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Macrophages accumulate in poorly vascularised and hypoxic sites including solid tumours, 
wounds and sites of infection and inflammation where they can be exposed to low levels of oxygen 
for long periods. Up to date, different studies have shown that a number of transcription factors 
are activated by hypoxia which in turn activate a broad array of mitogenic, pro-invasive, pro-
angiogenic, and pro-metastatic genes. On the other hand, macrophages respond to hypoxia by up-
regulating several genes which are chief factors in angiogenesis and tumorigenesis. Therefore, in 
this review article we focus mainly on the role of macrophages during inflammation and discuss 
their response to hypoxia by regulating a diverse array of transcription factors. We also review the 
existing literatures on hypoxia and its cellular and molecular mechanism which mediates 
macrophages activation.  
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Introduction 
Large phagocytic mononuclear leukocytes 

represent a population of bone marrow-derived 
(myeloid) cells which are known as monocytes (1). 
Monocytes constitute ~5-10% of leukocytes in the 
peripheral blood, where they circulate for several 
days before populating tissues as macrophages, in 
the steady state or during inflammation (2, 3). At 
sites of injury or microbial invasion, monocytes 
express chemokine receptors such as CCR2 and 
chemoattractants such as MCP-1 (Monocyte 
Chemoattractant Protein 1, also called CCL2, which is 
a ligand for CCR2) which elicits increased 
recruitment of monocytes to peripheral sites where 
they differentiate into macrophages and contribute 
to host defence, tissue remodelling and repair (4-7). 
Macrophages are “professional” phagocytic cells 
which act as an early line of defence in the immune 
system by recognising and engulfing pathogens such 
as bacteria and viruses (8). Phagocytosis is believed 
to be involved in macrophage activation and it 
results in the release of cytokines such as IL-1 
(Interleukin-1), IL-6 and TNF (Tumour Necrosis 
Factor) which promote inflammation (9-12).  

 

The presence of areas of low oxygen tension 
(hypoxia) is a hallmark of many pathological tissues 
such as solid tumours (13, 14), wounds (15) and site 
of infection and inflammation (16). Cells of the 
monocyte/macrophage lineage are involved in all of 
the above pathologies (17-19). It has been known for 
some time that macrophages accumulate in poorly 
vascularised and hypoxic sites and respond rapidly 
to hypoxia by altering the expression of a wide range 
of their genes (20, 21).  
 
The inflammatory macrophages  

Inflammation is a response of a tissue to injury 
which could be a simple wound or a complex 
autoimmune inflammation such as rheumatoid arthritis 
(22). It has been shown that macrophages are major 
players in the inflammatory response and secrete pro-
inflammatory and antimicrobial mediators (23, 24). For 
example, it has long been known that macrophages 
activated in vitro by interferon-γ (IFN-γ) followed by a 
microbial trigger, can increase production of pro-
inflammatory cytokines such as TNF and interleukins 
including IL-1 and IL-6 (25). Also, innate activation of 
macrophages by ligation of TLRs such as TLR-4
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with LPS (Lipopolysaccharide) is associated with 
microbicidal activity and production of other pro-
inflammatory cytokines such as IFN-α and IFN-β (26, 
27). Evidence to date suggests that macrophages-
derived cytokines such as transforming growth 
factor-β (TGF-β), basic fibroblast growth factor and 
platelet-derived growth factor are important in 
tissue repair and remodelling (28, 29). In addition, it 
has also been shown that deactivation of 
macrophages, which is induced by presence of 
cytokines such as IL-10 or TGF-β, is associated with 
increased production of IL-4 which is an anti-
inflammatory cytokine (25, 30).  

Several studies have suggested that macrophages 
can be classified into two major groups, M1 and M2 
(31-33). M1 macrophages are activated by IFN-γ, 
TNF (Tumour Necrosis Factor) or pathogen-
associated molecular patterns such as LPS and can 
effectively destroy invading pathogens, tumour cells 
and foreign materials (25, 34). They act as antigen 
presenting cells and release pro-inflammatory 
cytokines such as TNF, IL-6, IL-1 and IL-12 and 
participate as inducer and effector cells in T helper 1 
(Th1) responses (25, 34, 35). Accumulating evidence 
suggests that M2 macrophages, which result from 
culture in presence of IL-4, IL-13, IL-10 or TGF-β, can 
release anti-inflammatory cytokines, growth factors 
and mediators which are involved in wound repair 
and tissue remodelling and contribute as inducers in 
T helper 2 (Th2) responses (25, 34, 36, 37).  

