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Objective(s): This study aims to evaluate combined proton nuclear magnetic resonance (1H NMR) 
spectroscopy and gas chromatography-mass spectrometry (GC-MS) metabolic profiling approaches, 
for discriminating between mustard airway diseases (MADs) and healthy controls and for providing 
biochemical information on this disease.  
Materials and Methods: In the present study, analysis of serum samples collected from 17 MAD subjects 
and 12 healthy controls was performed using NMR. Of these subjects, 14 (8 patients and 6 controls) 
were analyzed by GC-MS. Then, their spectral profiles were subjected to principal component analysis 
(PCA) and orthogonal partial least squares regression discriminant analysis (OPLS-DA).  
Results: A panel of twenty eight metabolite biomarkers was generated for MADs, sixteen  NMR-derived 
metabolites (3-methyl-2-oxovaleric acid, 3-hydroxyisobutyrate, lactic acid, lysine, glutamic acid, 
proline, hydroxyproline, dimethylamine, creatine, citrulline, choline, acetic acid, acetoacetate, 
cholesterol, alanine, and lipid (mainly VLDL)) and twelve GC-MS-derived metabolites (threonine, 
phenylalanine, citric acid, myristic acid, pentadecanoic acid, tyrosine, arachidonic acid, lactic acid, 
propionic acid, 3-hydroxybutyric acid, linoleic acid, and oleic acid). This composite biomarker panel 
could effectively discriminate MAD subjects from healthy controls, achieving an area under receiver 
operating characteristic curve (AUC) values of 1 and 0.79 for NMR and GC-MS, respectively. 
Conclusion: In the present study, a robust panel of twenty-eight biomarkers for detecting MADs was 
established. This panel is involved in three metabolic pathways including aminoacyl-tRNA 
biosynthesis, arginine, and proline metabolism, and synthesis and degradation of ketone bodies, and 
could differentiate MAD subjects from healthy controls with a higher accuracy.  
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Introduction 
Sulfur mustard (2,2'-dichlorodiethyl sulfide, SM) 

is an alkylating agent that causes dose-dependent 
morbidities after topical or inhalational exposures. It 
can produce both early and late manifestations; 
delayed complications have been observed many 
years following the exposure to SM such as respire- 
tory disorders (1, 2). Previous pathological and 
radiological studies have shown that bronchiolitis 
obliterans is the main airway disease in SM-exposed 
patients (3-5) and other airway diseases include 
bronchiectasis, tracheobronchomalacia, Tracheobronchial  

 

stenosis (6, 7). Since SM can affect the entire set of 
conducting airways and small airways, ailments 
related to SM were named mustard airway diseases 
(MADs). Pathological and radiological findings 
demonstrated that MADs differ from chronic 
obstructive pulmonary disease (COPD) (7) in spite of 
having some similar symptoms (8). There is no 
common consensus about the pathophysiological 
basis of respiratory complications caused by SM (6). 
Of note, diagnostic criteria for MADs to date include 
imaging and bronchoscopy which are imperious and 
invasive methods, respectively. 
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Metabolomics studies employ some analytical 
techniques including, nuclear magnetic resonance 
(NMR) (9, 10) and mass spectrometry (GC/LC−MS 
(11, 12)) for the identification of biomarkers and 
metabolic pathways altered in a variety of clinical 
disorders such as pulmonary diseases (13). It, like 
the other 'omic' approaches, provides precious clues 
to better understanding the mechanism of MADs. 

Our group recently reported the feasibility of 
accurate NMR-based metabolomic prediction for 
both normal and severe individuals with MADs (14, 
15). It is important that the performance of the 
identified biomarkers be confirmed using another 
potent multivariate analysis with different data 
mining algorithm as if it was analyzed in this work. 
Moreover, in the present manuscript, we use GC-MS 
to identify a more comprehensive metabolite panel 
than single approach (NMR spectroscopy) for severe 
patients with MADs. To the best of our knowledge, no 
GC-MS-based metabolomics analysis was performed 
in very severe MAD patients until now. We intended 
to gain knowledge of the pathophysiological basis of 
MADs and find potential metabolic biomarkers 
associated with MAD that may help in diagnosis and 
therapeutic strategies. 
 

