burning, an “electric shock” 
sensation, and hypersensitivity to touch are examples of 
positive sensory sensations (12). The potentially severe pain 
associated with DPN probably leads to insomnia, anxiety, 
depression, and activity impairments, in addition to a 
reduced QOL (13). DPN motor symptoms can be proximal 
or distal, localized or diffused. Motor symptoms in the hands 
may include a lack of coordination. Patients with motor 
symptoms may also experience difficulties rising from a 
prone position, limb weakness with repeated tripping or toe 
scraping, with weak knees during stair climbing (14). 

Pathophysiology
The development of DPN often involves both vascular 

and metabolic factors. Patients with DPN frequently 
experience nerve fiber loss brought on by poor blood 
flow, which reduces nerve sensitivity and, as a result, pain 
perception.  Compared to healthy people, these patients 
may also experience lower oxygen tension, vascular 
malformations, and hypertrophy.  These effects highlight 
the relationship between vascular and neurostructural 
alterations in DPN patients (15). Hyperglycemia as well 
as dyslipidemia, which are the major manifestations 
present in diabetic patients, usually involve multiple cells 
in the peripheral nervous system, comprising neuronal 
axons, dorsal root ganglion (DRG) neurons, and Schwann 
cells. Disturbance in the neuronal support including the 
Schwann cells and the vascular system leads to neuropathy, 

concurrently with the direct effects of hyperglycemia on 
neurons (7) as presented in Figure 1.

Furthermore, reactive oxygen species (ROS) 
accumulation, ATP production loss, mitochondrial 
dysfunction, endoplasmic reticulum stress pathway 
activation, and advanced glycation end products (AGEs) 
development are among the impacts of hyperglycemia 
on these cells. Hyperglycemia has a significant impact on 
both vascular and neural tissues. ROS levels elevate even 
more, which in turn encourages endoplasmic reticulum 
stress, DNA damage, apoptosis, and the activation of pro-
inflammatory signaling-all of which are mechanisms 
that eventually result in nerve injury (16). The sensory 
sensitivity and demyelination of peripheral neurons are 
produced by DM-induced oxidative stress. According to 
a rat study, metabolic flow is the main factor contributing 
to demyelination and the development of peripheral 
neuropathy (17). 

Nevertheless, the pathophysiology of DPN is still not fully 
understood. Figure 2 shows several molecular pathways 
including the activation of the polyol pathway, hexosamine 
pathway, poly ADP-ribose polymerase (PARPs) pathways, 
oxidative stress, inflammation, protein kinase C activation, 
and the creation of AGEs, which are associated with 
pathogenic neural alterations and functional nerve damage 

Figure 1. Hyperglycemia-driven neuronal damage and Schwann cell stress

Figure 2. Pathways involved in diabetic neuropathy pathogenesis
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(18). Recent advances indicate that the accumulation 
of these damaging events may result in neuronal death. 
Furthermore, mechanistic and pathological findings are 
unable to differentiate between painful- and painless-DPN 
(19).

Management overview
Goals of therapy

Consequently, there are no pharmacotherapies that 
can effectively modify the disease and treat the condition. 
Controlling risk factors for DPN and preventing 
and managing its consequences is the cornerstone of 
contemporary management. Similarly, although there are 
some variations between DPN that are painless and painful 
DPN, the precise mechanisms that cause the disease remain 
unknown. Painful DPN (pDPN) is not frequently treated 
with disease-modifying therapies; instead, treatment is 
mostly symptomatic as they are ineffective and poorly 
tolerated (20). Recent breakthroughs in the understanding 
of the pathophysiology of DPN have played a major role in 
the development of novel therapeutic agents, though still in 
pre-clinical trials, that may be of great use in clinical practice 
in the future.  These potential therapeutic agents include 
signaling molecule inhibitors or suppressor signal activators 
as indicated in the pathophysiology of DPN, which has been 
diagrammatically presented in Figure 3. Treatment goals 
in DPN patients include modulation of these metabolic 
pathways and pain modulation, as well as enhanced glucose 
control. For DPN patients, several guidelines have advocated 
the use of pharmacological therapies, both on and off-label, 
to reduce pain and thus enhance QOL.

Pharmacological agents
Novel therapeutic agents targeting metabolic pathways of 
DPN
Inhibition of polyol pathway

Aldose reductase (AR) along with sorbitol dehydrogenase 
are the two primary enzymes in the polyol pathway, and 
they are in charge of the metabolism of excess glucose 

(21). This route consumes extra glucose in a hyperglycemic 
condition, increasing NADPH levels and creating reductive 
stress (22)(Figure 3). This stress as well as the mitochondrial 
dysfunction impairs the activity of the Schwann cells, which 
compromises myelination, results in aberrant neurotrophic 
support for the axon, and ultimately results in a loss of 
axon function (23). Moreover, the structural degradation 
of nerves effects on axon-glia dysfunction and lower nerve 
conduction velocity (NCV) are also detected. It also causes 
the down-regulation of the glutathione reduction pathway, 
which builds up ROS and thus aggravates nerve injury by 
causing NO-mediated vasodilation (24). 

Epalrestat, a carboxylic derivative, is a reversible aldose 
reductase inhibitor (ARI) thus inhibiting the polyol pathway 
which has been verified to be effective against DPN. Clinical 
studies revealed marked amelioration in the spontaneous 
pain in the distal limbs of DM patients (25). Epalrestat 
has been found to be beneficial in protecting against nerve 
damage induced by hyperglycemia, with an acceptable 
safety profile (21). However, Chalk et al. demonstrated that 
Epalrestat induces hepatic oxidative stress and inflammation 
and stimulates liver fibrogenesis. Therefore, caution should 
be exercised during the therapy (26). 

