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Abstract 
 
Nitric oxide is a short-lived mediator, which can be induced in a variety of cell types and produces many 
physiologic and metabolic changes in target cells. It is important in many biological functions and generated 
from L-arginine by the enzyme nitric oxide synthase. Nitric oxide conveys a variety of messages between 
cells, including signals for vasorelaxation, neurotransmission and cytotoxicity. In macrophages, nitric oxide 
synthase activity appears slowly after exposure of the cells to cytokines and bacterial products, is sustained, 
and functions independently of calcium and calmodulin. The cytokine- inducible nitric oxide synthase 
(iNOS) is activated by several immunological stimuli, leading to the production of large quantities of nitric 
oxide which can be cytotoxic. To date, there have been conflicting reports concerning the clinical 
significance of nitric oxide in infections. Some authors have proposed that nitric oxide contributes to the 
development of severe and complicated cases, while others have argued that nitric oxide has a protective 
role. The aim of this review is to evaluate the functions of nitric oxide production toward oxidative stress 
induced by infections or inflammations. It is indicated that NO is an important, but possibly not essential 
contributor in the control of acute phase of infections and it is only part of an immunopathological chain 
against pathogens. The anti-microbial function does not relate only to nitric oxide action or its related 
molecules, a combination of nitric oxide and immune factors is required to resolve pathogenic micro-
organisms. Consequently, the NO theory in infectious diseases may lead to the novel ideas for therapy and 
prevention. 
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Introduction 
The nitric oxide (NO) molecule consists of two 
atoms of oxygen and nitrogen, bound by a 
double bond. NO has a specific partial 
molecular polarity with a negative and positive 
charge on the oxygen and nitrogen atoms 
respectively (1). NO is a product of L-arginine 
conversion to L-citrulline by nitric oxide 
synthase (NOS) enzyme in the presence of 
nicotine amide adenine dinucleotide phosphate 
(NADPH) as a co-factor. NO is a reactive free 
radical, and in the presence of oxygen, is 
oxidised to a variety of nitrogen oxides (1). NO 
is known to react rapidly with oxyhemoglobin 
(Oxy-Hb) to give nitrate and met-Hb (2). 

In addition, NO is a short-lived biological 
mediator produced by many cell types to 
induce many functions (3). It has recently been 
found to be a potent immuno-modulator, which 
has alternative roles during inflammation, 
infection and transplant rejection (4). Both 
oxygen and NO are vital for life processes, but 
too much of either can damage cells. It is 
suggested the attachment of NO to proteins 
enable them to activate gene(s) directly, but the 
body needs to keep NO in equilibrium by 
turning on and off expression of NOS gene(s) 
(5). NO also, has an extraordinary 
physiological role with an ability to diffuse 
freely through cell membranes to induce 
unrelated phenomena among different type of 
cells offering a new perspective on cell-cell 
communication (6). NO is produced in the 
neutrophils, lymphocytes and macrophages as 
part of the cytotoxic function of these cells (7). 
Macrophages, neutrophils, Kupffer cells and 
hepatocytes are stimulated to produce reactive 
nitrogen intermediate (RNI) via TNF-α and 
IFN-γ pathways (8). 

NO acts as both a pro-inflammatory and an 
anti-inflammatory agent. The mechanisms that 
underline these effects remain poorly defined 
(9). Chronic inflammation is known to be 
associated with increased levels of both NO 
and reactive oxygen intermediate (ROI) 
including O2 and H2O2 (10). It is now 
recognised that NO is not only involved in 
acute, but also, in chronic inflammation e.g. 
formation of a cellular granuloma (11). In some 

chronic inflammatory states, target cells may 
be exposed to high amounts of NO as much as 
104 molecules NO per cell (10). 

Although immunity to infections is complex 
and not properly understood, a number of 
different effector mechanisms in addition to NO 
have been implicated (12). It is suggested that a 
cascade of reactions leading to NO production 
are involved in infection processes (13). There 
are some contradictory reports about the role of 
NO and related molecules in infectious 
diseases. Some researchers propose NO is 
involved in the development of severe diseases, 
whereas, others argue a protective role for NO 
(14). Due to its contradictory actions, it is still 
an open question as to whether NO effects are 
protective or damaging (15). 