Materials and Methods 
Reagents 

N,O-Bis (trimethylsilyl) trifluoroacetamide (BSTFA) 
with 1% trimethylchlorosilane (TMCS), deuterium oxide 
(D2O), pyridine, methoxyamine hydrochloride, and L-
Norleucine were purchased from Sigma-Aldrich 
(Germany), and acetonitrile (HPLC grade) was purchased 
from Merck.  

 
Sample collection 

The present work was conducted by Shahid 
Beheshti University of Medical Sciences (SBMU) from 
July 2012 until October 2013, after approval by the 
SBMU medical ethnic committee. MAD patients were 
recruited from men attending the pulmonary division 
of Sasan Hospital (Tehran, Iran). These patients were 
exposed to SM in Iran–Iraq war (1983-1988). 

Patients with MADs were selected from the “very 
severe” group, very severe airflow restriction was 
defined as forced expiratory volume in one second 
(FEV1)<30% and FEV1/forced vital capacity (FVC) 
<70% predicted (16).  

The details of patient recruitment, evaluation, 
inclusion and exclusion criteria, specimen collection, 
and handling have been previously published for             
the NMR part (14). In conducting this study, we 
combined NMR and GC-MS methods to identify a more 
comprehensive metabolite panel. A total of 17 MAD 
patients and 12 healthy controls in the NMR part and 8 
MAD patients and 6 healthy controls in the GC-MS part 
were enrolled in this study following informed consent. 

Volunteers in the control group were included on 
the basis of a physicians' assessment of their general 

health status and only male volunteers were selected 
for this study. MAD patients were compared to age 
and gender-matched healthy controls. Of note, 
because of the severity of the disease, patients were 
taking inhaled corticosteroids (fluticasone 250–500 
mg/salmeterol 25–50 mg per 12 hr). 

Each whole blood sample was collected in a clean 
tube and was immediately centrifuged. The resultant 
serum was transferred into a clean tube and stored 
at −80 °C until use.  

 

NMR acquisition and data processing 
The procedures for NMR spectroscopy and data 

processing were thoroughly explained in our previous 
study (14).  

 

GC-MS acquisition 
We mixed 100 μl of serum with 300 μl of acetonitrile. 

After vortexing, the mixture was left to stand for 15 min 
and then centrifuged (3000 rpm for 10 min at 4 °C) to 
remove proteins. Subsequently, 100 μl of the upper layer 
was transferred and evaporated to dryness in a vacuum 
centrifuge. Twenty μl methoxyamine hydrochloride in 
pyridine (40 mg/ml) was added to each residue. 
Methoxymation was carried out at 30 C for 90 min. After 
that, silylation was performed by adding 150 μl BSTFA 
with 1% TMCS to the mixture. This solution was 
incubated for 90 min at 60 C. 

GC-MS analysis of derivatized serum samples were 
performed using an Agilent 6890 GC coupled to an 
Agilent 5973 inert EI/CI mass selective detector 
(Agilent, Santa Clara, CA) with an HP-5MS capillary 
column (5% phenyl, 95% dimethylpolysiloxane; 30 m  
0.25 mm i.d., 0.25-µm film thickness, J&W Scientific) in 
the splitless mode. The flow of helium carrier gas was 
kept constant at 1.9 ml min-1. The injection port was set 
at 250 °C. Initial GC temperature was 60 °C, holding for 
3 min, and then elevated to 280 °C at a rate of 10 °C 
min-1, holding for 6 min. The transfer-line heater, ion 
source temperature, and MS quadrupole temperature 
were set at 280 °C, 150 °C, and 150 °C, respectively. The 
measurements were carried out with the electron 
impact ionization mode (70 eV). The full scan spectra 
(35-600 m/z) were acquired after a 7 min solvent 
delay. The dwell time for each was 150 ms ion-1. Also, 
all samples were run with internal standard (L-
Norleucine). 

 

Data analysis for GC-MS 
Data files from the GC-MS analysis were converted 

from the Agilent .d files to .csv format using the 
Chemstation software, and .csv files were then loaded into 
Matlab (version 6.5.1, The MathWorks, Cambridge, UK). 