Overall, there are many stimuli which can push 
macrophages toward the activation phenotype. 
Hypoxia which often occurs in tumours and sites of 
infection can therefore activate macrophage 
expression of a broad range of genes including pro-
inflammatory cytokines such as TNF-α, IL-1 and IL-6 
(38-40). 
 
Hypoxia  

Molecular oxygen is essential for aerobic 
metabolism to maintain intracellular bioenergetics 
and to serve as an electron acceptor in many 
reactions (41). Ambient air is 21% O2 (150 mm Hg) 
at sea level; however, most mammalian tissues have 
O2 levels of 24-66 mm Hg (2%–9% O2) (42). The 
term ‘Hypoxia’ describes low oxygen concentrations 
(43), which can affect and regulate many 
physiological and pathophysiological processes, 
including embryonic development (44) and wound 
healing (15). In biological systems, hypoxia usually 
occurs in pathological tissues including tumours, 
ischemic tissues, chronic obstructive pulmonary 
disease, atherosclerotic plaques (45, 46) and 
arthritic joints (47). It is known that a major obstacle 
to cell survival is reduction in oxygen availability, 
which is often confronted by cancer cells (48, 49). In 
general, rapid growth and abnormal angiogenesis at 
the site of the tumour, leads to insufficient blood 

supply and consequent depletion of oxygen. This 
eventually results in the formation of necrotic and 
hypoxic regions in the inner parts of the tumour (49, 
50). Vaupel and Meyer in 2007 showed that O2 
concentrations within cancerous tissues are reduced 
compared to surrounding normal tissue, with severe 
hypoxia correlating with invasion, metastasis and 
patient death (51). The oxygen concentration in 
these pathological tissues ranged from 0 to 15mmHg 
(52). Hypoxia is also found in healthy tissues such as 
the spleen (oxygen levels as low as 0.5% or 3 mmHg) 
(53) and it is also a condition seen in embryogenesis 
in which hypoxia signalling is considered necessary 
for normal development (46).  

The role of hypoxic microenvironment in the 
pathogenesis and progression of human cancer was 
first proposed by Gray et al when intratumoral 
hypoxia was correlated with reduced efficiency of 
radiation therapy (54), and later on was discussed by 
other groups (55, 56). Hypoxia has also been shown 
to be linked to increased mutation rates (57), tumour 
invasion (58) and metastasis (59).  

Genomic tools, including DNA microarrays, have 
enabled study of the global gene expression of many 
different cells and tissues under hypoxic stress (21, 
60, 61) and more than 100 genes have been shown 
to be up-regulated by hypoxia. For example, hypoxia 
induces erythropoietin (EPO) (62), angiogenic 
cytokines such as vascular endothelial growth factor 
(VEGF) (63) and basic fibroblast growth factor 
(bFGF) which are required for adaption of the whole 
organism to general hypoxia by enhancing blood 
oxygen-carrying capacity and oxygen delivery (64). 
Also, hypoxic up-regulation of glucose transporter-1 
(GLUT-1) which facilitates the transport of glucose 
across the plasma membranes of mammalian cells, 
has been detected in a variety of malignant tissues 
(65, 66).  

It is well known that a variety of signalling 
pathways are activated by hypoxia (67, 68). Among 
these, the activation of the transcription factor 
hypoxia-inducible factor 1 (HIF-1) is a key element 
responsible for embryogenesis and up-regulation of 
numerous hypoxia inducible genes (69, 70). HIF-1-
mediated gene expression allows an organism to 
respond to hypoxia by increasing oxygen delivery or 
adapting to decreased oxygen availability (71). Such 
targets for HIF-1, play critical roles in glycolysis, 
oxygen homeostasis, tissue remodelling, fat 
metabolism, angiogenesis, erythropoiesis and 
proliferation (72, 73).  

