Iranian Journal of Basic Medical Sciences

ijbms.mums.ac.ir

Sesquiterpene fractions of *Artemisia* plants as potent inhibitors of inducible nitric oxide synthase and cyclooxygenase-2 expression

Shahrzad Zamani ^{1, 2}, Seyyed Ahmad Emami ³, Mehrdad Iranshahi ^{4, 3}, Shahin Zamani Taghizadeh Rabe ¹, Mahmoud Mahmoudi ^{1*}

¹ Immunology Research Center, Bu-Ali Research Institute, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran

² School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3168, Australia

³ Department of Pharmacognosy, School of Pharmacy; Mashhad University of Medical Science, Mashhad, Iran ⁴ Biotechnology Research Center, Mashhad University of Medical Science, Mashhad, Iran

ARTICLE INFO ABSTRACT Objective(s): Artemisia species are important medicinal plants throughout the world. Some species Article type: Original article are traditionally used for their anti-inflammatory effect. The present study was designed to isolate sesquiterpene fractions from several Artemisia species and evaluate their anti-inflammatory activities Article history: on key mediators and signaling molecules involved in regulation of inflammation. Received: Sep 10, 2018 Materials and Methods: Sesquiterpene fractions were prepared from several Artemisia species using the Accepted: Jan 3, 2019 Herz-Högenauer technique. Lipopolysaccharide (LPS)-stimulated J774A.1 macrophages were exposed to Keywords: isolated fractions. Their possible cytotoxic effect was examined using MTT assay. In addition, nitric oxide Artemisia (NO) release was measured using Griess method and prostaglandin E2 (PGE2) level was determined by Asteraceae enzyme-linked immunosorbent assay (ELISA). Moreover, protein expression of pro-inflammatory enzymes, Inflammation inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were investigated using Western blot Macrophage analysis. Sesquiterpene lactone -Results: Nitric oxide level produced by LPS-primed macrophages was significantly decreased with fraction all prepared fractions in a dose-dependent manner. Saturated sesquiterpene lactones-rich species (Artemisia kopetdaghensis, Artemisia santolina, Artemisia sieberi) showed the highest suppressive activity on NO and PGE2 production via suppression of iNOS and COX-2 expression. Fractions bearing unusual (Artemisia fragrans and Artemisia absinthium) and unsaturated sesquiterpene lactones (Artemisia ciniformis) possess less modulatory effect on PGE2 production and COX-2 expression. Conclusion: It can be concluded that some of the medicinally beneficial effects attributed to Artemisia plants may be associated with the inhibition of pro-inflammatory signaling pathways. However, these effects could be dependent on the type of their sesquiterpene content. These findings also introduce new Artemis species cultivated in Iran as a useful anti-inflammatory agents.

► Please cite this article as:

Zamani Sh, SA Emami, Iranshahi M, Zamani Taghizadeh Rabe Sh, Mahmoudi M. Sesquiterpene fractions of *Artemisia* plants as potent inhibitors of inducible nitric oxide synthase and cyclooxygenase-2 expression. Iran J Basic Med Sci 2019; 22:774-780. doi: 10.22038/ijbms.2019.34792.8249

Introduction

The genus *Artemisia* belongs the family Asteraceae, which are comprises about 550 species distributed in Europe, Asia, and North America (1). The leaves are very aromatic, alternate, often with long, narrow segments, usually grayish or silvery, hairy. The flower heads are greenish or brownish, without rise. The fruits are seeded, usually flattened or ribbed, without a pappus. The genus in Iran has 34 species which two of them are endemic (2).

Some Artemisia species including Artemisia absinthium L. (Afsantin), Artemisia maritima L. (Shih), Artemisia abrotanum L. (Qaysum Zakar) and Artemisia dracunculus L. (Tarkhun) have been used extensively in folk medicine to alleviate several ailments (3). Artemisia species exhibit a wide range of leishmanicidal (4), cytotoxic (5-7), anti-microbial (8) and anti-oxidant activities (8). More importantly, the anti-inflammatory effects of Artemisia species have been reported (9-11).

A number of bioactive compounds including acetylenes, coumarins, terpenes, monoterpenes, monoterpene lactones, sesquiterpenes, sesquiterpene lactones, flavonoids, dipeptides, phenolics, coumarin, ethers, esters, esterols and polysaccharides are commonly found in members of the genus (12). In recent years, several sesquiterpenes derived from *Artemisia* including artemisinin and dihydroarteannuin (13), artemisolide and eupatilin (14), scoparone and capillarisin (15), scopoletin (16) have received special attention due to their pharmacological activity on inflammatory processes and other illnesses.