We have previously published the detailed 
applications of detection assays for NO and its 
up/down stream molecules, NO-modulators, 
time courses and the associated changes in NO 
and its metabolite concentrations of host 
infected by some intracellular parasitic 
infections (16-19). These will provide a 
considerable help for this review to be 
discussed and clarified on NO functions with 
an emphasis on its diversity in infectious 
diseases. 

 
Cytotoxicity of NO   
Mononuclear cells and several other 
mammalian cells produce NO after stimulation 
with cytokines, bacterial endotoxin or antigens 
of infectious agents (11). Endothelial and 
Kupffer cells can be rich sources of cytotoxic 
levels of NO (20) and elevated levels of RNI 
and ROI can cause tissue damage (21). 
Peroxynitrite (ONOO-) and hydroxyl radical 
(OH•) species oxidise lipids, thiol groups and 
damage cell membranes (22). In spite of its 
toxic role during the formation of ONOO- in 
phagocytosis and inflammation, NO has also, 
many non-toxic functions (23). Activated 
macrophages have an important role in the 
antimicrobial and antitumoural activity of NO 
(24). Generated NO has cytotoxic properties 
against tumour cells, intracellular bacteria, 
protozoa, extra-cellular fungi and helminths 
(25, 26).  
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Microbicidal and tumouricidal activities of 
NO  
The antibacterial, antiviral and antifungal 
actions of NO in vitro in many culture media 
and in vivo in animal and human models are 
fully explained (27-29). NO exerts its 
protective function not only through direct 
antibacterial action, but also by preventing 
apoptosis and thereby contributing to 
antimicrobial defence during salmonellosis 
(30). Patients with brucellosis had significantly 
elevated serum levels of NO compared to 
healthy controls (31). In addition, NO is 
produced during Pseudomonas aeruginosa 
keratitis and may protect tissues from damage 
(32) or iNOS expressions were well correlated 
with Helicobacter pylori density, acute and 
chronic inflammation of gastric mucosa (33). 
In human immunodeficiency virus (HIV) 
negative and HIV co-infected tuberculosis 
(TB) patients, low levels of exhaled NO were 
observed which could be a risk factor in 
acquiring TB and the relative importance of 
NO in human TB (34). Moreover, as an 
antifungal, NO plays an important role in 
platelet-activating factor (PAF)-induced 
protection against systemic candidiasis caused 
by Candida albicans (35). However, there are 
some reports indicating no protective effects or 
unchanged NO levels during some infections 
e.g. chronic hepatitis C (36). 

The possible key role of NO in the killing of 
infectious agents and cancer cells should be 
considered during control of infection and 
tumour cell growth (4). However, there are 
substantial literatures on NO suggested a 
potent antimicrobial role for NO. Both NO and 
NO2 inhibit growth, respiration and active 
transport of fungi and bacteria (26). Some 
pathogens including Herpes simplex, 
Cryptococcus neoformans are reported to be 
inhibited by RNI (37), therefore, NO 
formation may be one of the principle 
mechanisms for decreasing infection (38).  
 
Antiparasitic effects of NO, RNI and ROI   
A role for antiparasitic effects of NO and RNI 
in vivo and in vitro have been demonstrated 
against a number of parasites including 
Plasmodium spp., Leishmania spp., 