 
Macrophages in hypoxia  

It has been known for some time that 
macrophages are recruited and retained in poorly 
vascularised, hypoxic and necrotic sites including 
breast (74, 75) and ovarian carcinomas (76), wounds 
(77), atherosclerotic plaques (78) and arthritic joints 
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(79). In addition, It has been reported that 
chemoattractants such as colony stimulating factor 1 
(CSF-1), MCP-1, VEGF and endothelin 1 recruit 
peripheral monocytes to tumour regions which are 
characterised by extremely low levels of oxygen and 
trigger differentiation into tumour associated 
macrophages (TAMs) (80). Several studies have 
shown that TAMs release a variety of enzymes and 
cytokines which promote tumour invasion, 
angiogenesis and metastasis, such as epidermal 
growth factor (EGF) and VEGF (19, 32, 81-83,).  

A study by Burke et al (2003) showed that certain 
genes are up-regulated by macrophages under 
hypoxic conditions. They used cDNA array 
hybridization to determine the effect of hypoxia on 
mRNA of 1185 genes in primary human monocyte-
derived macrophages (HMDM). This study showed 
hypoxia induced mRNA up-regulation of the enzyme 
matrix metalloproteinase-7 (MMP-7), neuromedin B 
receptor and DNA-binding protein inhibitor (Id2) as 
well as known hypoxia inducible genes such as VEGF 
and GLUT-1 (21). Another cDNA array research by 
White et al (2004) also revealed more than 30 mRNA 
pro-angiogenic genes which were up-regulated by 
hypoxia in primary macrophages. Among these 
genes, apart from VEGF, the best characterized ones 
were fibroblast growth factor 2 (FGF2), IL-8, 
macrophage migration inhibitory factor (MIF) and 
cyclooxygenase- 2 (COX-2) (84). In addition, it has been 
demonstrated that hypoxic macrophages up-regulate a 
number of transcription factors, such as HIF-1, which in 
turn up-regulate a broad array of genes including VEGF 
and GLUT-1 whose products promote tumour growth 
and angiogenesis (21, 85- 87).  

 
Hypoxia-responsive transcription factors  

Hypoxia activates a diverse array of transcription 
factors such as activator protein-1 (AP-1) (88, 89), 
cAMP-response element binding protein (CREB) (90, 
91), specific protein 1 (SP-1) (92-94) and most 
importantly HIF-1 (95), which in turn activates a 
broad array of mitogenic, pro-invasive, pro-
angiogenic, and pro-metastatic genes (96, 97). Since 
the discovery of HIF-1 by the Semenza lab in the 
early 1990s, it has been recognised as the central 
importance and described as the “master regulator” 
of the transcriptional response to hypoxia (96).  

 
Hypoxia-Inducible Factors (HIFs) 

There are two main types of HIF, HIF-1 and HIF-2 
(98, 99) which are the predominant transcription 
factors mediating the effects of hypoxia on gene 
expression (100, 101). HIF-1,the most ubiquitously 
expressed and best characterised member of the 
family is recognised as a master regulator of hypoxic 
signalling whose activation has been shown to 
regulate the expression of over 70 genes at the 
transcriptional level (102).  

Both HIF-1 and 2 are heterodimeric molecules 
consisting of α and β subunits which belong to a 
family of basic helix-loop-helix proteins (103). The 
HIF-β subunit, known as ARNT (Aryl hydrocarbon 
Receptor Nuclear Translocator) is found in the 
nucleus in both normoxia and hypoxia (98), whereas 
the α subunit is constitutively produced but is 
subjected to rapid degradation in the presence of 
oxygen (with a half-life of less than five minutes), 
only being stable in the absence of oxygen (i.e. 
hypoxia) (102). The HIF-1α subunit contains an 
oxygen-dependent degradation domain (ODD) and 
two transactivation domains (TAD) which are 
required for transcriptional activation activity of 
HIF-1, being capable of binding to two 
transcriptional co-activators, CREB binding protein 
(CBP) and p300 (104-107). In normoxia, specific 
proline residues at positions 402 and/or 564 in the 
ODD of the HIF-α subunit are hydroxylated by prolyl 
hydroxylase enzymes (PHD) (108, 109). PHD is a 
family composed of prolyl 4-hydroxylases (PHD1-4) 
which require iron (Fe (II)), 2-oxoglutarate, O2 and 
ascorbate as substrates; their activity is reduced in 
hypoxia due to the limitation of O2 concentration 
(110, 111). Hydroxylation of HIF-1α acts as a signal 
for recognition by the tumour suppressor VHL (von 
Hippel–Lindau protein), leading to ubiquitination 
and proteasomal degradation (Figure 1) (112-114).  