IJ MS

Nitric oxide (NO) is mainly synthesized by inducible NO synthase (iNOS) which is largely involved in the pathophysiology of many inflammatory diseases (17). Another key enzyme in inflammatory responses is cyclooxygenase-2 (COX-2) which is responsible for prostaglandin E_2 (PGE₂) production (18). Several inflammatory stimuli such as bacterial lipopolysachharide (LPS) could activate iNOS and COX-2 expression. Various agents could serve as an important therapeutic target in the treatment of various inflammation-based pathologies (19, 20).

Many medicines commonly used for the treatment of inflammatory diseases could impart various adverse side-

*Corresponding author: Mahmoudi Immunology Research Center, Bu-Ali Research Institute, Bu-Ali Sq., Mashhad, Iran. Tel: +98-51-37112611; Fax: +98-51-37112596; Email: mahmoudim@mums.ac.ir

effects (21). Numerous researches have focused on herbal cures with lower adverse effects and improved efficacy.

Taking into consideration the above facts, present study aimed to evaluate and compare the antiinflammatory effects of sesquiterpene fractions isolated from various *Artemisia* species through effects on the production of NO and PGE₂ as well as on the expression of iNOS and COX-2 by LPS-primed J774A.1 macrophages. To our knowledge, no other study has been carried out to compare the anti-inflammatory effect of *Artemisia* species in regard to their sesquiterpene contents. Aside from this, essentially nothing is known regarding the potential anti-inflammatory property of some *Artemisia* species tested here.

Materials and Methods

Chemicals

Fetal bovine serum (FBS), Dulbecco's modified Eagle's medium (DMEM), penicillin and streptomycin were purchased from Gibco Laboratories (Detroit, MI). *Escherichia coli* lipopolysaccharide (LPS, serotype 0111:B4), sodium nitrite, *N*-(1-naphtyl) ethylenediamine, sulfanilamide and 3-(4, 5 dimethylthiazol-2-yl)-2, 5 diphenyl tetrazolium bromide (MTT) were obtained from Sigma (St Louis, MO). ELISA kit for PGE_2 measurement was bought from Assay Designs (Farmingdale, NY). The protein bands for iNOS and COX-2 were detected with monoclonal antibodies were from Panomics, Inc (Redwood City, CA). Goat anti-rabbit-horseradish peroxide-conjugated antibody was purchased from KOMA Biotech (Seoul, South Korea). ECL-detection reagent was obtained from Amersham (Cardiff, UK).

Plant materials and isolation of sesquiterpene fractions

Aerial parts of *Artemisia* species (Table 1) collected from different regions of Khorasan Province, Iran and identified by Dr V Mozaffarian (Research Institute of Forest and Rangelands, Ministry of Jahad Keshavarzi, Iran). Voucher specimens were deposited in the Herbarium of National Botanical Garden of Iran (TARI). The shade dried and powdered plant samples were preserved for further experimentations.

Sesquiterpene fractions were prepared using Herz-Högenauer technique (22). The chlorophyll and common phenolic were removed by lead- (Π) -acetate precipitation

 Table 1. Tested Artemisia species

and preparing crude sesquiterpene samples for further chromatographic and spectral investigations. Dried and ground plant materials (20 g) were soaked in dichloromethane (DCM; ≈ 100 ml) overnight. The slurry products were then filtered and evaporated in vacuo. The gummy residue was dissolved in 96% ethanol (\approx 50 ml) and heated to improve solubility. The aqueous solutions of lead acetate (5%) were included for precipitation of fatty acids, phenolics, and chlorophyll; precipitates were eliminated using filtration through a pad of silica gel (230-400 mesh (Merck, Germany). Lastly, the filtrates were concentrated in a water bath (40-50 °C) until a viscous mass was developed. IR spectra were recorded as KBr disks and in methylene chloride on a Unicam dp 110 spectrometer (Shimidzu Scientific, Japan). ¹H-NMR (500 MHz) spectra were assessed in CDCl3 by a DRX 500 spectrometer (Bruker, Germany). All fractions were dissolved in dimethyl sulfoxide (DMSO) with the final concentration of less than 0.1% in culture medium.