Although other ARIs, viz., fidarestat, ponalrestat, 
zopolrestat, and lidorestat, have been used to treat diabetic 
complications, their side effects prevent them from having 
the desired results. In addition, some other ARIs such as 
sorbinil (27) and ranirestat (28) have been advanced into 
the late stage of clinical trials and found to be safe for human 
use due to the positive results in improving NCV, sensory 
perception, and nerve fiber density in the patient suffering 
from diabetic polyneuropathy. Although several ARIs have 
been approved for use in DPN in Japan and other countries, 
most regulatory agencies have not approved any specific 
ARIs to alter the course of DPN (29)(Figure 4).

Hexosamine pathway blockage
In type II DM, insulin resistance and hyperinsulinemia 

are tightly related to glutamine fructose-6-phosphate 

Figure 3. Proposed metabolic targets for the treatment strategies of diabetic peripheral neuropathy (DPN)
Schematic diagram presenting the involvement of metabolic pathways; polyol, hexosamine, PARP, AGEs, and PKC pathways as well as inflammation and oxidative stress in the 
pathogenesis of DPN as a novel therapeutic target for treatment
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amidotransferase.Uridine-5-diphosphate-N-acetyl  
glucosamine, the end-product of this pathway, causes 
gene transcription factor to elevate which stimulates the 
transforming growth factor beta (TGF-β) and plasminogen 
activator inhibitor-1 (PAI-1) responsible for injuring the 
endothelial cells and stimulating smooth muscle cell division 
(Figure 3). This further results in microvascular problems, 
including DN, which harms the blood vessels that supply 
the nerves with blood (30, 31).

Benfotiamine, a lipid-soluble derivate of thiamine 
(vitamin B1) with a high bioavailability, has shown a great 
reduction in the AGEs by hindering glucose metabolism 
through hexosamine pathway blockage (32). In 2022, a 
study was conducted to evaluate the efficacy and safety of 
benfotiamine in DPN patients. A benfotiamine dose of 
300 mg two times a day was accompanied by neuropathic 
symptom improvement after 5 weeks with no severe 
adverse events (33)(Figure 4). Moreover, it was found that 
co-administration of benfotiamine and alpha lipoic acid, 
an antioxidant, exhibited greater effectiveness than the 
monotherapy of the drugs (34).

Inhibiting protein kinase C pathway
Several studies have confirmed the involvement of 

protein kinase C (PKC) in DN (35). Glyceraldehyde-3-
phosphate is transformed into dihydroxyacetone as part of 
the PKC pathway, which is then transformed into glycerol-
3-phosphate and finally into diacylglycerol (DAG) (Figure 
3). DAG and AGEs up-regulate PKC, causing normalization 
of sciatic NCV and nerve blood flow via down-regulation of 
Na+/K+ ATPase (6). 

By down-regulating the PKC pathway in diabetic rats, 
the hyperexcitability of C-fiber was reduced (36). Berberine 
is a plant alkaloid that was found to ameliorate DPN in 
rats by modulating PKC as well as inhibiting TNF-α (37). 
Ruboxistaurin, a PKC inhibitor, has been extensively studied 
in DPN with promising results (38). Moreover, ruboxistaurin 
has demonstrated in vitro and in vivo improvement in blood 
flow related to hyperglycemia and has potential use as a 
therapy for diabetic retinopathy (39)(Figure 4).

Poly ADP-ribose polymerase (PARPs) deactivation
Under normal conditions, poly ADP-ribose polymerase 

(PARPs) is involved in DNA repair and apoptosis induction. 
In DM, accumulation of PARPs causes tissue damage 
(Figure 3). Hyperglycemia leads to accumulation of ROS 
and reactive nitrogen species, which breaks DNA strands. 
The resulting overexpression of PARPs results in damaging 
the blood arteries that supply the nerves (40). Additionally, 
PARP activation is linked to energy loss processes in 
diabetic animals as well as nerve conduction deficits in 
sensory and motor nerves, dysfunction of the neurovascular 
system, gene expression, altered transcriptional control, and 
dysfunction of the neurovascular system (41). 

Interestingly, a PARPs inhibitor, 1,5-isoquinolinediol 
alleviates experimental diabetic sensory neuropathy (42). 
Similarly, GPI-15427, which is another PARP inhibitor, 
resulted in alleviation of DPN symptoms as well as the 
reduction of intra-epidermal nerve fiber degeneration after 
oral administration in rodent models of progressive type I 
DM. The outcome of the study has shown that there is a 
great need for the development of potent and low-toxicity 
PARPs (43)(Figure 4).

Advanced glycation end products reduction
Advanced glycation end products (AGEs) along with 

their receptor for advanced glycation end products (RAGE) 
accumulate as a result of non-enzymatic reactions involving 
glucose and other saccharides that change the composition 
and functionality of proteins and lipids (26)(Figure 3). 
Much research on AGEs has demonstrated that they harm 
blood vessels. Patients with type I DM were reported to have 
elevated AGE/RAGE levels (18). It has been established 
that endothelium and Schwann cells contain AGE/RAGE. 
By elevating the p65 subunit of NF-kB, which causes 
inflammation and damage in myelinated neurons, high 
levels of AGEs cause DN. Additionally, AGEs are linked to 
the triggering of Schwann cell death (44, 45). Therefore, in 
an attempt to alleviate DPN, recent studies have targeted 
AGEs. Xu et al. have shown that interleukin 10 (IL-10) 
which is an anti-inflammatory cytokine was reported to 

Figure 4. Proposed novel therapeutic agents targeting different metabolic pathways of diabetic peripheral neuropathy (DPN)
Schematic diagram presenting the therapeutic agents targeting polyol, hexosamine, PARP, AGEs, and PKC pathways as well as inflammation and oxidative stress in the pathogenesis 
of DPN
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have a beneficial effect on the Schwann cells against AGE 
via regulating the NF-κB pathway (46). 