In addition to prolyl hydroxylation by PHDs, 
another oxygen-dependent modification occurs in 
the transactivation domains of HIF-α subunit. It is 
dependent on the presence of an asparagine 
hydroxylase enzyme known as factor inhibiting HIF 
(FIH) (115, 116). In this oxygen-dependent 
regulatory mechanism, FIH blocks the interaction 
between HIF-α with p300 and CBP by hydroxylating 
an asparagine residue at position 803, thus inhibiting 
the activity of the HIF-1α transactivation domain 
(Figure 1) (117, 118).  

In hypoxia, PHD activity decreases and enables 
rapid accumulation of HIF-α in the nucleus where it 
dimerises with the HIF-β subunit and binds to 
hypoxia response elements (HREs) in the promoters 
of various genes (70, 119). The decrease in oxygen 
availability also impairs FIH which results in a 
decrease in HIF-α subunit asparagine hydroxylation, 
allowing increased recruitment of transcriptional co-
activators (p300/CBP) which eventually leads to 
enhanced transcriptional activation of HIF target 
genes (Figure 1) (16, 115, 120) which are implicated 
in many different aspects of oxygen delivery and 
metabolism including vasodilatation (nitric oxide 
synthases), iron metabolism (transferrin) (121), 
glucose transporters (GLUT-1), angiogenesis (VEGF), 
enhanced blood oxygenation (erythropoietin) (122) 
and glycolysis (phosphoglycerate kinase)(95). 
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         Figure 1. Regulation of HIF-1 in normoxia and hypoxia 

 
 
In normoxia, the HIF-α subunit is first hydroxylated 

by PHD at two specific proline residues at positions 402 
and/or 564 in the ODD region and then by FIH which 
blocks the interaction between HIF-α and p300 and 
CBP by hydroxylating an asparagine residue at position 
803, thus inhibiting the activity of the HIF-1α 
transactivation domain. Both mechanisms then act as a 
signal for recognition by the tumour suppressor VHL 
leading to ubiquitination and proteasomal degradation. 
In hypoxia, reduced activity of PHD causes rapid 
accumulation of HIF-α in the nucleus where it dimerises 
with the HIF-β. This complex then binds to HREs in the 
promoters of various genes. Also, the activity of FIH 
enzyme will be impaired by the decrease in O2 
availability, leading to reduction of hydroxylation of 
HIF-α subunit asparagine. This mechanism allows 
increased recruitment of transcriptional co-activators 
(p300/CBP) which eventually leads to enhanced 
transcriptional activation of HIF target genes. 

 
Hypoxia responsive elements (HREs)  

Previous studies showed that HIF-1 binds to 
hypoxia responsive elements, a consensus sequence in 
the promoter of about 200 HIF target genes (among 
which around 100 genes have been confirmed) and 
initiates transcription by recruiting transcriptional co-
activators such as p300/CBP (16, 97).  

The minimal cis-regulatory element (CGTG) 
required for hypoxic induction of gene transcription 
was first identified by Semenza who also determined 
that this core HRE consensus sequence is required 
but is not sufficient for effective gene activation in 
response to hypoxia (95, 123). Analysis of 107 HIF-1 
responsive genes showed that neighbouring 
nucleotides occur with non-random frequency, 
especially in the 5′ flanking bases, demonstrating 
that a fully functional HRE requires neighbouring 
DNA binding sites for additional transcription factors 
or co-activators, which may act to amplify the 
hypoxia response (16).  
 

Role of HIF-1 in macrophages  
As previously mentioned, macrophages are 

associated with a number of inflammatory sites such 
as atherosclerotic plaques (124), myocardial infarcts 
(125), rheumatoid arthritis (126), healing wounds 
(127), sites of bacterial infection and malignant 
tumours (20, 128, 129) in which hypoxia is present. 
In hypoxia, macrophages rely heavily on HIFs for 
energy production and activity, express HIF-1α 
protein abundantly and increase transcriptional 
activation of HIF target genes (21, 85). Unusually, 
macrophages are also significantly dependent on 
HIF-1 regulated genes for energy production in 
normoxia (130).  
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Some early studies using a rat alveolar 
macrophage-derived cell line and the human 
monocytic cell line (THP-1) reported that short term 
hypoxia did not increase HIF-1α mRNA, suggesting 
that HIF-1α is regulated by hypoxia by decreased 
protein stability (128, 131). However, our recent 
study showed increases in HIF-1α mRNA levels after 
long term hypoxia (5 days) in human primary 
macrophages and also we observed that this up-
regulation is mediated by increased transcription 
rather than increased mRNA stability. Similar 
increases in HIF-1 mRNA in hypoxia have been 
reported by other groups in non-macrophage cell 
types but the subject is still somewhat controversial 
(132).  