Cell culture and treatment

J774A.1 murine macrophage cell line was obtained from the National Cell Bank of Iran (Tehran, Iran). Cells were cultured in DMEM supplemented with 100 U penicillin/ml and 100 µg streptomycin/ml and 10% heat inactivated FBS at 37 °C in 5% CO₂ humidified incubator. Cell viability was determined by Trypan blue (0.4% in phosphate-buffered saline [PBS, pH 7.4]) exclusion method. In order to verify their *in vitro* antiinflammatory effects, J774A.1 cells (1.25×10^5 /well) were treated with/without indicated concentrations of fractions (10-100 µg/ml) for 2 hr prior to inflammatory stimulation of LPS (1 µg/ml). The plates were then incubated for additional 24 hr before being used for the cytotoxicity, NO release and PGE₂ production assays.

Determination of cell viability

Cytotoxicity was examined to verify the possible toxic effect of fractions on macrophages using colorimetric MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay (23). Briefly, MTT (5 mg/ml) reagent was added to each well and the plates were then incubated for 3 hr at 37 °C. The formazan crystals formed as a result of MTT reduction in living cells were dissolved in DMSO. The optical density was measured using a microplate reader (Convergent Technologies, Germany) at 545 nm.

Scientific name	Persian name	Location	Collection time
Artemisia absinthium	Afsantin	Islamabad, Shahrabad road, Northern Khorasan province (height 907 m)	Aug. 5, 2007
Artemisia biennis Willd.	Dermaneh Dosaleh	Chovailly-Bajgiran road, Ghochan, Razavi Khorasan province, (height 1774 m)	Oct. 15, 2007
<i>Artemisia ciniformis</i> Krasch. & Popov ex Poljak.	Dermaneh Talaee	Maraveh tapeh-Shahrabad road, North Khorasan province, (height 940 m)	Aug. 8, 2007
Artemisia fragrans Willd.	Dermaneh Moattar	Kalibar, Eastern Azerbaijan province (height 1450 m)	Aug. 8, 2007
Artemisia santolina Schrenk	Dermaneh Sefid	Daghe Akbar, Southern Khorasan province (height 1460 m)	Sep. 20, 2007
Artemisia sieberi Besser	Dermaneh	Samie Abad, Razavi Khorasan province (height 909 m)	Sep. 15, 2007
Artemisia turanica Krasch.	Dermaneh Ghermez	Samie Abad, Khorasan Razavi province (height 808 m)	Sep. 15, 2007
Artemisia kopetdaghensis Krasch., M. Pop. & Lincz. ex Poliak	Dermaneh kopetdaghi	Bazangan lake, Razavi Khorasan province (height 1030 m)	Aug. 8, 2007

 Table 2. ¹H-NMR key data for the sesquiterpene lactone fractions of tested Artemisia species

Artemisia species	Major carbonyl function	The result of ¹ H-NMR experiment
	in IR spectrum (cm ⁻¹)	
Artemisia absinthium	1776	Unusual sesquiterpene lactone
Artemisia biennis	1709	A little or no sesquiterpene lactone
Artemisia ciniformis	1776	Unsaturated sesquiterpene lactone
Artemisia fragrans	1781	Unusual sesquiterpene lactone
Artemisia kopetdaghensis	1771	Saturated sesquiterpene lactone
Artemisia santolina	1771	Saturated sesquiterpene lactone
Artemisia sieberi	1786	Saturated sesquiterpene lactone
Artemisia turanica	1745	A little or no sesquiterpene lactone

Measurement of nitric oxide

Nitrite level, as an indicator of NO synthesis, released into the supernatants of cultured cells was determined using colorimetric Griess assay (24, 25). Briefly, aliquots of cell culture supernatants were incubated with equal volume of Griess reagent, consisting of (1% sulphanilamide in 5% phosphoric acid, 0.1% naphtylenediamine dihydrochloride). The optical density of the mixture was measured after 10 min at room temperature using a microplate reader (Convergent Technologies, Germany) at 545 nm. Nitrite concentrations were calculated by extrapolation from a sodium nitrite standard curve obtained in parallel with sodium nitrite standard solutions.

Determination of PGE, production

The amount of PGE_2 secreted into the culture supernatants was determined using Enzymelinked immunosorbent assay (ELISA) kit, following manufacturer instructions. Sensitivity of the kit was 16 pg PGE₂/ml.

