Effect of antihypertensive agents - captopril and nifedipine - on the functional properties of rat heart mitochondria

Document Type: Original Article


1 Department of Biochemistry, Institute for Heart Research, Centre of Excellence SAS NOREG, Slovak Academy of Sciences, Bratislava, Slovakia

2 Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics, and Informatics, Comenius University, Bratislava, Slovakia

3 Department of Physiology, Institute for Heart Research, Centre of Excellence SAS NOREG, Slovak Academy of Sciences, Bratislava, Slovakia


Objective(s): Investigation of acute effect on cellular bioenergetics provides the opportunity to characterize the possible adverse effects of drugs more comprehensively. This study aimed to investigate the changes in biochemical and biophysical properties of heart mitochondria induced by captopril and nifedipine antihypertensive treatment.
Materials and Methods: Male, 12-week-old Wistar rats in two experimental models (in vivo and in vitro) were used. In four groups, the effects of escalating doses of captopril, nifedipine and combination of captopril + nifedipine added to the incubation medium (in vitro) or administered per os to rat (in vivo) on mitochondrial ATP synthase activity and membrane fluidity were monitored.
Results: In the in vitro model we observed a significant inhibitory effect of treatment on the ATP synthase activity (P<0.05) with nonsignificant differences in membrane fluidity. Decrease in the value of maximum reaction rate Vmax(P<0.05) without any change in the value of Michaelis-Menten constant Km, indicative of a noncompetitive inhibition, was presented. At the in vivo level, we did not demonstrate any significant changes in the ATP synthase activity and the membrane fluidity in rats receiving captopril, nifedipine, and combined therapy.
Conclusion: In vitro kinetics study revealed that antihypertensive drugs (captopril and nifedipine) directly interact with mitochondrial ATP synthase. In vivo experiment did not prove any acute effect on myocardial bioenergetics and suggest that drugs do not enter cardiomyocyte and have no direct effect on mitochondria.


1.Kuneš J, Kadlecová M, Vaněčková I, Zicha J. Critical developmental periods in the pathogenesis of hypertension. Physiol Res. 2012; 61 Suppl 1:S9-17.

2.Paulis L, Steckelings UM, Unger T. Key advances in antihypertensive treatment. Nat Rev Cardiol. 2012; 9:276-285.

3.Pintérová M, Kuneš J, Zicha J. Altered neural and vascular mechanisms in hypertension. Physiol Res. 2011; 60:381-402.

4.Elliott WJ. and Ram CV. Calcium channel blockers. J Clin Hypertens (Greenwich). 2011; 13(9):687-9.

5.Law M, Wald N, Morris J. Lowering blood pressure to prevent myocardial infarction and stroke: a new preventive strategy. Health Technol Assess. 2003; 7:1-94.

6.Wang JG, Pimenta E, Chwallek F. Comparative review of the blood pressure-lowering and cardiovascular benefits of telmisartan and perindopril. Vasc Health Risk Manag. 2014; 10:189-200.

7.Taddei S. Combination therapy in hypertension: what are the best options according to clinical pharmacology principles and controlled clinical trial evidence? Am J Cardiovasc Drugs. 2015; 15:185-194.

8.Conlin PR, Williams GH..Use of calcium channel blockers in hypertension. Adv Intern Med. 1998; 43:533-62.

9.White P. Calcium channel blockers. AACN Clin Issues Crit Care Nurs. 1992; 3:437-446.

10.van Geijn HP, Lenglet JE, Bolte AC. Nifedipine trials: effectiveness and safety aspects. BJOG. 2005; 112 Suppl 1:79-83.

11.Das AM, Harris DA. Mitochondrial ATP synthase regulation in heart: defects in hypertension are restored after treatment with captopril. Cardioscience. 1992; 3:227-232.

12.Postnov YV, Orlov SN, Budnikov YY Doroschuk AD Postnov AY. Mitochondrial energy conversion distubance with decrease in ATP production as source of systemic arterial hypertension. Pathophysiology. 2007; 14: 195-204.

13.Roman MJ, Saba PS, Pini R, Spitzer M, Pickering TG, Rosen S, Alderman MH, Devereux RB. Parallel cardiac and vascular adaptation in hypertension. Circulation. 1992; 86:1909-1918.

