Supplementary:

Opre	QGQNSVEIEAFGKRYFTDSVRNMKNADLYGGSIGYF	6
PAO1	MKLKNTLGVVIGSLVAASAMNAFAQGQNSVEIEAFGKRYFTDSVRNMKNADLYGGSIGYF	60
B136-33	MKLKNTLGVVIGSLVAASAMNAFAQGQNSVEIEAFGKRYFTDSVRNMKNADLYGGSIGYF	60
Lesbss	MKLKNTLGVVIGSLVAASAMNAFAQGQNSVEIEAFGKRYFTDSVRNMKNADLYGGSIGYF	60
M18	MKLKNTLGVVIGSLVAASAMNAFAQGQNSVEIEAFGKRYFTDSVRNMKNADLYGGSIGYF	60
NCGM2. ${ }^{\text {S }}$	MKLKNTLGVVIGSLVAASAMNAFAQGQNSVEIEAFGKRYFTDSVRNMKNADLYGGSIGYF	\bigcirc
PA	MKLKNTLGVVIGSLVAASAMNAFAQGQNSVEIEAFGKRYFTDSVRNMKNADLYGGSIGYF	60
PA14	MKLKNTLGVVIGSLVAASAMNAFAQGQNSVEIEAFGKRYFTDSVRNMKNADLYGGSIGYF	60
DK2	MKLKNTLGVVIGSLVAASAMNAFAQGQNSVEIEAFGKRYFTDSVRNMKNADLYGGSIGYF	60
SCV20265	MKLKNTLGVVIGSLVAASAMNAFAQGQNSVEIEAFGKRYFTDSVRNMKNADLYGGSIGYF	60
PAK	MKLKNTLGVVIGSLVAASAMNAFAQGQNSVEIEAFGKRYFTDSVRNMKNADLYGGSIGYF	60
opre	LTDDVELALSYGEYHDVRGTYETGNKKVHGNLTSLDAIYHFGTPGVGLRPYVSAGLAHON	96
PAO1	LTDDVELALSYGEYHDVRGTYETGNKKVHGNLTSLDAIYHFGTPGVGLRPYVSAGLAHQN	120
B136-33	DDVELALSYGEYHDVRGTYETGNKKVHGNLTSLDAIYHFGTPGVGLRPYVSAGLAHON	120
LESB58	LTDDVELALSYGEYHDVRGTYETGNKKVHGNLTSLDAIYHFGTPGVGLRPYVSAGLAHQN	0
M18	LTDDVELALSYGEYHDVRGTYETGNKKVHGNLTSLDAIYHFGTPGVGLRPYVSAGLAHON	120
NCGM2	LTDDVELALSYGEYHDVRGTYETGNKKVHGNLTSLDAIYHFGTPGVGLRPYVSAGLAHQN	20
PA7	LTDDVELALSYGEYHDVRGTYETGNKKVHGNLTSLDAIYHFGTPGVGLRPYVSAGLAHON	120
PAl4	LTDDVELALSYGEYHDVRGTYETGNKKVHGNLTSLDAIYHFGTPGVGLRPYVSAGLAHQN	120
DK2	LTDDVELALSYGEYHDVRGTYETGNKKVHGNLTSLDAIYHFGTPGVGLRPYVSAGLAHQN	120
scv2o	LTDDVELALSYGEYHDVRGTYETGNKKVHGNLTSLDAIYHFGTPGVGLRPYVSAGLAHQN	20
PAK	LTDDVELALSYGEYHDVRGTYETGNKKVHGNLTSLDAIYHFGTPGVGLRPYVSAGLAHON	20
opre	ITNINSDSQGRQQMTMANIGAGLKYYFTENFFAKASLDGQYGLEKRDNGHQGEWMAGLGV	156
PAO1	ITNINSDSQGRQOMTMANIGAGLKYYFTENFFAKASLDGQYGLEKRDNGHQGEWMAGLGV	180
B136-33	ITNINSDSQGRQQMTMANIGAGLKYYFTENFFAKASLDGQYGLEKRDNGHQGEWMAGLGV	180
Lesbse	ITNINSDSQGRQOMTMANIGAGLKYYFTENFFAKASLDGQYGLEKRDNGHQGEWMAGLGV	180
M18	ITNINSDSQGRQQMTMANIGAGLKYYFTENFFAKASLDGQYGLEKRDNGHQGEWMAGLGV	180
NCGM2.S1	ITNINSDSQGRQQMTMANIGAGLKYYFTENFFAKASLDGQYGLEKRDNGHQGEWMAGLGV	180
PA7	ITNINSDSQGRCOMTMANIGAGLKYYFTENFFAKASLDGQYGLEKRDNGHQGEWMAGLGV	180
PAl4	ITNINSDSQGRQOMTMANIGAGLKYYFTENFFAKASLDGQYGLEKRDNGHQGEWMAGLGV	180
DK2	ITNINSDSQGRQQMTMANIGAGLKYYFTENFFAKASLDGQYGLEKRDNGHQGEWMAGLGV	180
ScV20265	ITNINSDSQGRQQMTMANIGAGLKYYFTENFFAKASLDGQYGLEKRDNGHQGEWMAGLGV	180