Furthermore, researchers have reported that treatment of 
diabetic rats with pyridoxamine temporarily relieved their 
DPN symptoms via its ability to block the RAGE- NF-κB/
ERK signaling pathway (47). Similarly, it has been observed 
that co-administration of AGEs and 1,25-(OH)2D3, active 
form of vitamin D3, to Schwann cells leads to suppression 
of apoptosis, induced by AGEs via the NF-κB pathway 
(44, 48)(Figure 4). Other studies have also reported that 
DPN symptoms are relieved by injection of vitamin D 
intramuscularly (49). Therefore, by counteracting the 
detrimental consequences of AGEs, vitamin D treatment 
boosts the neuroprotective effect of Schwann cells (49). 

Oxidative stress amelioration
Oxidative stress is a crucial component of DN, which is 

primarily brought on by free radicals produced when excess 
glucose is diverted to the polyol pathway, hexosamine 
pathway, PKC pathway, and AGE/RAGE interaction (48). 
These elements work together to intensify intracellular 
imbalanced redox homeostasis, and abnormal protein, lipid, 
and DNA alterations, which cause mitochondrial damage 
and excessive ROS generation (Figure 3). Peripheral 
nervous system damage results from the loss of sensory 
neurons, myelinated axons, and Schwann cells in the DRG. 
Additionally, insufficient mitochondrial energy production 
worsens axonal damage in DN by impairing information 
transmission down the axons. While NF-κB is associated 
with the induction of an inflammatory response, Nrf2 is a 
transcription factor that is activated by the redox status of 
the environment and controls the antioxidant system (50-
52). The control of both of these factors is coordinated in 
healthy cells to keep the redox balance, but in DN, this 
balance is disrupted (53).

In the past few decades, numerous agents targeting 
oxidative-nitrosative stress have been evaluated in an 
attempt to overcome DPN. The most important of 
which is alpha lipoic acid, a widely tested drug for DN, 
which has been shown to elevate the vital endogenous 
antioxidant, reduced glutathione (54). In clinical research, 
it was discovered that 600 mg of alpha lipoic acid improved 
neuropathic abnormalities such as hyperalgesia, numbness, 
and paresthesia (55). Furthermore, several mechanisms, 
including antioxidant, anti-apoptotic, and cytoprotective 
activities, have been shown to contribute to the relief of 
DPN symptoms by acetyl L-carnitine (56).

In diabetic rats, tocotrienol and insulin were found to 
reverse DPN by regulating oxidative-nitrosative stress, 
caspase 3, and pro-inflammatory cytokines (57). Moreover, 
berberine has been proposed to reduce the boosted 
oxidative stress and inflammation in the neurons, hence 
reducing DM and DPN (58). Likewise, Nerunjil (Tribulus 
terrestris) has been reported to improve the pain threshold 
in DPN via modulating oxidative stress and thus the 
inflammatory responses (59). On the other hand, fisetin is 
a neuroprotective in experimental diabetic neuropathy via 
modulating both Nrf2 and NF-κB pathways (60). 

In addition, Rosmarinus officinalis L. reduces caspase 
and the Bax/Bcl-2 ratio, important signaling molecules 
that trigger apoptosis, and has anti-nociceptive and 
neuroprotective effects in diabetic rats via radical-scavenging 
properties. In STZ-induced diabetic rats, a significant effect 

was detected as decreased thermal hyperalgesia (61). In 
diabetic animal models, the use of kaempferol, derived 
from the Eruca sativa plant, ameliorates DM-induced nerve 
damage by attenuating oxidative stress (62)(Figure 4).

Inflammation regulation
Proinflammatory cytokines play a crucial role in the 

pathogenic signals of DN. In peripheral nerves and the 
spinal cord of sedentary STZ-induced diabetic rats, Yu-
Wen et al. found noticeably higher levels of IL-6 and 
TNF-α and how these cytokines contribute to DPN (63). 
It is widely known that TNF-α is inversely correlated with 
the intensity of pain (64, 65)(Figure 3). Patients with DPN 
showed an elevated level of IL-10 due to the compensatory 
mechanism being activated (66). Minocycline reduces DPN 
in STZ-treated rats and enhances the analgesic properties 
of morphine via increasing the production of IL-10, IL-2, 
and IL-1α, thus preventing pancreatic beta cell necrosis and 
inhibiting PARPs (67, 68). Another potent possibility for a 
medication that reverses touch-triggered allodynia is the 
curcumin derivative J147, a novel derivative of curcumin for 
the treatment of DN, boosts the AMP kinase pathway and 
suppresses TNF-α and other neuroinflammatory indicators 
that cause neurodegeneration (69). Furthermore, a bioactive 
fraction of Annona reticulata bark or Ziziphus jujuba  root 
bark attenuates DN by blocking the NF-κB inflammatory 
cascade (70). Likewise, researchers have reported the NF-
κB cascade and transient potential vanilloid receptor type 1 
channel (TRPV1) expression in diabetic rats are modulated 
by alpha lipoic acid, which is also reported to ameliorate 
DPN (71). By modulating the transcription factor Nrf2 and 
NF-κB regulation, fisetin has been demonstrated to impart 
neuroprotection in experimental diabetic neuropathy (72).

It has been also observed that COX-2, which is normally 
dormant, becomes active in response to hyperglycemia, 
oxidative stress, PKC activation, and inflammatory 
cytokines (73). The selective COX-2 antagonist celecoxib 
is well known for reducing allodynia and hyperalgesia in 
diabetic rats via regulating opioid receptors or voltage-
gated sodium and potassium ion channels. Proglumide, 
a nonselective cholecystokinin inhibitor receptor, was 
combined with celecoxib and this had a considerable 
positive impact on the diabetic rats’ painful sensation (74). 
Another COX-2 antagonist, meloxicam, is also advocated for 
treating allodynia in diabetic animals (75). Likewise, COX-
2 inhibitors (SC-58125 and NS-398) when administered 
intrathecally produced a marked anti-hyperalgesic effect in 
diabetic animals (76)(Figure 4).