14.Ziegelhöffer A, Mujkošová J, Ferko M, Vrbjar N, Ravingerová T, Uličná O, Waczulíková I, Ziegelhöffer B. Dual influence of spontaneous hypertension on membrane properties and ATP production in heart and kidney mitochondria in rat: effect of captopril and nifedipine, adaptation and dysadaptation. Can J Physiol Pharmacol. 2012; 90:1311-1323.

15.Ziegelhöffer A, Ravingerová T, Waczulíková I, Cársky J, Neckár J, Ziegelhöffer-Mihalovicová B, Styk J. Energy transfer in acute diabetic rat hearts: adaptation to increased energy demands due to augmented calcium transients. Ann N Y Acad Sci 2002; 967: 463-468.

16.Ferko M, Gvozdjaková A, Kucharská J, Mujkosová J, Waczulíková I, Styk J, Ravingerová T, Ziegelhöffer-Mihalovicová B, Ziegelhöffer A. Functional remodeling of heart mitochondria in acute diabetes: interrelationships between damage, endogenous protection and adaptation. Gen Physiol Biophys. 2006; 25:397-413.

17.Ravingerová T, Adameová A, Matejíková J, Kelly T, Nemčeková M, Kucharská J, Pecháňová O, Lazou A. Subcellular mechanisms of adaptation in the diabetic myocardium: Relevance to ischemic preconditioning in the nondiseased heart. Exp Clin Cardiol. Winter. 2010; 15:68-76.

18.Duchin KL, McKinstry DN, Cohen AI, Migdalof BH. Pharmacokinetics of captopril  in healthy subjects and in patients with cardiovascular diseases. Clin Pharmacokinet. 1988;14:241-59.

19.Snider ME, Nuzum DS, Veverka A. Long-acting nifedipine in the management of the hypertensive patient. Vascular Health and Risk Management. 2008; 4:1249-1257.

20.Kubo T, Fujie K, Yamashita M, Misu Y. Antihypertensive effects of nifedipine on conscious normotensive and hypertensive rats. J Pharmacobiodyn. 1981; 4:294-300.

21.Miguel-Carrasco JL, Zambrano S, Blanca AJ, Mate A, Vázquez CM. Captopril reduces cardiac inflammatory markers in spontaneously hypertensive rats by inactivation of NF-kB. Journal of Inflammation (London, England). 2010; 7:21.

22.Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193:265-275.

23.Taussky HH, Shorr E. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem. 1953; 202:675-685.

24.Horvat A, Momić T, Petrović S, Nikezić G, Demajo M. Selective inhibition of brain Na,K-ATPase by drugs. Physiol Res 2006; 55:325-338.

25.Vrbjar N, Dzurba A, Ziegelhöffer A. Enzyme kinetics and the activation energy of (Na,K)-ATPase in ischaemic hearts: influence of the duration of ischaemia. Gen hysiol Biophys 1994; 13:405-411.

26.Shinitzky M. Membrane fluidity in malignancy. Adversative and recuperative. Biochim Biophys Acta 1984; 738:251-261.

27.Malekova L, Kominkova V, Ferko M, Stefanik P, Krizanova O, Ziegelhöffer A, Szewczyk A, Ondrias K. Bongkrekic acid and atractyloside inhibits chloride channels from mitochondrial membranes of rat heart. Biochim Biophys Acta 2007; 1767:31-44.

28.Millgård J, Hägg A, Sarabi M, Lind L. Captopril, but not nifedipine, improves endothelium-dependent vasodilation in hypertensive patients. J Hum Hypertens 1998; 12:511-516.

29.Weir MR. Targeting mechanisms of hypertensive vascular disease with dual calcium channel and renin-angiotensin system blockade. J Hum Hypertens 2007; 21:770-779.

30.Meyers RS, Siu A. 2011. Pharmacotherapy review of chronic pediatric hypertension. Clin Ther 2011; 33:1331-1356.

31.Ago T, Yang Y, Zhai P, Sadoshima J. Nifedipine inhibits cardiac hypertrophy and left ventricular dysfunction in response to pressure overload. J Cardiovasc Transl Res 2010; 3:304-313.

32.Chen JB, Rao BF, Chang J, Liao XG, Cao YD. Effects of captopril on myocardial energy metabolism in mice with viral myocarditis]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2003; 15:485-488.