Toxoplasma gondeii, Schistosoma spp. and 
Trypanosoma brucei (2, 15, 23, 37-41). 
Antiparasitic activity of NO has been 
illustrated with two most important malaria 
and leishmania parasites (42). NO reported to 
destroy some intracellular parasites such as         
L. major (43). Moreover, ROI produced by 
macrophages and granulocytes are responsible 
for phagocytosis of Try. cruzi, Toxo. gondeii, 
Leishmania spp. and Plasmodium spp. (23). 
There is evidence that the killing of 
intracellular parasites (L. major, Toxo. 
gondeii) and extracellular parasites 
(Schistosoma spp.) by activated macrophages 
through IFN-γ, correlates with the release of 
NO and RNI (23, 26). NO production has been 
shown to act directly as a leishmanicidal factor 
of parasitised macrophages. It seems that NO 
is not only necessary, but is also sufficient to 
account for the entire antiparasitic activity 
(42). The roles of NO and superoxide have 
been also described in the killing of 
enteropathogenic protozoa e.g. Giardia 
lamblia (44). The role of NO on human 
mansoni schistosomiasis points to a possible 
regulatory role of NO in the development of 
granulomas (11). Furthermore, the formation 
of NO, RNI and ONOO- has been reported for 
other parasites including L. amazonensis (45), 
Opisthorchis viverrini (46), Clonorchis 
sinensis (38) and L. mexicana (47). Increased 
NO synthesis might have a protective rather 
than pathological role in the majority of 
parasitic infections including malaria (39) and 
leishmania (19). Therefore, the involvement of 
NO and its up/downstream metabolites in 
parasitic infections is in the agenda and under 
debate; however it is required more 
investigations. 

 
NO and C-reactive protein (CRP) 
In addition to NO, CRP is a major acute phase 
protein present in normal serum, which 
increases significantly after most forms of 
tissue injuries and infections as a non-specific 
innate defence mechanism of the host. CRP as 
a protein is mainly regulated at the 
transcriptional level, induced by cytokines 
(48). It is a marker of inflammatory reactions 
and cytokine activation (49), which is 
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produced very early after infection (50). CRP 
is reported to be a critical element during a 
majority of infections (51). The data have been 
revealed a correlation of CRP and NO in some 
infections. This may clarify the co-
involvement of CRP and NO as two major 
immune elements during infection (52); 
however, it is not justified, whether the CRP / 
NO production is beneficial or detrimental to 
the host. Not withstanding the conflicting 
publications, the role of CRP (53) and NO (54, 
55) in the immune responses to infections 
remains uncertain. It is suggested that NO 
alone or in accompany with CRP and other 
chemokines is involved in protective or 
pathogenic responses of human infections 
(52).  

 
Antimicrobial effects of NO by DNA damage 
NO can directly attack many molecules 
including DNA, but the reaction rate is very 
slow. It also inactivates ribonucleotide 
reductase, a key enzyme in the biosynthesis of 
DNA (24). NO can inhibit several intracellular 
enzymes or change cellular gene transcription 
machinery e.g. inhibition of DNA binding to 
the transcription factor (56). NO has also been 
shown to cause G:C→A:T transitions, DNA 
strand breaks (57), induction of oxidative 
DNA damage in activated macrophages and 
inhibition of enzyme(s) involved in DNA 
repair (58). There are some studies indicating 
the effect of NO on DNA damage (59), 
activation of poly ADP-ribose polymerase 
(PARP) (60), inhibition or reduction of DNA 
repair enzymes in DNA synthesis (61), 
inhibition of DNA-methyl transferase (57), 
inactivation of ribonucleotide reductase (62) 
and promotion of nitrosative deamination of 
DNA bases (10). One of the DNA 
modifications induced by exposure to ONOO-, 
NO and O2 is the formation of 8-nitroguanine 
and 8-oxoguanine as well as DNA single 
strand breakage (63). Mutagenesis and 
carcinogenesis are promoted by alkylation of 
specific sites in DNA or bases (G to O6-
methylguanine), or on the ring-nitrogen 
positions in A, G, C and T. DNA repair 
proteins are also inhibited by NO-derived 
agents such as N2O3 in vitro and in vivo (10).  

Antimicrobial effects of NO on mitochondrial 
respiration 
Another intracellular target for NO is 
mitochondria. It is known that activated 
macrophages inhibit mitochondrial respiration. 
NO changes the ion currents through the 
mitochondrial membrane leading to the release 
of Ca2+ into the cytosol (57). Two distinct 
effects of NO reported for mitochondria are:  i) 
accelerated onset of swelling Ca2+ loaded 
transition, and ii) changing the permeability of 
mitochondria (64). It is suggested that 
mitochondria are inactivating the NO iron-
dependent enzyme system, controlling 
mitochondrial respiration and chemical energy 
(65). 
 