All GC-MS spectral data were firstly baseline-
corrected using the asymmetric least squares (ALS) 
method (17) and the standard technique that was 
used for the alignment of peaks was the correlation 
optimized warping approach (COW) (18-20). The 
peak areas were subsequently normalized using L-
Norleucine (internal standard). 
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Table 1. Characteristics of mustard airway disease patients and 
healthy controls in nuclear magnetic resonance experiment  
 

 Control Very severe  
Number (n) 12 17 
Anthropometric and 
demographic Characteristics 

  

Gender male male 
Age (year) 47.84±7.67 47.88±7.79 
Height (cm)  174.26±4.8 171.35±6.8 
Weight (kg)  78.84±9.29 74.23±15.86 
BMI (kg/m2) 25.96±2.9 25.29±5.42 
Lung function   
FEV1 (% predicted) 95.84±8.3 28.26±10.2a 
FVC (%) 89.26±8.1 40.46±15.26a 
FEV1/FVC (%) 85.68±3.44 59.73±16.17a 
Values are presented as mean±SD. BMI: body mass index; FEV1: 
forced expiratory volume in one second; FVC: forced vital capacity. 
Compared with the control group: a P<0.001 

 
Statistical analysis 

The obtained matrix from the “Data Analysis for 
NMR and GC-MS” section was imported to SIMCA 
Software Version 14.0 (Umetrics, Umeå, Sweden), 
where multivariate statistical analysis was performed. 
All spectra were mean-centered and unit variance (UV)-
scaled before multivariate statistical analysis. To 
identify outliers and produce the data structure 
overview, principal component analysis (PCA) was 
performed on the dataset. Then, orthogonal projection 
to latent structures-discriminant analysis (OPLS-DA) 
was applied to build models and identify the differential 
metabolites between the two groups. The quality and 
reliability of the models were assessed by the 
parameters R2 and Q2 where R2 measures the goodness 
of fit while Q2 measures the goodness of prediction. 
Furthermore, a receiver operating characteristic (ROC) 
analysis generated from 7-fold cross-validation 
obtained using SIMCA and the area under the ROC 
curve (AUC) value was calculated using SPSS 16.0 
(SPSS, Inc., Chicago, IL) with the 95% confidence 
interval as an estimate of diagnostic usefulness. 

 
Identification of metabolites 
Identification of metabolites using NMR 

 The metabolite resonances were identified 
according to signal multiplicity and assignments 
published in the literature such as one by Nicholson  
et al. (21) and online databases (http://hmdb.ca).  
 
Identification of metabolites using GC-MS 

We identified the interested peaks (the 
trimethylsilylated metabolites) by the Automated 
Mass Spectral Deconvolution System (AMDIS-version 
2.71, 2012) and the NIST mass spectral library 
(version 2.0, 2008) based on retention time and m/z 
ratio. In the present study, compounds with match 
factor more than 80% were reported. Match factor 
indicates the similarity percentage between our 
spectrum and NIST mass spectral library. 

Pathway analysis was performed using MetaboAnalyst 
 

3 software (htpp://www. metabolanalyst.ca/). Twenty-
eight metabolites that were significantly altered in the 
serum of MAD patients compared to healthy controls 
using NMR and GC/MS were entered into 
MetaboAnalyst. Significant pathways were considered 
with a P-value and false discovery rate (FDR) less than 
0.05 and impact score more than 0.1.  

 

Results  
Clinical and anthropometric characteristics of 
participants  

Demographic and pulmonary function tests 
(PTFs) are summarized in Table 1 (14) and Table 2 
for NMR and GC-MS experiments, respectively. The 
healthy controls had significantly higher FEV1, FVC, 
and FEV1/FVC values compared to the MAD patients 
(P<0.001).  

 

 
 