An increased level of HIF-1α protein in activated 
macrophages was first demonstrated by Hollander  
et al in 2001 (126) in inflamed joints of patients 
suffering from rheumatoid arthritis and later by 
Talks et al in 2000 (133) in tumour sections and 
Burke et al in 2002 (85) in isolated hypoxic human 
primary macrophages in vitro. Also, other studies 
showed increased levels of HIF-1α in inflammatory 
cells of healing wounds and suggested that this could 
be due to a release of inflammatory cytokines such as 
TNF-α which can strongly increase HIF-1α protein 
levels in cells after injury, leading to increased 
expression of HIF-1 responsive genes such as VEGF 
which regulate the process of tissue repair (134). 
Other groups have also investigated HIF-1 activity 
during differentiation of monocytes to macrophages 
(135). It was shown by Oda et al in 2006 that both 
HIF-1α and HIF-1β protein levels increase markedly 
during the differentiation of monocytes to 
macrophages in the monocytic cell line (THP-1) and 
in monocytes from human peripheral blood (136). 
They suggested that activation of protein kinase C 
(PKC) and mitogen-activated protein kinase (MAPK)-
signalling pathways are responsible for this increase 
in HIF-1 gene expression (136).  

 
Non-hypoxic up-regulation of HIF-1  

Despite the name, numerous studies have now 
shown that HIF-1α can be induced by a variety of 
stimuli in addition to hypoxia. The key studies in this 
field are reviewed below.  
 
Lipopolysaccharide (LPS)  

LPS is a component of the cell wall of Gram-
negative bacteria (137). It binds to the CD14             
and TLR4 cell surface receptors of 
monocyte/macrophages (138, 139) leading to 
activation of a number of genes that are often 
associated with hypoxia, many of which are believed 
to be up-regulated independently of HIF-1 (140-
143). Several studies have shown that LPS treated 
macrophages up-regulate genes such as VEGF, GLUT-
1 and iNOS (inducible nitric oxide synthase) which 

are known to be regulated by HIF-1 (128, 131). In 
contrast to hypoxia, which is generally considered 
not to up-regulate HIF-1α mRNA, LPS has been 
shown to stimulate HIF-1α expression at 
transcriptional level under normoxia in alveolar-
derived rat macrophages and human primary 
macrophages through a NF-κB site in the promoter 
of the HIF-1α gene (128, 131). It was shown that LPS 
increases HIF-1α protein expression in a time and 
dose-dependent manner which in turn modulates 
hypoxic gene activation (128). Also, an induced HIF-
1α mRNA and protein expression in differentiated 
THP-1 cells treated with LPS under normoxia has 
been reported (131). This study, using RNAi against 
MAPK and also a specific inhibitor of this pathway, 
showed down-regulation of LPS-induced HIF-1α 
mRNA and protein in THP-1 cells suggesting a role 
for the MAPK pathway in LPS-dependent HIF-1α 
induction (131).  
 
Phosphoinositide (PI) 3-kinase signalling  

PI3-Kinase activities have been found in all types 
of eukaryotic cells and are linked to a diverse set of 
major functions of the cell, including cell growth, 
proliferation, motility, differentiation and survival 
(144-146). PI3-kinase phosphorylates the hydroxyl 
group at position 3 of the inositol ring of 
phosphatidylinositol (147). PI3-kinase has been the 
focus of intense study as increasing evidence 
suggests a key role for PI3-kinase pathway in many 
human diseases including allergy, inflammation, 
heart disease and cancer (148, 149). An interesting 
mechanism was proposed via which the normoxic 
activation of PI3-kinase could increase the rate of 
HIF-1α translation in vascular smooth muscle cells 
(VSMC) (150). It has been previously reported that 
activation of PI3-kinase by growth factors and 
hormones leads to the recruitment and activation of 
a downstream effector of PI3-kinase, known as               
the mammalian target of rapamycin (mTOR) (151, 
152). mTOR activation results in increased 
phosphorylation and inactivation of 4E-binding 
protein 1 (4E-BP), the eukaryotic translation 
initiation factor, and activation of p70-S6 kinase 1 
which leads to increased protein synthesis (151, 
153). Inactivation of 4E-BP and activation of p70S6K 
has been shown to increase translation of HIF-1α 
mRNA through the 5’ untranslated region (5’UTR) 
(150, 154). This is believed to be the main 
mechanism responsible for HIF-1α induction 
through the PI3-kinase dependent pathway, 
resulting in increased VEGF expression in vascular 
smooth muscle cells and human tumour cell lines 
(155, 156).  
 