33.Vavrínková H, Tutterová M, Stopka P, Divisová J, Kazdová L, Drahota Z. The effect of captopril on nitric oxide formation and on generation of radical forms  of mitochondrial respiratory chain compounds in ischemic rat heart. Physiol Res 2001; 50:481-489

34.Yanagishita T, Tomita M, Itoh S, Mukae S, Arata H, Ishioka H, Geshi E, Konno N, Katagiri T. Protective effect of captopril on ischemic myocardium. Jpn Circ J 1997; 61:161-169.

35.Mrak RE, Carry MM, Murphy ML, Peng CF, Straub KD. Reperfusion injury in ischemic myocardium: effects of nifedipine and verapamil. Am J Cardiovasc Pathol 1990; 3:61-68.

36.Mujkosová J, Ulicná O, Waczulíková I, Vlkovicová J, Vancová O, Ferko M, Polák S, Ziegelhöffer A. Mitochondrial function in heart and kidney of spontaneously hypertensive rats: influence of captopril treatment. Gen Physiol Biophys. 2010; 29:203-207.

37.Rossi MA, Ramos SG, Prado CM. Chronic inhibition of nitric oxide synthase induces hypertension and cardiomyocyte mitochondrial and myocardial collagen remodelling in the absence of hypertrophy. J Hypertens 2003; 21:993-1001.

38.Shi C, Wu F, Xu J. Incorporation of β-sitosterol into mitochondrial membrane enhances mitochondrial function by promoting inner mitochondrial membrane fluidity. J Bioenerg Biomembr 2013; 45:301-305.

39.Schneider JM, Younes A. Binding of bepridil to isolated rat heart mitochondria. Basic Res Cardiol 1989; 84:623-630.

40.Almotrefi AA, Dzimiri N. Effects of beta-adrenoceptor blockers on mitochondrial ATPase activity in guinea pig heart preparations. Eur J Pharmacol. 1992; 215:231-236.

41.Bernardo TC, Cunha-Oliveira T, Serafim TL, Holy J, Krasutsky D, Kolomitsyna O, Krasutsky P, Moreno AM, Oliveira PJ. Dimethylaminopyridine derivatives of lupane triterpenoids cause mitochondrial disruption and induce the permeabilitym transition. Bioorg Med Chem 2013; 21:7239-7249.

42.Chvanov M. Metabolic control of elastic properties of the inner mitochondrial membrane. J Phys Chem B 2006; 110:22903-22909.

43.Unsay JD, Cosentino K, Subburaj Y, García-Sáez AJ. Cardiolipin effects on membrane structure and dynamics. Langmuir 2013; 29:15878-15887.

44.Eckmann J, Eckert SH, Leuner K, Muller WE, Eckert GP. Mitochondria: mitochondrial membranes in brain ageing and neurodegeneration. Int J Biochem Cell Biol 2013; 45:76-80.

45.Richter C, Schweizer M, Cossarizza A, Franceschi C. Control of apoptosis by the cellular ATP level. FEBS Lett 1996; 378:107-110.

46.Ziegelhöffer A., Waczulíková I, Ravingerová T, Ziegelhöffer-Mihalovičová B., Neckář J, Styk J. Augmented Energy Transfer in Rat Heart Mitochondria: Compensatory Response to Abnormal Household of Energy in Acute Diabetes, Atherosclerosis, Hypertension and Diabetes, Progress in Experimental Cardiology 2003; 8: 439-453.

47.Waczulikova I, Habodaszova D, Cagalinec M, Ferko M, Ulicna O, Mateasik A, Sikurova L, Ziegelhöffer A. Mitochondrial membrane fluidity, potential, and calcium transients in the myocardium from acute diabetic rats. Can J Physiol Pharmacol 2007; 85:372-381.

48.Jaremko L, Jaremko M, Giller K, Becker S, Zweckstetter M. Structure of the mitochondrial translocator protein in complex with a diagnostic ligand. Science 2014; 343:1363-1366.

49.Pereira LC, Miranda LF, de Souza AO, Dorta DJ. BDE-154 induces mitochondrial permeability transition and impairs mitochondrial bioenergetics. J Toxicol Environ Health A 2014; 77:24-36.