 
Figure 1. The Carr-Purcell-Meiboom-Gill (CPMG) sequence 
experiments of the serum samples from some (A) healthy controls 
and (B) patients (=0.7-4.2). Red boxes in the middle illustrate 
magnification of valine region (=0.99-1.08) and alanine region 
(=1.48-1.515) in healthy controls and patients. The following 
metabolites are identified: 1, lipid: LDL CH3-(CH2)n; 2, lipid: 
VLDLCH3-(CH2)n; 3, leucine; 4, isoleucine; 5, valine; 6, lipid: LDL 
CH3-(CH2)n; 7, lipid: VLDL (CH2)n-CO; 8, threonine; 9, alanine; 10, 
lipid: VLDL CH2-CH2-CO; 11, lysine; 12, acetate; 13, lipid: CH2-
CH=CH ; 14, N-acetylated glycoproteins; 15: glutamate + 
glutamine; 16, acetoacetate; 17: glutamate; 18, glutamine; 19, 
citrate; 20, lipid: C=CCH2C=C; 21, asparagine; 22, creatine; 23, 
creatinine; 24, choline; 25: proline; 26,  & -glucose; 27, lactate 
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Table 2. Characteristics of mustard airway disease patients and 
healthy controls in gas chromatography-mass spectrometry 
experiment 
 

 Control Very severe  
Number (n) 6 8 
Anthropometric and 
demographic Characteristics 

  

Gender male male 
Age (year) 45.8±4.76 46.8±7.58 
Height (cm) 174.2±4.94 171.7±8.08 
Weight (kg) 76.7±8.25 74.9±16.94 
BMI (kg/m2) 25.35±3.4 25.37±5.63 
Lung function   
FEV1 (% predicted) 96.7±10.38 25.00±5.54a 
FVC (%) 90.2±9.13 37.8±7.92a 
FEV1/FVC (%) 85.3±3.33 54.1±8.49a 
 
Values are presented as mean±SD. BMI: body mass index; FEV1: 
forced expiratory volume in one second; FVC: forced vital capacity. 
Compared with the control group: a P<0.001 
 

Multivariate data analysis of NMR 
NMR spectra of serum samples from healthy 

controls and MAD patients were shown in Figures 1A  
and 1B, respectively.  

PCA was first performed based on the normalized 
NMR spectral data obtained from serum; PCA score 
plot revealed no outliers (Figure 2A). Furthermore, 
no discernible clustering was observed between the 
MAD group and control group. The PCA score plot 
was characterized by the following parameters: R2X 
= 0.89 and Q2 = 0.715.  

 
 
A 

 
 
B 
 

 

   C 
 

 
     
 
 
 
 
 
 
 
 
 
     D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Metabolomic analysis of serum samples using nuclear 
magnetic resonance. (A) Two-dimensional PCA score plot of 
patients (blue box) versus healthy controls (green circle). (B) 
OPLS-DA score plot showing a clear discrimination between 
patients and healthy controls (model diagnostics were R2X= 0.749, 
R2Y= 0.949 and Q2 = 0.873). (C) OPLS-DA loading plot showing 
discriminant variables between patients and healthy controls (the 
variables on the right are increased chemical shifts and the 
variables on the left are decreased chemical shifts in patients, 
related metabolites are listed in Table 3). (D) ROC curve analysis 
was performed to evaluate the diagnostic performance of OPLS-
DA model, AUC value was 1 
 

OPLS-DA was then performed, which can discover 
the metabolic biomarkers responsible for the 
separation of the groups. As shown in Figure 2B, the 
control and MAD groups were clearly distinguished 
in the OPLS-DA score plot. The significant variables 
(chemical shifts) responsible for the discrimination 
between healthy controls and patients were shown 
as a loading plot (R2X= 0.749, R2Y= 0.949 and Q2 = 
0.873) of the predictive model in Figure 2C. The 
parameter values of the model indicated that te 
OPLS-DA possessed a satisfactory fit with good 
predictive power. The ROC curve was plotted and its 
corresponding AUC was 1 (Figure 2D).  

In the evaluation of the MAD group against 
control using NMR, sixteen metabolites were 
significantly altered: 3-methyl-2-oxovaleric acid, 3-
hydroxy-isobutyrate, lactic acid, lysine, glutamic acid, 
proline, hydroxyproline, dimethylamine, creatine, 
citrulline, choline, acetic acid, acetoacetate, and 
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Table 3. List of small molecular weight metabolites that play an important role in discrimination of mustard airway disease patients and 
healthy controls using nuclear magnetic resonance 
 