Mitogen-activated protein kinases inhibitors
C-Jun N-terminal kinase (JNK), extracellular signal-

related kinase, and p38 are the three types of mitogen-
activated kinases that are each involved in signal 
transduction. While JNK and p38 promote neuronal death, 
ERK domains 1 and 2 are linked to brain survival. These 
three are up-regulated, which causes neuropathic pain. 
In diabetic rats, JNK down-regulation leads to neural 
regeneration while JNK overexpression phosphorylates 
neurofilaments (41). It has been demonstrated that MAPK 
inhibitor: U0126 and p38 MAPK inhibitors: SB203580 and 
SD-282 as well as JNK inhibitor: SP600125 have major 
roles in repairing mechanical allodynia and hyperalgesia 
in animal models of DM (77, 78). Additionally, it was 
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noted that in the experimental model of DN in rats, the 
neuroprotective action of berberine is mediated by the 
MAPK signaling system (79) as well as its ability to modify 
PKC and inhibit TNF-α in DPN (37).

Pyruvate dehydrogenase kinases (PDKs) inhibition
In glycolysis, glucose is converted to pyruvate, which is 

subsequently transported into the mitochondria where it 
undergoes oxidative decarboxylation to create acetyl CoA. 
This process is regulated by the mitochondrial enzyme 
pyruvate dehydrogenase complex (PDC). The PDC may be 
phosphorylated by pyruvate dehydrogenase kinases (PDKs), 
thus inhibiting it and the excess pyruvate is converted to lactic 
acid (80). The increase in lactic acid caused by stimulation 
of PDKs interposes the pathogenesis of DPN and ultimately 
leads to central sensitization and pain hypersensitivity. It 
has been demonstrated that genetically eliminating PDK2 
and PDK4 reduced DPN in streptozotocin (STZ)-induced 
diabetic rats and the researchers concluded that the glucose-
PDK2/4-PDC-lactate pathway in the DRG may be a possible 
pharmaceutical therapeutic target for DPN (81). In 2022, it 
has been proposed that dichloroacetate, a PDK inhibitor, 
ameliorates type II DM (82) which suggested being a 
potential treatment for DPN.

Long non-protein coding RNA
The long non-protein coding RNA NONRATT021972 has 

been shown to be elevated in DPN as well as in the etiology 
of nervous system illnesses. BzATP-activated currents are 
noticeably higher than in control rats in the DRG SGCs of 
diabetic rats. When the impact of small interfering RNA 
(siRNA) for NONRATT021972 was evaluated in 2016, 
it was discovered that injection of NONRATT021972 
siRNA intravenously down-regulated P2X7, TNF-α and 
glial fibrillary acidic protein (GFAP). Furthermore, the 
NONRATT021972 siRNA therapy decreased the ATP-
activated currents and the DN pain feelings that followed 
(83). In 2020, uc.48+ siRNA and BC168687 siRNA were 
reported to decrease the DPN symptoms by reducing the 
pro-inflammatory cytokine levels (84).

Micro-RNAs and stem cell therapy
It is known that micro-RNA-146a controls a number 

of immunological disorders. MiR-146a is markedly down-
regulated in type II diabetic mice, and systemic injection of 
miR-146a to these animals raises miR-146a levels in plasma 
and sciatic nerve tissue. In the sciatic nerve tissue, miR146a 
considerably enhanced the motor and sensory NCVs and 
regional blood flow by suppressing several pro-inflammatory 
genes and downstream cytokines (85). Exosomes produced 
by mesenchymal stromal cells were also demonstrated 
to improve NCV in DPN and reduce neurovascular 
dysfunction in rats (86). Mechanistic stimulation testing and 
radiant heat assays were dramatically improved, along with 
a reduction in the serum levels of various pro-inflammatory 
cytokines when mesenchymal stem cells were treated with 
anti-inflammatory activities in diabetic mice (87).

Novel therapeutic agents targeting the neuropathic pain 
of DPN

Although the pathophysiology of the neuropathic pain 
associated with DPN is not completely understood, it is 
likely caused by both central and peripheral pathways, 

which makes the treatment of pDPN more challenging (88). 
Typically, a treatment is considered effective in clinical trials 
when there is a reduction in pain level by a minimum of 
50% along with some additional positive benefits on sleep, 
exhaustion, depression, and QOL (88, 89). Pregabalin 
and duloxetine, which are pharmacological drugs, are 
recognized by the US Food and Drug Administration 
(FDA) as the first-line treatments for pain associated with 
DPN (90). 

Various other agents are in clinical use for symptomatic 
relief, including antidepressants, anti-convulsants, opioids 
as well as topical agents, or a combination of all these classes 
of drugs (90). In randomized controlled trials, it has been 
demonstrated that these medications, either alone or in 
combination, diminish neuropathic pain in comparison 
to placebo; nonetheless, the majority of patients still get 
insufficient pain relief (91). Therefore, there is a great urge 
for additional therapeutic agents to defeat the neuropathic 
pain associated with DPN.

Antidepressants
Studies have proposed that DPN is accompanied 

by an unbalanced neuronal release of NE and 5-HT 
(92).  Consequently, serotonin-norepinephrine reuptake 
inhibitors (SNRIs) are a promising class of antidepressants 
for DPN treatment (93). Tricyclic antidepressants (TCAs), 
such as amitriptyline and nortriptyline, have also exhibited 
positive results in DPN patients (94)  and are considered 
a first-line therapy for DPN by many clinicians. However, 
TCAs use is constrained due to their side effects’ prevalence 
and severity, which might involve drowsiness, cardiac 
arrhythmias, and postural hypotension. Typically, SNRIs are 
more well-tolerated than TCAs (95). 