PAK	ITNINSDSQGRQQMTMANIGAGLKYYFTENFFAKASLDGQYGLEKRDNGHQGEWMAGLGV	180
opre	GFNFGGSKAAPAPEPVADVCSDSDNDGVCDNVDKCPDTPANVTVDANGCPAVAEVVRVCL	
PAO1	GFNFGGSKAAPAPEPVADVCSDSDNDGVCDNVDKCPDTPANVTVDANGCPAVAEVVRVQL	
B136-33	GFNFGGSKAAPAPEPVADVCSDSDNDGVCDNVDKCPDTPANVTVDANGCPAVAEVVRVQL	
Lesbss	GFNFGGSKAAPAPEPVADVCSDSDNDGVCDNVDKCPDTPANVTVDANGCPAVAEVVRVQL	40
M18	GFNFGGSKAAPAPEPVADVCSDSDNDGVCDNVDKCPDTPANVTVDANGCPAVAEVVRVOL	240
NCGM2. 51	GFNFGGSKAAPAPEPVADVCSDSDNDGVCDNVDKCPDTPANVTVDANGCPAVAEVVRVQL	
PA7	GFNFGGSKAAPAPEPVADVCSDSDNDGVCDNVDKCPDTPANVTVDANGCPAVAEVVRVQL	240
PAl4	GFNFGGSKAAPAPEPVADVCSDSDNDGVCDNVDKCPDTPANVTVDANGCPAVAEVVRVOL	
DK2	GFNFGGSKAAPAPEPVADVCSDSDNDGVCDNVDKCPDTPANVTVDANGCPAVAEVVRVOL	240
ScV20265	GFNFGGSKAAPAPEPVADVCSDSDNDGVCDNVDKCPDTPANVTVDANGCPAVAEVVRVQL	
PAK	GFNFGGSKAAPAPEPVADVCSDSDNDGVCDNVDKCPDTPANVTVDANGCPAVAEVVRVOL	
Opre	DVKFDFDKSKVKENSYADIKNLADFMKQYPSTSTTVEGHTDSVGTDAYNQKLSERRANAV	
PAOI	DVKFDEDKSKVKENSYADIKNLADFMKQYPSTSTTVEGHTDSVGTDAYNQKLSERRANAV	300
B136-33	DVKFDEDKSKVKENSYADIKNLADFMKQYPSTSTTVEGHTDSVGTDAYNQKLSERRANAV	300
Lesbss	DVKFDFDKSKVKENSYADIKNLADFMKQYPSTSTTVEGHTDSVGTDAYNQKLSERRANAV	300
M18	DVKFDFDKSKVKENSYADIKNLADFMKQYPSTSTTVEGHTDSVGTDAYNQKLSERRANAV	300
NCGM2.S1	DVKFDFDKSKVKENSYADIKNLADFMKQYPSTSTTVEGHTDSVGTDAYNQKLSERRANAV	300
PA7	DVKFDFDKSKVKENSYADIKNLADFMKQYPSTSTTVEGHTDSVGTDAYNQKLSERRANAV	300
PAl4	DVKFDEDKSKVKENSYADIKNLADFMKQYPSTSTTVEGHTDSVGTDAYNQKLSERRANAV	300
DK2	DVKFDFDKSKVKENSYADIKNLADFMKQYPSTSTTVEGHTDSVGTDAYNQKLSERRANAV	300
SCV20265	DVKFDFDKSKVKENSYADIKNLADFMKQYPSTSTTVEGHTDSVGTDAYNQKLSERRANAV	300
PAK	DVKFDFDKSKVKENSYADIKNLADFMKQYPSTSTTVEGHTDSVGTDAYNQKLSERRANAV	
Opre	RDVLVNEYGVEGGRVNAVGYGESRPVADNATAEGRAINRRVEAEVEAEA---- 325	
PAO1	RDVLVNEYGVEGGRVNAVGYGESRPVADNATAEGRAINRRVEAEVEAEAKTAA 353	
B136-33	RDVLVNEYGVEGGRVNAVGYGESRPVADNATAEGRAINRRVEAEVEAEAK--- 350	
LeSB58	RDVLVNEYGVEGGRVNAVGYGESRPVADNATAEGRAINRRVEAEVEAEAK--- 350	
M18	RDVLVNEYGVEGGRVNAVGYGESRPVADNATAEGRAINRRVEAEVEAEAK--- 350	
NCGM2. Sl	RDVLVNEYGVEGGRVNAVGYGESRPVADNATAEGRAINRRVEAEVEAEAK--- 350	
PA7	RDVLVNEYGVEGGRVNAVGYGESRPVADNATAEGRAINRRVEAEVEAEAK--- 350	
PA14	RDVLVNEYGVEGGRVNAVGYGESRPVADNATAEGRAINRRVEAEVEAEAK--- 350	
DK2	RDVLVNEYGVEGGRVNAVGYGESRPVADNATAEGRAINRRVEAEVEAEAK--- 350	
SCV20265	RDVLVNEYGVEGGRVNAVGYGESRPVADNATAEGRAINRRVEAEVEAEAK--- 350	
PAK	RDVLVNEYGVEGGRVNAVGYGESRPVADNATAEGRAINRRVEAEVEAEAK--- 350	