No. Metabolite  1H (p.p.m.)a Fold change 
Direction of 
variationb 

Metabolic pathway 

1 Cholesterol 0.71, 0.83 2.1  Steroid biosynthesis 
2 3-methyl-2-oxovaleric acid 1.09 1.65  BCAA degradation 
3 3-hydroxyisobutyrate 1.11 1.84  BCAA degradation 
4 Lactic acid 1.33, 4.13 1.5  Glycolysis 
5 Alanine 1.49, 1.51 2.1  Alanine metabolism 
6 Lipid (mainly VLDL) 1.61 1.7  Lipid metabolism 
7 Lysine 1.71,1.89,3.73 1.57  Lysine metabolism 
8 Citrulline 1.87,3.13 2.25  Urea cycle 
9 Acetic acid 1.93 1.96  Lipid metabolism 

10 Acetoacetate 2.23 1.54  
Synthesis and degradation of 

Ketone bodies 

11 L-Glutamic acid 2.45 1.62  
Glutamine and glutamate 

metabolism 
12 Dimethylamine 2.71 1.86  Carbon metabolism 

13 Creatine 3.05 1.8  
Glycine, serine and threonine 

Metabolism 

14 Choline 3.21 1.9  
Glycerophospholipid 

metabolism 

15 Proline 3.35 1.67  
Arginine and proline 

metabolism 

16 Hydroxyproline 3.37 1.8  
Arginine and proline 

metabolism 
 

BCAA: branched-chain amino acid; a Chemical shift of signal used for quantification; b Increased or decreased in patients compared to 
healthy controls 
 

 
Figure 3. Representative gas chromatography-mass spectrometry 
total ion chromatograms of the serum samples from the two 
groups (patients and healthy controls) after chemical 
derivatization. The following metabolites are identified: 1, L-lactic 
acid; 2, R)-3-hydroxybutyric acid; 3, L-leucine ; 4, urea; 5, L-serine; 
6, L-threonine; 7, L- proline; 8, glutamine; 9, phenylalanine; 10, D-
glucofuranoside; 11, D-galactofuranose; 12, D-glucopyranose; 13, 
L-tyrosine; 14, hexadecanoic acid; 15, uric acid; 16, linoleic acid; 
17, oleic acid; 18, L-tryptophan; 19, arachidonic acid; 20, 
monostearin; 21, cholesterol 

 
 

cholesterol were upregulated and alanine and lipid 
(mainly VLDL) were downregulated in the patient 
group (Table 3). 

 
Multivariate data analysis for GC-MS 

GC-MS chromatograms of serum samples from 
MAD patients and healthy controls were shown in 
Figure 3. 

The resulting data were exported into the SIMCA 
software for multivariate analysis including PCA and 
OPLS-DA. The PCA score plot of GC-MS spectra data 
obtained from the control group and the MAD group 
is shown in Figure 4A (R2X = 0.589 and Q2 = 0.332). 
No outliers and no distinct PCA pattern were 
observed between groups.  

Then, OPLS-DA was used to explore the difference 
between groups by incorporating the known 
classification. Based on the OPLS-DA model MAD 
patients and healthy controls were discriminated 
with an R2X of 0.416, an R2Y of 0.751, and a Q2 of 
0.239 (Figure 4B). The loading plot of the related 
OPLS-DA model was displayed in Figure 4C. This 
loading plot indicates the regions of the GC-MS 
spectra that are responsible for the clustering in the 
score plot of the serum samples. Serum metabolite 
biomarkers obtained from GC-MS yielded an AUC 
value of 0.792 in discriminating MADs from controls 
(Figure 4D). 

A total of twelve metabolites from GC-MS analysis 
were identified as potential biomarkers for MADs. 
Differential metabolites identified from the focused 
metabolomic analysis suggested a significant 
reduction of threonine, phenylalanine, citric acid, 
myristic acid, pentadecanoic acid, tyrosine, and 
arachidonic acid in the serum of MAD patients 
compared to the control group but elevation of lactic 
acid, propionic acid, 3-hydroxybutyric acid, linoleic 
acid, and oleic acid (Table 4). 