Dual serotonin and norepinephrine reuptake inhibitors 
(SNRI) such as duloxetine and venlafaxine have more 
balanced nor-adrenergic to serotonergic effects than TCA 
and SSRI. Duloxetine is considered the first-line drug for 
DPN (96). Duloxetine, an SNRI, has been recognized to be 
the first FDA-approved drug for the treatment of the DPN 
associated neuropathic pain (97). Although the precise 
mechanism underlying the drug’s ability to reduce central 
pain is unclear, it is thought to be connected to serotonergic 
and noradrenergic potentiation in the central nervous 
system (CNS). It is well known that blocking NE reuptake 
in particular reduces neuropathic pain (98). There were no 
substantial differences in the 24-hour pain severity scale 
between duloxetine and pregabalin in randomized, double-
blind, placebo-controlled studies evaluating DPN patients 
(99). Kaur et al. compared duloxetine with amitriptyline in 
treating DPN patients in a randomized study, where both 
treatments achieved a marked improvement in pain (100). 

Ammoxetine is a novel, potent next-generation 
duloxetine analog. It is now being researched in animal 
models of different types of pain. Ammoxetine has been 
demonstrated to reduce microglial activation and block 
the release of p-p38 and JNK pathways, which are known 
to cause inflammation, neuropathic pain, and fibromyalgia-
related pain (101). 

Moreover, desvenlafaxine, a more recent SNRI congener 
that is considered to be the most potent metabolite of the 
parent molecule venlafaxine, has recently been studied in 
patients with pDPN. Studies have shown that desvenlafaxine 
at daily doses of 200 and 400 mg is efficient in reducing pain 
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and enhancing activity in a Phase III clinical trial (102). 
Recently, LPM580098, 1-[2-(dimethylamino)-1-(4-

phenoxyphenyl) ethyl] cyclohexanol, is a novel triple 
reuptake inhibitor of 5-HT, NE as well as dopamine has 
shown ameliorative properties against neuropathic pain. It 
has been demonstrated that LPM580098 effectively reduces 
neuropathic pain without causing unwanted drowsiness or 
somnolence (103). 

On the other hand, TCAs have limited therapeutic efficacy 
for neuropathic pain, yet used. TCAs such as amitriptyline 
are believed to inhibit the reuptake of 5-HT and NE (95) 
as well as antagonize the  N-methyl-d-aspartate (NMDA) 
receptors, thus reducing hyperalgesia and allodynia (104). 
Amitriptyline has been used as a first-line therapy for 
DPN since 1977 (105). However, the use of amitriptyline 
is limited due to its potential major side effects, such as 
cardiac arrhythmias and orthostatic hypotension, related 
to its anticholinergic effects. Moreover, amitriptyline 
also did not succeed in demonstrating superiority over 
pregabalin as well as gabapentin in relieving DPN pain 
(106). Similarly, desipramine has an analgesic mechanism 
of action same as amitriptyline in DPN patients, 5-HT/
NE reuptake inhibition, and NMDA receptor blockage 
(108). Desipramine, in contrast to amitriptyline, has a low 
affinity for muscarinic (cholinergic) receptors (107) and is 
hence linked to less severe anticholinergic side effects (95). 

Desipramine provided patients with DPN substantially 
more pain alleviation than a placebo (12).

Anticonvulsants
Anticonvulsants include two general groups: traditional 

agents such as carbamazepine and valproate sodium along 
with newer agents such as calcium channel  α2-δ  ligands 
such as pregabalin and gabapentin (93). Since the 1960s, 
conventional anticonvulsants have been utilized to alleviate 
neuropathy (108).

Pregabalin was the second medication to receive FDA 
approval in December 2004 for the treatment of DPN 
neuropathic pain, three months after duloxetine received 
approval for the same indication. Pregabalin is suggested as 
the first-line treatment for DPN in the American Academy 
of Neurology (AAN) guidelines due to its efficiency in 
lowering pain and pain-related sleep disruption (109). 
Pregabalin is a structure related to the primary inhibitory 
neurotransmitter in the CNS: gamma-aminobutyric acid 
(GABA)(110). The binding of the α2-δ subunit of voltage-
gated calcium channels is tightly correlated to its anti-
nociceptive activity. Additionally, it has been demonstrated 
that pregabalin significantly decreased DPN-related 
discomfort and pain-related sleep disruption. Preclinical 
data supported a potential mechanism of action that 
would involve lowering abnormal neuronal excitability by 
reducing GABA neurotransmitter release (111). It is used as 
an adjuvant therapy for these patients (112). 

Gabapentin is not yet approved by the FDA for the 
treatment of DPN sufferers (113). However, as a less 
expensive alternative to pregabalin, published treatment 
guidelines have encouraged the usage of gabapentin for 
this indication (114, 115). Like pregabalin, gabapentin 
is structurally related to GABA and shares an identical 
therapeutic target (113). Animal studies indicate that this 
drug’s pain-modulating properties may be related to the 
release of GABA in spinal cord pathways that regulate pain 

perception (116). A study assessed gabapentin in early 
research for the symptomatic treatment of DPN patients and 
found that patients receiving gabapentin experienced much 
less pain than those receiving a placebo (117). Gabapentin 
was beneficial in treating a subgroup of individuals with 
DPN, as evidenced by a decrease in pain intensity (118). 
Compared to other drugs, gabapentin showed superiority 
over placebo in reduction in pain, according to a recently 
published meta-analysis conducted in 2021 (119).

Opioids
This class comprises the most promising novel agents 

that have recently gained great acceptance for neuropathic 
pain, according to Rastogi and Jude (120). However, the 
opioids used for the treatment of DPN are controversial 
(121) as they may lead to tolerance, frequent dose escalation, 
along with hyperalgesia as a result of chronic use (122). 
However, the therapeutic use of these medications should 
be reserved for DPN patients who cannot attain pain relief 
with other therapies. Consensus guidelines have indicated 
that continuous opioid medication may be advantageous 
for DPN patients, despite concerns regarding dependence 
(123).

Oxycodone is an opioid analgesic drug that is a substance 
listed on Schedule II, and its abuse potential is comparable 
to that of other opioid agonists. Oxycodone’s analgesic 
effect is thought to be involved in CNS opioid receptors for 
endogenous substances with opioid-like action that have 
been found to exist in the brain and spinal cord (124). It has 
been evaluated that oxycodone-controlled release as a DPN 
therapy provided a marked analgesic effect with opioid-
related adverse events (125). However, Gaskell et al. have 
shown that there is no convincing evidence that oxycodone-
controlled release is effective in treating DPN patients (118). 
It is therefore best reserved as add-on therapy for selective 
patients who are not at risk of opioid dependence and abuse 
(126).