Preparation of whole cellular extract

Cells were washed twice with cold PBS and lysed in freshly prepared buffer (10 mM HEPES [pH 7.5], 10 mM KCl, 0.1 mM EDTA, 1 mM dithiotheritol (DTT), 0.5% IGEPAL, along with the protease inhibitor cocktail). Cell lysates were then centrifuged at 14,000 g for 3 min at 4° C to obtain the supernatants as total cell extracts. Samples were stored at -70 °C. The protein content in each sample was quantified by use of Bradford assay.

Western blot analysis

Equal amounts of proteins were denaturated in Laemmli sample buffer, separated on 12% SDSpolyacrylamide gel and were then transferred to polyvinylidene difluoride (PVDF) membranes. Nonspecific binding sites were blocked with 5% nonfat milk buffer (10 mM Tris-HCl and 100 mM NaCl, pH 7.5) at 4 °C overnight. The blots were incubated sequentially with primary antibodies (anti-mouse iNOS or COX-2 polyclonal antibodies; 1:200 or 1:500 dilution, respectively) overnight at 4 °C. After gentle washing, the blots were incubated with secondary goat anti-rabbit-horseradish peroxide-conjugated antibody (1:10,000 dilution). Immunoreactive protein bands were developed using enhanced chemiluminescence

(ECL) detection reagent (Pierce, Rockford, IL).

Statistical analysis

All data were reported as mean±SD of at least three independent experiments. Statistical analysis were conducted using SPSS 11.0 software (Chicago, IL). Significant differences between the groups were determined using one-way analysis of variance (ANOVA). A P<0.05 was considered statistically significant.

Results

Characterization of isolated sesquiterpene fractions from Artemisia species

The various IR spectra revealed that all tested samples had notable absorptions between 1730 and 1780 cm⁻¹ that point out the existence of carbonyl functional groups. A γ -lactone moiety present as the absorptions > 1760 cm⁻¹. Fractions from A. absinthium, A. ciniformis, A. fragrans, A. kopetdaghensis, A. santolina, and A. sieberi exhibited significant absorption peaks at 1776, 1776, 1781, 1771, 1771 m and 1786 cm⁻¹, respectively. This could be due to the presence of high amount of sesquiterpene lactones in obtained fractions. Maximum absorption peaks of carbonyl groups in A. biennis and A.turanica samples emerged at 1709 and 1745 cm⁻¹ which could represent the low content of sesquiterpene lactones. The ¹H-NMR spectra confirmed the presence of unsaturated, saturated and unusual sesquiterpene lactones in the fractions (Table 2).

Sesquiterpene fractions did not affect cell viability J774A.1 cells were exposed to different concentrations of fractions in order to exclude the possibility that the observed anti-inflammatory effects were due to their toxicity. None of the fractions at tested concentrations (10-100 µg/ml) significantly altered cell viability. The maximum percentage of growth inhibition of cells following by exposure to the highest tested concentration (100 µg/ml) of fractions of studied *Artemisia* species were *A. absinthium* 92.49±0.86, *A. biennis* 92.74±1.51, *A. ciniformis* 90.97±1.70, *A. fragrans* 93.25±0.56, *A. kopetdaghensis* 90.40±2.60, *A. santolina* 90.00±2.15, *A. sieberi* 91.54±0.56, *A. turanica* 90.97±1.70.

Effect of sesquiterpene fractions on macrophage NO and PGE, production

To investigate whether sesquiterpene fractions regulate NO production, J774A.1 macrophages were pre-treated with fractions for 2 hr before stimulation with LPS for 24 hr, and nitrite content was measured IJ MS

Figure 1. Effect of sesquiterpene lactone fractions of different *Artemisia* species including A) *Artemisia kopetdaghensis, Artemisia santolina, Artemisia sieberi,* B) *Artemisia biennis, Artemisia turanica,* C) *Artemisia fragrans, Artemisia absinthium,* D) *Artemisia ciniformis* on LPS-stimulated J774A.1 macrophages production of NO. Cells were treated for a total of 24 hr with LPS alone or after an initial 2-hr treatment with the sesquiterpene fractions (10-100 µg/ml). Values shown are means (± SD) of at least three determinations. **P*<0.05, ***P*<0.01 vs LPS alone

using Griess reagent assay (Figure 1). Stimulation of J774A.1 macrophages with LPS alone resulted in noticeable upregulation of NO production (21.4±0.5 μ M), compared to the unstimulated control (2.4±0.4 μ M). However, J774A.1 macrophages pre-treated with sesquiterpene fractions (10-100 μ g/ml) displayed a marked dose-dependent reduction in inflammatory LPS-induced NO production. Saturated sesquiterpene lactones-rich species including *A. kopetdaghensis, A. santolina, A. sieberi* most effectively reduced NO release by LPS-activated J774A.1 macrophages.