Antimicrobial effects of NO by apoptosis 
NO may contribute to the development of 
apoptosis, an endogenous process of 
programmed cell death (24). NO appears to 
cause both apoptotic and carcinogenic effects. 
It may inhibit induction of the tumour-
suppresser protein (P53) as a guardian of the 
genome (59). There are some studies reporting 
apoptosis and necrosis induced by NO, in 
human chondrocytes (65), rat neurones (66) 
and rat Islet cells (67). Pro-apoptotic effects 
are caused by high amounts of NO produced 
by inducible NOS (iNOS), but anti-apoptotic 
effects can occur due to the continuous activity 
of endothelial NOS (eNOS) (68). 
Consequently, NO causes apoptotic and 
necrotic cell death in susceptible cells, 
depending on cell type and the time of 
exposure (59). 
 
Pathological effects of NO by 
neurotransmisson and vascular tone in host 
One of the important features described for 
NO is neurotransmission. In both the brain and 
peripheral nervous system, NO is implicated in 
neurotoxicity associated with stroke and 
neurodegenerative diseases (4). NO is a 
neuromodulator in its own right and may 
impair consciousness by increasing 
acetylcholine release and inhibiting N-methyl- 
D-aspartate (NMDA) activity in the brain. The 
most important type of NOS enzyme to be 
involved in neurotransmisson is suggested as 
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neuronal form of NOS (nNOS) (69). NO and 
O2 in endothelium modulates vascular tone as 
a vasodilator substance (14). In addition, NO 
modulates basal coronary artery tone and it is 
responsible for the flow-mediated 
vasodilatation (70). 
 
Other functions of NO in infections  
NO may reacts with proteins and nucleic acids 
by binding to haem groups, guanylate cyclise 
(GC), Hb and cytochrome-C oxidase. 
Theoretically, NO may reacts with 
nucleophylic centres like sulphur, nitrogen, 
oxygen and aromatic carbons. It seems SH 
groups are prime targets for NO [30]. NO and 
O2 rapidly react to produce ONOO-, which is a 
potent oxidant of proteins, lipids and DNA 
(38). There are some examples of damage of 
cell membrane integrity, apoptosis, changes in 
cell cycle and DNA strand breaks, which were 
induced by NO and its metabolites (71). 

 
Conclusive remarks 
Taken together, the data provided by 
researchers, highlight the fact that NO and / or 
its related molecules have many functions and 
are involved in a large number of 
inflammations, infectious diseases, and 
biomedical concepts, but the involvement is 
not independent of other immune events. It is 
indicated that NO is an important, but possibly 
not essential contributor in the control of acute 
phase of infection. Although, the protective 
immune responses against micro-organisms is 
multifactorial and the final effector molecules 
that mediate organism death are not known, 
NOS, NO and RNI have been significantly 

implicated (72-74).  It is concluded that NO is 
only part of an immunopathological chain 
against infection and the antimicrobial 
function does not relate only to NO action, so, 
a combination of NO and other immune 
factors is required to resolve pathogens. 
Therefore, the involvement of NO and its up / 
downstream molecules as an immuno-
protective target in infections is highly under 
debate; and it is required more investigations 
to be resolved (75-77). 

An association of some key cytokines 
appears to be essential for NOS gene 
regulation. Perhaps, NO comes from several 
cellular sources, further study in defining these 
sources will be important for the 
understanding of cell-mediated defence 
mechanism(s) in infectious diseases. However, 
the involvement of NO in infected host is 
conflicting, the complex relationship between 
symptoms, genetic polymorphisms and NO 
production in populations require more studies 
to address their immunomodulatory roles in 
viral, bacterial, parasitic and fungal infections 
(78, 79). 

Although, the knowledge about cytotoxic 
effects of NO is steadily increasing, we are 
still at the beginning of understanding as to 
how, why, when and where cells are affected 
by NO. Consequently, the NO theory in 
infectious diseases may lead to the novel ideas 
for therapy and prevention (80). 
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