 
Metabolic pathway analysis  

Metabolic pathway analysis was performed using 
the metaboanalyst tool. This method identified three 
significant metabolic pathways including aminoacyl-
tRNA biosynthesis, arginine, and proline metabolism, 
and synthesis and degradation of ketone bodies 
(Figure 5A). Additionally, Figure 5B illustrated a 
more detailed pathway map associated with 
biomarker metabolites identified using both NMR- 
and GC/MS-based in MADs. 
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Table 4. Metabolites that significantly distinguish mustard airway disease patients from healthy controls using gas chromatography-mass 
spectrometry 
 

No. Metabolite 
Retention 

time 
Mass 

fragments 
Fold 

change 
Match 
factor 

Direction of 
variationa 

Metabolic pathway 

1 Lactic acid 7.753 191,219 1.99 90.2  Glycolysis 
2 Propionic acid 7.946 73,147,189 2.09 83.7  Fatty acid metabolism  

3 
3-Hydroxybutyric 

acid 
9.913 191,233 1.76 80  

Synthesis and degradation 
of Ketone bodies 

4 Threonine 12.575 73,218,117 2.74 92.8  Threonine metabolism 

5 Phenylalanine 16.111 218,73,192 5.25 83.3  
Phenylalanine and Tyrosine 

Metabolism 
6 Citric acid 17.642 273,363,347 2.22 90.8  Citric acid cycle 
7 Myristic acid 17.667 117,132,285 2.19 88.4  Fatty acid metabolism 
8 Pentadecanoic acid 18.606 299,75,117 3.05 82.8  Fatty acid metabolism 
9 Tyrosine 18.657 218,73,280 3.12 92.4  Tyrosine Metabolism 

10 Linoleic acid 20.895 73,337,67 2.26 89.2  Fatty acid metabolism 
11 Oleic acid 20.972 73,339,117 1.52 93.3  Fatty acid metabolism 
12 Arachidonic acid 22.232 73,55,117 5.89 85.3  Fatty acid metabolism 

 

a Increased or decreased in patients compared to healthy controls 
 
 
 
 
A   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Metabolomic analysis of serum samples using gas chromatography-mass spectrometry. (A) Two-dimensional PCA score plot of 
patients (blue box) versus healthy controls (green circle). (B) OPLS-DA score plot showing a clear discrimination between patients and 
healthy controls (model diagnostics were R2X= 0.416, R2Y= 0.751 and Q2 = 0.239). (C) OPLS-DA loading plot showing discriminant 
variables between patients and healthy controls (the variables on the right are increased retention times and the variables on the left are 
decreased retention times in patients, related metabolites are listed in Table 4). (D) ROC curve analysis was performed to evaluate the 
diagnostic performance of OPLS-DA model, AUC value was 0.792 
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A 

 

B 

 

Figure 5. Metabolic Pathway analysis. (A) Metaboanalyst 3 showing altered metabolic pathways in serum from mustard airway disease 
patients. Statistics for pathways with major change based on the P-value, FDR and impact score (P-value <0.05, FDR <0.05 and impact > 
0.1). (B) Map illustrating the most predominant disturbed metabolic pathways and the biochemical linkages among the biomarker 
metabolites identified in patients. Purple boxes: Biomarker metabolites identified from NMR-based metabolomics, cream boxes: Biomarker 
metabolites identified from GC-MS-based metabolomics, red box: Biomarker metabolites identified from NMR and GC/MS-based 
metabolomics,  and : up-regulation and down-regulation in the patients compared healthy controls 

 
 

 

Discussion 
In the present study, human serum was used to 

study metabolites in lung injury induced by SM and 
its subsequent long-term effects on lung function. 
Our study demonstrates metabolomics profiling 
using serum of MADs shows a distinct pattern 
compared to healthy controls with alteration in 
specific pathways related to energy metabolism. It 
was found that metabolites related to amino acid 
metabolism (3-methyl-2-oxovaleric acid, 3-
hydroxyisobutyrate, glutamate, lysine, threonine, 
phenylalanine, tyrosine, proline, hydroxyproline, and 
alanine), lipid metabolism (cholesterol, VLDL, 
acetate, myristic acid, pentadecanoic acid, 
arachidonic acid, linoleic acid, oleic acid, propionic 
acid, and choline), tricarboxylic acid (TCA) cycle 
(citrate), ketone bodies (3-hydroxybutyrate and 
acetoacetate), glycolysis pathway (lactate), urea 
pathway (citrulline), creatine pathway (creatine), 

and dimethylamine were significantly altered in 
patients as compared to healthy controls. Among 
these selected marker metabolites, we detected some 
that were worthy of further investigation. We would 
like to discuss their roles in MADs. 