We next compared the inhibitory effects of fractions on PGE_2 production as a key mediator of inflammatory responses. The immune response to LPS as an inflammatory stimuli is associated with PGE_2 production therefore, the effect of sesquiterpene fractions on PGE_2 production was measured in the supernatants of inflammatory LPS-primed J774A.1 macrophages using ELISA (Figure 2). Under unstimulated condition, macrophages release low levels of PGE_2 (0.7±0.2 ng/ml); however LPS induced a substantive release of PGE_2 (5.0±0.2 ng/ml). Sesquiterpene fractions containing saturated sesquiterpene lactones (*A. kopetdaghensis*, *A. santolina*, and *A. sieberi*) and fractions containing a little sesquiterpene lactones (*A. biennis* and *A. turanica*) markedly suppressed the LPS-induced PGE₂ formation.

Effect of sesquiterpene fractions on expression of proinflammatory iNOS and COX-2

We further evaluated the effect of sesquiterpene fractions on LPS-induced iNOS and COX-2 expression in J774A.1 cells at the protein level by Western blot analysis (Figure 3). Stimulation with LPS led to increased protein expression (Band 1) in comparison with unstimulated macrophages. However, pre-treatment with tested fractions decreased the levels of iNOS protein expression in LPS-stimulated J774A.1 macrophages (Bands 2-9). Saturated sesquiterpene lactone-rich fractions of *A*.

Figure 2. Activity of sesquiterpene lactone fractions of various *Artemisia* species including A) *Artemisia kopetdaghensis, Artemisia santolina, Artemisia sieberi,* B) *Artemisia biennis, Artemisia turanica,* C) *Artemisia fragrans, Artemisia absinthium,* D) *Artemisia ciniformis* on LPS-stimulated J774A.1 macrophages production of PGE2. Cells were treated for a total of 24 hr with LPS alone or after an initial 2-hr treatment with the sesquiterpene fractions (10-100 µg/ml). Values shown are means (± SD) of at least three determinations. **P*<0.05, ***P*<0.01 vs. LPS alone

Figure 3. Modulatory effect of sesquiterpene lactone fractions from different *Artemisia* species on LPS-stimulated iNOS and COX-2 protein expression. J774A.1 macrophages were pre-treated (2 hr) with/without 80 μ g/ml of fractions and then stimulated for 22 hr with LPS (1 μ g/ml). After the end of the 24 hr exposure period, whole cell lysates were prepared and underwent Western blot analysis with antibodies to detect iNOS, and COX-2. Antibody to β -actin was also used to monitor for protein loading. A representative blot is shown as bands 1-9 including: band 1) LPS-stimulated macrophages alone, band 2) *A.* kopetdaghensis, band 3) *Artemisia santolina*, band 4) *Artemisia sieberi*, band 5) *Artemisia biennis*, band 6) *Artemisia turanica*, band 7) *Artemisia fragrans*, band 8) *Artemisia absinthium*, band 9) *Artemisia ciniformis*

kopetdaghensis, A. santolina, and *A. sieberi* (bands 2-4) exhibited inhibitory activity on the expression of COX-2 protein. This finding revealed that the inhibitory pattern of fractions on iNOS and COX-2 expression overlap with their suppressive effects on LPS-induced NO and PGE₂ production.

Discussion

There is growing attention to natural products derived from medicinal plants. In particular, there is a great interest in their potential use in prevention of inflammatory responses. The use of natural antiinflammatory products could provide an attractive safe alternative to many common widely-used pharmaceuticals. Along these lines of thought, there are numerous rationale for development of dual iNOS/COX-2 inhibitors as effective anti-inflammatory and analgesic drugs to block the symptoms of inflammation related to nitric oxide and prostaglandin(s) formation due to their increased levels mediate inflammatory responses (26).