Figure 1. S1. The multiple sequence alignment of OprF among P. aeruginosa strains including PAO1, B136-33, LESB58, M18, NCGM2, PA7, PA14, DK2, SCV20265, and Pak. These alignments have revealed that the conserved sequences were visualized between these predominant strains

oprI	------------------CSSHSKETEARLTATEDAAARAQARADEAYRKADEALGAAQ		41
PAOI	MNNVLKFSALALAAVLATGCSSHS	TEARLTATEDAAARAQARADEAYRKADEALGAAQ	60
B136-33	MNNVLKFSALALAAVLATGCSSHS	ETEARLTATEDAAARAQARADEAYRKADEALGAAQ	60
LeSB58	MNNVLKFSALALAAVLATGCSSHS	ETEARLTATEDAAARAQARADEAYRKADEALGAAQ	60
M18	MNNVLKFSALALAAVLATGCSSHS	TEARLTATEDAAARAQARADEAYRKADEALGAAQ	60
NCGM2.S1	MNNVLKFSALALAAVLATGCSSHS	ETEARLTATEDAAARAQARADEAYRKADEALGAAQ	60
PA7	MNNVLKFSALALAAVLATGCSSHS	TEARLTATEDAAARAQARADEAYRKADEALGAAQ	60
PA14	MNNVLKFSALALAAVLATGCSSH.	ETEARLTATEDAAARAQARADEAYRKADEALGAAQ	60
DK2	MNNVLKFSALALAAVLATGCSSH	TEARLTATEDAAARAQARADEAYRKADEALGAAQ	60
PAK	MNNVLKFSALALAAVLATGCSSH	ETEARLTATEDAAARAQARADEAYRKADEALGAAQ	60
oprI	KAQQTADEANERALRMLEKASRK	64	
PAOI	KAQQTADEANERALRMLEKASRK	83	
B136-33	KAQQTADEANERALRMLEKASRK	83	
LESB58	KAQQTADEANERALRMLEKASRK	83	
M18	KAQQTADEANERALRMLEKASRK	83	
NCGM2. S1	KAQQTADEANERALRMLEKASRK	83	
PA7	KAQQTADEANERALRMLEKASRK	83	
PA14	KAQQTADEANERALRMLEKASRK	83	
DK2	KAQQTADEANERALRMLEKASRK	83	
PAK	KAQQTADEANERALRMLEKASRK	83	

Figure 1. S2. The multiple sequence alignment of OprI among P. aeruginosa strains including PAO1, B136-33, LESB58, M18, NCGM2.S2, PA7, PA14, DK2, and Pak. All the regions of this protein were conserved between these kinds of isolates