Morphine sulfate is a strong, relatively selective agonist 
of the μ-opioid receptor. It interacts with one or more types 
of opioid receptors to provide its main therapeutic effect, 
which is analgesia in DPN patients (127). Gilron et al. have 
compared the effectiveness of combining sustained-release 
morphine along with gabapentin in patients with DPN. The 
outcome of this study showed that the mean daily pain of 
patients receiving the gabapentin/morphine combination is 
less than those receiving each drug alone (128, 129).

Opioid-like analgesics
Tapentadol, a synthetic μ-opioid receptor agonist and 

NE reuptake inhibitor, received FDA approval in July 2012 
for DPN treatment. The third drug to have this indication 
approved after duloxetine and pregabalin. Tapentadol is 
suggested for individuals with pDPN that is severe enough 
to need a 24-hour opioid medication and for whom 
other treatment choices are insufficient (130). In clinical 
investigations on DPN patients, the most frequent adverse 
effects of tapentadol are headache, nausea, dizziness, 
sleepiness, constipation, and vomiting. Because tapentadol 
has a dual opioid/NE mode of action, its gastrointestinal 
side effects are typically less severe than those of ordinary 
opioids (12). This may make it a better option for chronic 
pain management. However, due to its limited effectiveness 
in reducing pain, safety issues, and the high risk of addiction, 
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new guidelines do not recommend it as a first or second-line 
therapy (131).

Tramadol is a synthetic, centrally-acting analgesic in 
a sustained-release formulation. The parent drug and its 
metabolite appear to bind to μ-opioid receptors and there 
is also a mild suppression of both NE and 5-HT reuptake, 
which together appear to be at least two complementary 
mechanisms underlying its analgesic effect. Although it 
is not specifically approved for DPN patients, tramadol 
is prescribed for those with moderately to moderately 
severe chronic pain who require ongoing care for a 
significant amount of time (132). According to the report 
of the AAN Guidelines Committee 2022, tramadol “may be 
considered” for DPN treatment, but there is no sufficient 
information to favor it over oxycodone, morphine sulfate, 
or dextromethorphan (109). Moreover, the effectiveness 
and safety of taking tramadol and acetaminophen together 
for DPN were assessed. The combination reduced DPN 
symptoms including pain, sleep quality, mood, anxiety, and 
QOL; nonetheless, the trial was stopped early due to the 
unfavorable results (133). 

Dextromethorphan is a synthetic NMDA receptor 
antagonist indicated as an antitussive and expectorant (134). 
It has been clinically confirmed that dextromethorphan is 
effective at managing DPN due to its capacity to attach to 
NMDA receptors in the spinal cord and CNS and so prevent 
the production of central acute and chronic pain sensations 
(135). It has few side effects if used at the recommended 
doses (134). According to the report of the AAN Guidelines 
Committee 2022, dextromethorphan is “probably 
beneficial” in reducing DPN pain, however, there is not 
enough evidence to support its use as a treatment option 
above oxycodone, morphine sulfate, or tramadol (109).

Cannabinoid receptor agonists
Cannabinoid receptor agonists are considered to be 

a unique group for treating DPN. Nabilone, a synthetic 
cannabinoid (CB1 predominate) receptor agonist, 
effectively reduced DPN symptoms, improved sleep 
disruption, QOL, and patient status in general and 
enhanced patient satisfaction, nevertheless its effect on 
the patient’s physical and psychologic function was vague 
(136). On the other hand, the N-acylethanolamine fatty 
acid amide, palmitoylethanolamide, has potent analgesic, 
anti-inflammatory, and neuroprotective properties. Despite 
having little to no affinity for these receptors, it enhances 
anandamide’s activity at cannabinoid CB1 and CB2 receptors 
as well as TRPV1. The pain symptoms linked to DN were 
decreased after palmitoylethanolamide therapy (137). 

Acetylcholine receptor agonists
Nicotinic acetylcholine receptor-targeting substances 

have anti-nociceptive properties. Tebanicline, a strong 
nicotinic acetylcholine receptor agonist, has shown 
analgesic properties in a variety of nociceptive and 
neuropathic pain in preclinical models. A-366833, 
another nicotinic acetylcholine receptor agonist, lowers 
the mechanical hyperalgesia and anti-nociceptive activity 
in DM-induced neuropathic rat models (120, 138). It 
demonstrated considerably improved selectivity of the 
nicotinic acetylcholine receptor α4β2 subunit over the α3 
subunit, thus this suggests a reduction in DPN pain without 
concomitant side effects, despite the fact that they have not 

as yet been examined clinically (139).

Purinergic receptor blockers
Excitatory P2X3 and P2X2/3 ATP-gated receptor 

channels directly sensitize C-fibers in response to membrane 
depolarization leading to calcium entry as well as purinergic 
signaling dysregulation resulting in pathological pain such 
as allodynia in DM (140). These receptors are linked to a 
higher pain score in DN patients (140, 141). It is interesting 
to know that this was demonstrated in female patients but 
not in male ones, suggesting a sex-specific mechanism 
for P2X7 receptor involvement in pain. A-317491 is the 
first non-nucleotide blocker for P2X3 homomeric and 
P2X2/3 heteromeric channels with very high affinity and 
selectivity for neuropathic pain. It has been found to be 
anti-nociceptive in rat models of chronic inflammatory and 
neuropathic pain, although, human studies are still missing 
(142, 143).