Cobalt (CoCl2) stabilisation of HIF-1α  

It has been demonstrated that CoCl2 induces 
hypoxia-regulated genes by stabilizing HIF-1α in 
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normoxia (112). As outlined before, hydroxylation of 
the proline residues, which reside in the oxygen-
dependent degradation domain of HIF-1α, by prolyl 
hydroxylase is one of the key mechanisms that 
mediate the binding of VHL with HIF-1α which 
eventually leads to proteasomal degradation of HIF-
1α (109, 111). In a study, it has been suggested that 
iron is a critical factor for the activity of PHD as these 
enzymes have an iron-binding centre (110). In 
addition, this study suggested that CoCl2 may act as a 
competitor for iron, inactivating PHD by binding and 
engaging an iron-binding site in the proline 
hydroxylase. Due to this enzymatic inhibition, HIF-α 
is not targeted for proteasomal degradation (110). 
Beside the inactivation of PHD by CoCl2, another 
mechanism via which HIF-α could be stabilized by 
cobalt, has been proposed (157). In this process, 
cobalt stabilizes HIF-1α protein by direct binding to 
the ODD in HIF-1α, thereby preventing the 
interaction between HIF-1α and VHL protein and 
subsequently inhibiting proteasomal degradation 
which results in HIF-1α stabilization (157).  

 
Desferrioxamine (DFO) stabilization of HIF-1α  

Since the introduction of DFO in the 1960s, it has 
been widely used as a chelating agent to bind free 
iron in the bloodstream and removing excess iron 
from the body (158). Several studies have 
demonstrated that normoxic cells treated with DFO 
induced HIF-1 target genes such as EPO (159), VEGF 
(160) and GLUT-1 (161) by inducing the 
accumulation of HIF-1 protein. An early study 
demonstrated that DFO disrupts pVHL–HIF-α 
complex formation which is required for 
ubiquitination and proteasomal degradation of HIF-
1α in normoxia (112). It has been demonstrated that 
DFO inhibits hydroxylation of HIF-1α by chelating 
the iron required for the activity of PHD enzyme 
(157). Therefore, due to inhibition of HIF-α 
hydroxylation, the pVHL–HIF-α complex formation is 
inhibited causing HIF-α stabilization which results in 
induction of HIF-1 target genes (162-164). 

 

Conclusion 
In this review article, we provided evidence 

which show hypoxic activated human macrophages 
could regulate broad array of angiogenesis and 
tumorigenesis genes. In addition, further ground 
working experiments suggested that high-level 
transcription of such genes in hypoxia appears to 
occur via a HIF-1 dependent mechanism which can 
be activated by hypoxia and DFO in addition to 
CoCl2. A better understanding of how hypoxic 
regulated genes are influenced by hypoxia in human 
macrophages will hopefully be helpful for the 
development of future therapies for a range of 
different diseases such as vascular disorders like 
atherosclerosis, where hypoxia-induced genes 

accumulation plays a key role in disease 
development. As macrophages have been shown to 
accumulate in the areas with low oxygen tension 
where hypoxic regulated genes are up-regulated, the 
knowledge of how such genes promoter is induced 
by hypoxia by elucidation of the hypoxia responsive 
elements could be an additional advantage for future 
tumour gene therapy whereby a therapeutic gene 
could be engineered to be regulated by the hypoxia 
responsive promoter. Macrophages transfected with 
this construct could be used in the delivery of the 
therapeutic gene to radiotherapy and chemotherapy 
resistant hypoxic tumour sites where the gene would 
be locally induced. In addition, hypoxic up-regulation 
of such genes by human macrophages which are 
recruited and retained in hypoxic and necrotic sites 
could be a potential prognostic factor in patients 
with malignant tumours. 
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