Previous phytochemical investigations of Artemisia species resulted in the isolation of various classes of chemical compositions (11). Among them, inhibitory effects against inflammatory mediators by several triterpenoids and sesquiterpenes derivatives present in Artemisia were widely reported. Although the traditional use of Artemisia species as anti-inflammatory agents is supported by scientific reports, to our knowledge, there is little evidence showing specific biological activities of these species. We attempted here to verify the in vitro anti-inflammatory potential of sesquiterpene fractions that were isolated from eight Artemisia species common to Iran. After preparing the fractions, their antiinflammatory impact was assessed by measuring any changes in the release of pro-inflammatory mediators, i.e., NO and PGE₂, produced in response to LPS activation.

The present results demonstrated that each tested sesquiterpene fractions from the isolated Artemisia species significantly suppressed LPS-induced NO production in a dose-dependent manner. A. kopetdaghensis, A. santolina, and A. sieberi were revealed to mainly contain saturated sesquiterpene lactones that seemed to be the most potent inhibitors of NO production. Samples from A. biennis and A. turanica proved to have little or no sesquiterpene lactones in their fractions also dramatically inhibited NO production in the stimulated macrophages. Although A. absinthium and A. fragrans contained unusual sesquiterpene lactones, they still imparted considerable inhibitory effects as well. Lastly, the sesquiterpene fraction of A. ciniformis that mainly contained unsaturated sesquiterpene lactones was also able to inhibit NO production. The Western blot data of iNOS induction were found to be comparable to those from the NO production assays. Taken together, this data suggested to us that the potent anti-inflammatory properties of A. kopetdaghensis, A. santolina, and A. sieberi are mediated in part through the inhibition of the NO synthesis pathway and that this could likely be attributed to the presence of saturated sesquiterpene lactones. However, even though the medium containing fractions was replaced by medium containing LPS, the possibility still also remains that the treatments might have affected subsequent LPS binding itself, i.e., impacting TLR sites on cells.

While the inflammatory mediator prostaglandin E_2 (PGE₂) is generated via the cyclooxygenase pathway, it has been reported that NO can directly activate cyclooxygenase pathways and that NO production does not seem regulated by mediators generated by those pathways (17, 18). Assessing the amount of PGE₂ produced by the treated cells revealed that most of the sesquiterpene fractions failed to inhibit PGE₂ synthesis or modulate the expression of COX-2 protein. This could be explained, in part, by the fact that changes in PGE₂ release is most often associated with alterations in COX-2 expression. However, PGE₂ release was remarkably inhibited by the saturated sesquiterpene lactone-rich fractions of *A. kopetdaghensis, A. santolina*,

and *A. sieberi* at levels akin to their effects on the production of NO. When both endpoints are examined in tandem, it appeared that the sesquiterpene fractions of *A. kopetdaghensis, A. santolina* and *A. sieberi* were apparently the most potent fractions for suppressing NO and PGE₂ production.

The current findings showed that both iNOS and COX-2 pathways were maximally inhibited by extracts prepared from *A. kopetdaghensis, A. santolina* and *A. sieberi*. By comparing these results with those of a previous study (11) in which we reported the anti-inflammatory activity of a sesquiterpene lactone-bearing fraction prepared from *A. khorassanica* (SLAK), we surmise that saturated sesquiterpene lactones in various *Artemisia* can impart potent anti-inflammatory effects - in part - through the modulation of both iNOS and COX-2 expression, and that these agents might be classified as dual inhibitors.

Conclusion

The present study suggested sesquiterpene fractions from *Artemisia* species could be further investigated **to** isolate/identify bioactive compounds that may function as potential anti-inflammatory agents. Studying their modulatory effects in inflammatory animal models would also further validate their potential beneficial properties as natural health products.

Acknowledgment

This study is financially supported by Research Council of Mashhad University of Medical Sciences (MUMS) vice president (grant numbers 85448 and 89399), Mashhad University of Medical Sciences, Mashhad, Iran.

Conflicts of Interest

The Authors declare no conflicts of interest.

References

1. Salmaki Y, Bendiskby M, Heubl G. Molecular phylogeny confirms the placement of enigmatic *Stachys persepolitana* in Lamium (Lamiaceae; subfam. Lamioideae) 2015; 192:13.

2. Emami SA, Aghazari F, Johartchi MR. Les phanérogames endémiques de la flore d'Iran. Téhéran: L'Université de Téhéran des Sciences Médicales, Institut des Études d'Histoire de la Médecine, de Médecine Islamique et de Médecine Complémentaire 2011.