NCGM2. Sl	MNPITLERAGLPYGVADAGDIPALGRPVAR	SLRVERLAAPAAASASGTGVAITPPSA	60
PA14	MNPITLERAGLPYGVADAGDIPALGRPVARDVESIRVERIAAPAAASASGTGVAITPPSA		
PAR	MNPITLERAGLPYGVADAGDIPAIGRPVARDVESIRVERIAAPAAASASGTGVAITPPSA 60		
pops	MNPITIERAGLPYGVADAGDIPALGRPVAR	SLRVERLAAPAAASASGTGVALTPRSA	60
PAO1	MNPITLERAGLPYGVADAGDIPALGRPVARDVESLRVERLAAPAAASASGTGVALTPPSA 60		
ES	MNPITLERAGLPYGVADAGDIPALGRPVARDVESLRVERIAAPAAASASGTGVAITPPSA 60		
M18	MNPITIERAGLPYGVADAGDIPALGRPVAR	SIRVERIAAPAAASASGTGVAITPPSA	
DK2	ASOORIEVANRAEIASLVOAVGEDAGLAROVVIAGASTILSAGLMSPOAFEIEIAKITGE 84		
CGM2.S	ASCQRLEVANRAEIASLVOAVGEDAGLARQVVLAGASTLLSAGLMSPQAFEIELAKITGE 120		
A. 1	ASCORLEVANRAEIASLVQAVGEDAGLARQVVLAGASTLLSAGLMSPOAFEIELAKITGE 120		
AK	ASCORLEVANRAEIASLVQAVGEDVGLARQVVLAGASTILSAGLMSPOAFEIELAKITGE 120		
Op	ASCORIEVANRAEIASLVQAVGEDVGLAROVVILAGASTILSAGLMSPOAFEIELAKITGE 120		
PAOI	ASCQRLEVANRAEIASLVQAVGEDVGLARQVVILAGASTILSAGLMSPQAFEIELAKITGE 120		
LESBS	ASQQRLEVANRAEIASLVQAVGEDVGLARQVVIAGGASTILSAGLMSPQAFEIELAKITGE 120		
M18			
DK2	VENCOKKLKLTEIEOARRONLOKMEGNCOKIRESEEAAKEACKSGLAAKIFGWISAIASI		
NCGM2	VENQQKKLKLTEIEQARKQNLQKMEDNQQKIRESEEAAKEAQKSGLAAKIFGWISAIASI 18		
PA1	VENQQKKLKLTEIEQARKQNLQKMEDNQQKIRESEEAAKEAQKSGLAAKIFGWISAIASI 180		
PAK	VENQQKKLKKLTEIEQARKQNLQKMEDNQQKIRESEEAAKEAQKSGLAAKICGWISAIASI 180		
pops	VENQQKKLKKLTEIEOARKQNIQKMEDNQQKIRESEEAAKEAQKSGLAAKIFGWISAIASI 180		
PAOI	VENOQKKLKLTEIEQARKQNLQKMEDNQOKIRESEEAAKEAQKSGLAAKIFGWISAIASI 180		
LESBS	VENQQKKLKITEIEOARKQNLQKMEDNQQKIRESEEAAKEAQKSGLAAKIFGWISAIASI 180		
M18	VENQQKKLKLTEIEQARKQNLQKMEDNCQKIRESEEAAKEAQKSGLAAKIFGWISAIASI		
DK2	IVGAIMVATGVGAAAGALMIAGGVMGVVSQSVQQAAADGLISKEVMEKLGPALMGIEIAV 204		
NCGM2.	IVGAIMVATGVGAAAGALMIAGGVMGVVSQSVQQAAADGLISKEVIEKLGPALMGIEIAV 240		
PA14	IVGAIMVATGVGAAAGALMIAGGVMGVVSQSVQQAAADGLISKEVMEKLGPALMGIEIAV 240		
PAK	IVGAIMVATGVGAAAGALMIAGGVMGVVSQSVQQAAADGLISKEVMEKLGPALMGIEIAV 240		
pops	IVGAIMVATGVGAAAGALMIAGGVMGVVSQSVQQAAADGIISKEVMEKLGPALMGIEMAV 240		
PAOI	IVGAIMVATGVGAAAGAIMIAGGVMGVVSQSVQQAAADGLISKEVMEKLGGPALMGIEMAV 240		
LESB5	IVGAIMVATGVGAAAGALMIAGGVMGVVSQSVQQAAADGLISKEVMEKLGPALMGIEIAV 240		
M1	IVGAIMVATGVGAAAGALMIAGGVMGVVSQSVCQAAADGLISKEVMEKLGPALMGIEIAV 240		
NCGM2	AILAAVVSFGGSAVGGLAKLGAKIGGKAAEMTASLASKVADLGGKFGSIAGQSLSHSLKL		
PA14	ALLAAVVSFGGSAVGGLAKLGAKIGGKAAEMTASLASKVADLGGKFGSLAGQSISHSLKL		
PAK	ALLAAVVSFGGSAVGGLARLGAKIGGKAAEMTASLASKVADLGGKFGSLAGQSISHSLKL		
POpB	ALIAAVVSFGGSAVGGLARLGAKIGGKAAEMTASLASKVADIGGKFGSLAGQSLSHSLKL 300		
PAO1	ALLAAVVSFGGSAVGGLARIGAKIGGKAAEMTASLASKVADIGGKFGSLAGQSLSHSLKL 300		
LESBS	ALIAAVVSFGGSAVGGLARLGAKIGGKAAEMTASLASKVADLGGKFGSLAGQSLSHSLKL 300		
M	ALIAAVVSFGGSAVGGLARLGAKIGGKAAEMTASIASKVADLGGKFGSLAGQSISHSLKL 300		
	GVOVSDLTLDVANGAAQATHSGFQAKAANRQADVQESRADLTTLQGVIERLKEELSRMLE		
NCGM2. S1	GVQVSDITIDVANGAAQATHSGFQAKAANRQADVOESRADITTIQGVIERLKEELSRMLE		
PA14	GVQVSDITIDVANGAAOATHSGFQAKAANRQADVOESRADITIIQGVIERLKEELSRMLE		
PAK	GVQVSDITIDVANGAAQATHSGFQAKAANRQADVQESRADITILQGVIERLKEEISRMLE		
Popr	GVOVSDLTLDVANGAAOATHSGFOAKAANROADVOESRADITTLQGVIERLKEELSRMLE 360		
PAO1	GVOVSDIILDVANGAAQATHSGFQAKAANRQADVQESRADITTIQGVIERLKEELSRMLE		
LESE	GVOVSDITIDVANGAAOATHSGEQAKAANRQADVQESRADITTIQGVIERLKEELSRMLE		
M	GVQVSDITIDVANGAAQATHSGFQAKAANRQADVQESRADITTLQGVIERLKEELSRMLE		
DK2	AFOEIMERIFAMLQAKGETLHNLSSRPAAI 354		
NCGM2.			
PA14	AFQEIMERIFAMLQARGETILHNLSSRPAAI 390		
PAK	AFQEIMERIFAMLQAKGETLHNLSSRPAAI 390		
Pops	AFOEIMERIFAMLQAKGETLHNLSSRPAAI 390		
PAO1	AFOEIMERIFAMLQAKGETLHNLSSRPAAI 390		
LESB58			
	AFQEIMERIFAMLQARGETLHNLSSRPAAI		