To the present authors’ knowledge, this is the 
first time that global metabolomics using NMR and 
GC-MS was investigated in very severe MADs. One 
limitation of our research was the sample size, which 
was small in GC-MS experiments. The second 
limitation was that patients received inhaled 
corticosteroid therapy. Another limitation of this 
study is lack of a patient group with severe lung 
disease from nonchemical origins to compare with 
the SM exposed.  

Very severe MADs have breathing problems that 
can result in decreased blood oxygen levels 
(hypoxia), reduced aerobic oxidation pathway, and 
elevated energy demands of the respiratory muscles. 
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Carbohydrates provide approximately half the 
energy of respiratory muscles, while the other half is 
predominantly from lipid or fatty acid metabolism 
(22). Under hypoxic condition, glycolysis occurs 
which leads to a significant increase in the lactic acid 
levels. Hypoxia can also cause activation of tissue-
resident macrophages (23). Subsequently, up-
regulation of pro-inflammatory cytokines including, 
interleukin-1 (IL-1), IL-6, and tumor necrosis factor-
 (TNF-) is associated with exposure of 
macrophages to hypoxia (24-26). This is in 
agreement with previous reports that demonstrated 
exposure to SM may increase inflammatory 
cytokines such as IL-1, IL-6, and TNF- (27-29). 
Furthermore, increased levels of these cytokines are 
associated with the induction of oxidative stress 
(OS); as was demonstrated in our prior study, 
exposure to SM elevated OS (30). 

An increased level of choline was shown in the 
MAD group compared to the control group. Choline is 
released from membrane phospholipids by 
phospholipase D (PLD), which catalyzes the 
hydrolysis of phosphatidylcholine to phosphatic acid 
and choline during membrane breakdown after 
hypoxia. High PLD activity and elevated levels of 
serum choline have previously been associated with 
oxidative stress, hypoxia, and inflammation (31). The 
extent of choline release may reflect the severity of 
global tissue damage (32). 

One more metabolite of interest, arachidonic acid 
(AA), decreased in the serum of MAD patients as 
compared with healthy controls. AA is a 
polyunsaturated fatty acid that is released from cell 
membranes by PLA2 and is converted into 
prostaglandins during inflammation. In addition, 
other phospholipases such as PLC and D can cause 
the release of AA from membrane phospholipids 
(33). Study showed that short-term effect of SM is 
increased intracellular free calcium, which activates 
PLA2 and subsequently elevates release of AA from 
the cell membrane (34). Moreover, it has been 
demonstrated that exposure to SM caused an 
increase in AA release from human keratinocytes 
(35). However, we found decreased levels of AA in 
the serum of MAD patients. As stated previously, 
patients with MAD received corticosteroids, which 
induce biosynthesis of a PLA2 inhibitor that prevents 
the release of AA (36). Unlike AA, two more 
unsaturated fatty acids namely, oleic acid and linoleic 
acid were elevated in these patients. Why these fatty 
acids are increased in MADs remains unknown, but it 
may be because of oleic and linoleic acid rich-diet. 
Further studies will be necessary to determine why 
the level of serum polyunsaturated fatty acids is 
modified in MADs. 

We also found increased levels of acetate and ketone 

bodies as well as decreased levels of lipoproteins 
(mainly VLDL) and saturated fatty acids in MADs. 
Acetate is the final product of lipid metabolism and its 
enhancement may indicate an accelerated lipid 
catabolism (37). Ketone bodies, including acetoacetate 
and 3-hydroxybutyrate, are catabolized from breaking 
down fatty acids in liver cell mitochondria  and their 
increase may reflect the utilization of storage lipids 
(38). Furthermore, decreased VLDL is consistent with 
elevated lipid degradation in these patients. Overall the 
observations suggest that lipolysis may be an important 
source of energy in MADs. 