Sinomenine, an inhibitor of P2X3 agonist ATP-
activated channels, reduced the hyperalgesia that type II 
DM rats experience and decreased the expression and 
activation of the P2X3 receptor (144, 145). It decreased the 
phosphorylation and activation of P38MAPK in type II 
DM DRG. Consequently, sinomenine administration may 
reduce P2X3 receptor expression and activation that have 
been up-regulated as well as the hyperalgesia that P38MAPK 
activation has exacerbated in type II DM rats (144).

Angiotensin-2 receptor antagonist
Both angiotensin-1 receptor (AT1R) and angiotensin-2 

receptor (AT2R) were discovered in the CNS in the 1990s, 
which suggested using this system to manage pain. AT2R 
antagonists were discovered to have promising use for the 
treatment and identification of several neurological illnesses. 
Preclinical experiments conducted in 2021 supported 
the use of AT2R antagonists in neuropathic pain (146). 
Human peripheral somatic and visceral nerves express 
AT2 receptors, which co-localize with TRPV1 receptors to 
some extent. A highly selective AT2R antagonist, EMA401, 
can be used to decrease the increased TRPV1 ion channel 
sensitivity that is linked to the application of angiotensin 
II (147). The efficacy and safety of the medication, 400 mg 
twice daily, were established in a pilot phase IIa research. 
After 28 days of treatment, EMA401 significantly reduces 
postherpetic neuralgia symptoms compared to placebo 
(148). In 2021, EMA401 was studied in two phase IIb 
studies for its analgesic efficacy and safety in patients with 
severe DPN. These were multicenter, randomized, double-
blind therapy studies carried out on patients with painful 
distal symmetrical sensorimotor neuropathy caused by type 
I/II DM. The main result for all studies was a significant 
reduction in the pain score (149).

Sodium channel (v1.7 subtype-specific) blockers
Three sodium channel subtypes, Nav1.7, Nav1.8, and 

Nav1.9, are more frequently linked to peripheral neurons 
than central neurons. These subtypes are crucial targets for 
pain relief due to their high expression in the somatosensory 
system, namely in neurons linked to DPN, and it has been 
documented that mutations in Nav1.7 are associated with 
painful hereditary diseases (150). PF-05089771, a selective 
peripheral Nav1.7 sodium channel blocker, has been studied 
against pDPN whereas it was administered at a dose of 150 
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mg twice daily and had a significant impact on pain scores 
yet less than the effect exhibited by pregabalin (151). 

Miscellaneous pathways inhibition
The abnormalities in Na/KATPase activity and NCV that 

are observed in DM patients are modulated by therapeutic 
treatment with PKF275-055, a long-acting new DPP-IV 
inhibitor. The PKF275-055 therapy gradually improves 
changes in heat responsiveness while raising mechanical 
sensitivity thresholds by about 50%. The anabolic impact of 
PKF275-055 enhances oral glucose tolerance and prevents 
the changes in Na/K-ATPase activity, NCV, and nociceptive 
thresholds observed in STZ-induced diabetic rats (152). 
Furthermore, researchers have proposed that therapies 
that target CXCL12/CXCR4 signaling may be a novel 
strategy for the treatment of pDPN. This is being explored 
in preclinical research, as pDPN symptoms including 
mechanical allodynia are related to chemokine CXCL12/
CXCR4 signaling (153).

Humanized monoclonal antibody
Tanezumab, a novel treatment for neuropathic pain, 

is a fully humanized anti-NGF immunoglobulin G type 
II monoclonal antibody that is considered to be highly 
selective and specific for nerve NGF (154). Thus, it halts the 
binding between NGF and its receptors by firmly attaching 
to NGF, in that way disrupting pain signaling. Tanezumab 
dosages of 20 mg SC given on days 1 and 8 of treatment 
demonstrated a decrease in neuropathic pain (155). It has 
been observed that tanezumab was effective in DPN as it 
affects the longest axons in the peripheral nerve, which 
involves small fibers that are affected the most in DM (154). 

Growth factors
Nerve growth factor (NGF) is tightly related to the 

formation and growth of nerves. NGF concentrations that 
are abnormally high or low can harm neurons severely, since 
they have an impact on numerous survival pathways. Other 
substances that are related to proliferation, angiogenesis, 
sensitization, and cell growth include glia cell-derived 
neurotrophic factor, neurotrophic (NT-3, NT-4, and NT-5), 
brain-derived neurotrophic factor, as well as insulin growth 
factor I and II. The development of sympathetic neurons 
and tiny nerve fibers is regulated by NGF (156). 

Furthermore, evidence shows that decreased NGF 
availability may play a major role in the pathogenesis of 
DN, and animal models of neuropathy respond to the 
exogenous administration of NGF. Recombinant human 
NGF injection appeared to be beneficial in reducing the 
symptoms connected with DPN, according to two sets of 
phase II clinical trials (157). Moreover, the development of 
sympathetic neurons and small nerve fibers is regulated by 
NGF. Hyperglycemia affects retrograde axonal transport, 
NGF-dependent sensory neurons with reduced expression 
of neuropeptide substance P, a modulator of pain perception 
(18, 158). 

Interestingly, hepatocyte growth factor is expressed 
after a plasmid DNA injection into muscles, which 
suppresses proteins associated with pain in DRG neurons 
and subsequently spinal cord glial activation. Patients with 
DPN who received two doses of a plasmid containing HGF 
(VM202; 8 or 16 mg) intramuscularly demonstrated a 
substantial decrease in pain scores (159). 

Topical agents
Topical analgesic agents for pDPN include lidocaine, 

capsaicin, and nitrates, as well as intradermal injection of 
botulinum toxin-A. Topical lidocaine (5% patch or plaster; 
recommended by the AAN) successfully ameliorates 
the pain intensity in DN by its antagonistic effect on the 
sodium-gated voltage channels, i.e., Nav  1.7 and Nav  1.8 
(160). The 5% lidocaine patch has a higher safety profile than 
pregabalin, but meta-analysis and systematic review studies 
have indicated that it has a comparable ability to reduce pain 
(161). Likewise, capsaicin, a TRPV1 receptor desensitizer, 
causes pain relief due to the release of substance P at nerve 
terminals, although it is known to cause degeneration of 
small nerve fibers. Capsaicin is FDA-approved only for 
foot pain relief (160). A three-month 8% capsaicin single 
application patch or a multiple daily application of capsaicin 
cream for several weeks results in adequate analgesia as 
compared to a placebo (162). 