Figure 1. S3. The multiple sequence alignment of PopB among P. aeruginosa strains including DK2, NCGM2.S1, PA14, Pak, PAO1, LESB58, and
M18. These alignments have revealed that the conserved sequences were conceived between the most strains of Pseudomonas aeruginosa

Figure 2. S. The expression and purification of the FIB protein via molecular methods. (A) The amplification test results were performed to confirm the oprF-oprI-popB fusion gene by colony-PCR. The extraction results were displayed in samples 1 to 6 via kit (wells 2-4) and boiling (wells 5-7) methods. The Enterococcus faecalis ATCC 51299 and E.coli BL21 utilized as the positive control (well 8) and negative controls (well 9). (B) The expression and purification steps of chimeric FIB fusion protein were carried out using the SDS-PAGE method. Lane 1: Non-induced E. coli BL21 clone, Lane 2: Induced E. coli BL21 clone for 4 h, Lane 3: Induced E. coli BL21 clone for 6 h, Lane 4: Induced E. coli BL21 clone for 12 h, Lane 5 : Purified pr. FIB (83.2 kDa), and Lane 6: Protein marker. (C) The western blot of FIB protein with anti-His tag antibody was done via the Ni-NTApurification, electroporation of SDS-PAGE, transferred by PVDF membrane, and immunoblotted with rabbit anti-6x His-tagged antibody. Lane 1, 2 , and 3 were protein markers, western blot of the purified protein, and western blotting via the normal rabbit serum (as the negative control)

Figure 3.S. The gating strategy for (left to right) lymphocytes carried out following the singlet's recognition and live cells based on FSC. Furthermore, the contour plots of naïve ($n=3$), effector memory ($n=3$), and central memory ($n=3$) of splenic $C D 4^{+} T$ cells were performed based on monoclonal antibodies recognition. Numbers inside plot regions represent means \pm SD according to the users of FMO and iso-type control stained samples

Figure 4-S: Total body weight at 24 hours post-challenge with P. aeruginosa strain PAO1. Total bodyweight of FIB, FIB+GMCSF, PBS+GMCSF and PBS (as a control group) immunized and challenged rats. Each circle describes the data of one rat. Error bars are mean \pm SEM values ($\mathrm{n}=6$)