We indicated an elevated level of 3- methyl-2-
oxovaleric acid and 3-hydroxyisobutyrate, which are 
degradation products from isoleucine and valine, 
respectively. They are so-called branched-chain 
amino acids (BCAA) which are utilized in the body 
and muscle protein synthesis. It can be hypothesized 
that proteolysis of proteins and oxidation of BCAAs 
have been activated in MADs. In NMR spectra of 
patients, we showed unusual peaks in valine, 
isoleucine, and alanine region and reduced levels of 
these amino acids in patients compared to healthy 
controls (Figure 1). The most likely explanation for 
these signals is that the samples are slightly alkaline 
and also vary in pH very slightly; this gives rise to 
variable amounts of bicarbonate which can react to 
form N-carbamates (the amino function reacting 
with bicarbonate) which have a slightly different 
chemical shift. The elevated levels of bicarbonates 
are a result of compensation for chronic respiratory 
acidosis. 

The levels of lysine, glutamate, proline, and 
hydroxyproline were significantly increased in the serum 
of MAD patients compared to healthy controls. Since 
these amino acid residues are found in collagen (39), 
these results suggest the activation of the collagen 
breakdown. This finding is consistent with previous 
studies that have demonstrated that the long-term effect 
of SM exposure causes an increase in the rate of 
osteopenia and osteoporosis (40). Osteoporosis is one of 
the most common causes of corticosteroid therapy that 
increases osteoblastic suppression and bone resorption 
(41), as well as loss of bone collagen that occurs in 
osteoporosis (42). In addition, Sorva et al. demonstrated 
that inhaled corticosteroids decreased carboxy 
propeptide of type I procollagen which is a marker of 
bone formation (43). Collagen accounts for more than 
90% of the organic bone matrix (43). Since MAD patients 
were receiving prolonged corticosteroid therapy, our 
results suggested corticosteroid-induced collagen loss in 
bone. However, it has been reported that the rate of 
osteoporosis in MAD patients receiving corticosteroid 
therapy is higher than asthmatic patients who were 
treated with the same dose of corticosteroids. Hence, SM-
induced osteoporosis has been suggested in these 
patients (40). 
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Interestingly, we found that the levels of two more 
metabolites, citrulline and dimethylamine, increased in 
serum of MAD patients as compared with healthy 
controls. It has been shown that exposure to SM 
elevates serum levels of some pro-inflammatory 
cytokines such as IL-6 (27), these cytokines increase 
dimethylarginine dimethylaminohydrolase2 (DDAH2) 
expression and activity in alveolar type II (ATII) cells 
(44, 45). DDAHs metabolize asymmetric dimethyl-
arginine (ADMA) and monomethyl arginine (L-NMMA), 
which is released from methylated proteins by 
proteolysis, to form L-citrulline and dimethylamine (46). 
Pullamsetti et al. reported that DDAH activation 
increases fibroblast-induced collagen deposition in an 
ADMA-independent manner (47). Since methylarginines 
are endogenous inhibitors of nitric oxide synthase (NOS), 
this enzyme is subsequently activated by expression and 
activation of DDAH2. This finding is in agreement with 
previous studies that showed SM and nitrogen mustard 
increased NOS2 expression and nitric oxide (NO) 
production (48, 49). However, the early effect of 
exposure to mustard gases on NO production has been 
evaluated in cell cultures and in rats, and it is not clear 
whether they are relevant to delayed complications of 
SM in veterans. Prior studies have also shown increased 
collagen in airway walls in moderate to severe patients 
exposed to SM (50). It may be suggested that collagen 
deposition in lungs of these patients has been produced 
by DDAH activation. Thus, we hypothesized that DDAH 
inhibition may provide a new therapeutic approach for 
attenuation of collagen production and subsequently 
lung injury in MADs. 
 

Conclusion  
This work is a global analysis based on meta-

bolomics profiling of human serum by NMR and GC-MS 
in MAD subjects. In the present study, a robust panel of 
biomarkers for detecting MADs was established. This 
panel, consisting of sixteen metabolites detected by 
NMR and twelve metabolites detected by GC-MS, could 
differentiate MAD subjects from healthy controls with a 
higher accuracy. These metabolites are involved in 
metabolic pathways such as aminoacyl-tRNA bio-
synthesis, arginine and proline metabolism, and 
synthesis and degradation of ketone bodies. The serum 
biomarker panel identified here shows promise as an 
effective diagnostic tool for MADs, but further 
investigations are needed to verify our results. 
Furthermore, in this study, we showed that PCA and 
OPLS-DA could not only confirm some metabolites that 
were identified by RF but also could recognize further 
significant metabolites. 
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