On the other hand, topical nitrates for treating DPN are 
not recommended in any of the guidelines, however, they 
are used off-label (160). However, isosorbide dinitrate spray 
has shown promising outcomes in decreasing the burning 
sensation as well as the overall neuropathic symptoms in 
a randomized, placebo-controlled, double-blind study 
(163). Finally, botulinum toxin-A is utilized for DPN 
patients to minimize the symptoms of neuropathic pain 
and elevate mood by preventing acetylcholine release at the 
neuromuscular junction and regulating the firing of afferent 
sensory fibers when injected intra-dermally (164).

Methadone
Methadone is a synthetic opioid that has strong 

analgesic properties. Although it is commonly connected 
with the treatment of opioid addiction, licensed family 
physicians may prescribe it for analgesia. Methadone’s 
distinct pharmacokinetics and pharmacodynamics make 
it an important treatment choice for cancer pain and other 
chronic pain conditions, including neuropathic pain (165). 
Methadone metabolism and reaction differ from patient to 
patient. The transition to methadone and dosage titration 
should be done gradually and often monitored. Methadone 
is less expensive than other opioid formulations with 
continuous release (166).

Non-pharmacological agents
Along with pharmacological agents, the most significant 

interventional therapy for individuals with refractory 
neuropathic pain includes spinal cord stimulation (SCS) 
and physical activity (18).

Spinal cord stimulation
A low-voltage electric current is used to activate the dorsal 

columns of the spinal cord during spinal cord stimulation, 
an invasive method of treating chronic pain. Although the 
exact mechanism of action is yet unclear, it is believed that 
this intervention affects both the spinal and supraspinal 
regions. Six months of SCS treatment for DPN patients was 
proven to improve their pain symptoms and QOL (167). In 
accordance with results from a different recent study, this 
intervention was successful in DPN patients (168). In 2021, 
the FDA granted premarket approval to an implanted spinal 
cord stimulator for treatment of chronic pain associated 
with painful DN (https://practicalneurology.com/news/fda-
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approves-implanted-spinal-cord-stimulator-for-chronic-
painful-diabetic-neuropathy; accessed 28/8/2022).

Exercise
Physical exercise was found to increase heat shock 

protein 72 (Hsp72) levels, which in turn reduced DPN 
symptoms in diabetic rats (63). Through exercise or manual 
techniques, the structure of the nervous system is mobilized 
by neurodynamics, also known as neural mobilization, thus 
restoring the nervous system’s structural balance. Numerous 
preclinical and clinical investigations have shown how well 
this intervention works to treat intraneural edema, thermal 
and mechanical hyperalgesia, and to restore fluid dispersion 
inside the neuron and immune response (169). It was 
reported that neural mobilization reduced levels of TNF-α 
and IL-1beta, which alleviated the mechanical allodynia in 
STZ-induced diabetic rats (170).

Glycemic control
Reduced HbA1c levels can ameliorate defects in vibration 

threshold, nerve conduction, and peripheral small nerve 
fiber function. Most DPN patients should aim for a HbA1c 
of less than 7% and clinicians should consider the dangers of 
hypoglycemia and a shorter life expectancy with relatively 
strict goals (171). Casadei et al. suggest that the QOL of 
patients could be greatly improved by comprehensive 
glycemic management by lowering the risk of ulcers and the 
number of future limb amputations and minimizing DM-
related foot problems (172).

In DM patients, aggressive treatment may stop DPN 
from occurring. Evidence even points to the existence of 
a “metabolic memory” in patients who have previously 
undergone stringent glycemic management, which may 
be crucial in preventing the onset of DPN (173). However, 
intensive treatments like metformin and thiazolidinediones, 
were used in the BARI 2D experiment and considerably 
decreased the incidence of DPN (174).

Conclusion
The development and pathophysiology of DPN are mainly 

attributable to a variety of signaling mechanisms. However, 
a thorough understanding of the precise modulation and 
particular role of the signal molecules is still missing. For 
that reason, finding a definitive cure for this persistent 
problem is challenging. The main therapeutic objectives of 
DN are slowing the developing progression and preventing 
its symptomatic consequences. However, the only strategy 
to treat DPN is to regulate its pathogenesis by activation of 
signaling pathways that repress neuropathy or inhibition of 
signaling pathways that promote it. This strategy has been 
shown to be effective in inhibiting pathogenic signaling in 
DPN in experimental studies as well as in various clinical 
trials. Tapentadol, an already-approved opioid receptor 
agonist-NE reuptake inhibitor, SNRIs, and cannabinoid 
receptor agonists are among novel agents that have 
shown promising outcomes for treating DPN. However, 
these agents must first undergo more extensive clinical 
trials and regulatory approvals before their use in DPN is 
recommended. 

Future Recommendations 
Numerous prospective targets in the management of DPN 

have been identified as a result of scientific developments in 

the field of the pathobiology of disease. These targets have 
been and can still be the focus of drug discovery efforts. 
The majority of these therapeutic targets, meanwhile, have 
yet to be investigated. Targeting them separately could not 
have enough of a clinical impact because several of these 
therapeutic targets seem to be interrelated. Research that 
combines these several possible targets could be successful. 
Such efforts will eventually aid in further easing some 
of the serious medical issues associated with treating 
DPN. Future research may reveal novel treatment targets 
and pharmacotherapeutic drugs if it focuses on better 
understanding the pathogenesis of DPN as well as pDPN.

Combining all of this evidence, the current review 
suggests additional studies are conducted to gain a better 
knowledge of the molecular processes involved in DPN, 
identify particular targets, and develop inhibitors and 
promoters of the target(s) as novel therapeutic approaches.
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