3. Zargaran A, Mehdizadeh A, Zarshenas MM, Mohagheghzadeh A. Avicenna (980-1037 AD). J Neurol 2012; 259:389-390.

4. Emami SA, Zamanai Taghizadeh Rabe S, Ahi A, Mahmoudi M. Inhibitory activity of eleven Artemisia species from Iran against leishmania major parasites. Iran J Basic Med Sci 2012; 15:807-811.

5. Emami S, Zamani Taghizadeh Rabe S, Ahi A, Mahmoudi M, Tabasi N. Study the cytotoxic and pro-apoptotic activity of *Artemisia annua* extracts. Pharmacologyonline 2009; 3:1062-1069.

6. Taghizadeh Rabe SZ, Mahmoudi M, Ahi A, Emami SA. Antiproliferative effects of extracts from Iranian Artemisia species on cancer cell lines. Pharm Biol 2011; 49:962-969.

7. Mahmoudi M, Zamani Taghizadeh Rabe S, Ahi A, Emami SA. Evaluation of the cytotoxic activity of different *Artemisia khorassanica* samples on cancer cell lines. Pharmacologyonline 2009; 2:778-286.

8. Kordali S, Cakir A, Mavi A, Kilic H, Yildirim A. Screening of chemical composition and antifungal and antioxidant activities of the essential oils from three Turkish Artemisia species. J Agric Food Chem 2005; 53:1408-1416.

9. Ahn H, Kim JY, Lee HJ, Kim YK, Ryu JH. Inhibitors of inducible nitric oxide synthase expression fromartemisia iwayomogi. Arch Pharm Res 2003; 26:301-305.

10. Noori S, Naderi GA, Hassan ZM, Habibi Z, Bathaie SZ, Hashemi SMM. Immunosuppressive activity of a molecule isolated from *Artemisia annua* on DTH responses compared with cyclosporin A. Int Immunopharmacol 2004; 4:1301-1306.

11. Emami SA, Taghizadeh Rabe SZ, Iranshahi M, Ahi A, Mahmoudi M. Sesquiterpene lactone fraction from *Artemisia khorassanica* inhibits inducible nitric oxide synthase and cyclooxygenase-2 expression through the inactivation of NFκB. Immunopharmacol Immunotoxicol 2010; 32:688-695.

12. Rustaiyan A, Masoudi S. Chemical constituents and biological activities of Iranian Artemisia species. Phytochem Lett 2011; 4:440-447.

13. Konkimalla VB, Blunder M, Korn B, Soomro SA, Jansen H, Chang W, *et al.* Effect of artemisinins and other endoperoxides on nitric oxide-related signaling pathway in RAW 264.7 mouse macrophage cells. Nitric Oxide 2008; 19:184-191.

14. Choi EJ, Lee S, Chae JR, Lee HS, Jun CD, Kim SH. Eupatilin inhibits lipopolysaccharide-induced expression of inflammatory mediators in macrophages. Life Sci 2011; 88:1121-1126.

15. Han S, Lee JH, Kim C, Nam D, Chung WS, Lee SG, *et al.* Capillarisin inhibits iNOS, COX-2 expression, and proinflammatory cytokines in LPS-induced RAW 264.7 macrophages via the suppression of ERK, JNK, and NF-κB activation. Immunopharmacol Immunotoxicol 2013; 35:34-42. 16. Kim HJ, Jang SI, Kim YJ, Chung HT, Yun YG, Kang TH, *et al.* Scopoletin suppresses pro-inflammatory cytokines and PGE2 from LPS-stimulated cell line, RAW 264.7 cells. Fitoterapia 2004; 75:261-266.

17. Kröncke K, Fehsel K, Kolb-Bachofen V. Inducible nitric oxide synthase in human diseases. Clin Exp Immunol 1998; 113:147.

18. Lee SH, Soyoola E, Chanmugam P, Hart S, Sun W, Zhong H, *et al.* Selective expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide. J Biol Chem 1992; 267:25934-25938.

19. Spitzer JA, Zheng M, Kolls JK, Vande Stouwe C, Spitzer JJ. Ethanol and LPS modulate NF-kappaB activation, inducible NO synthase and COX-2 gene expression in rat liver cells *in vivo*. Front Biosci 2002; 7:99-108.

20. Hori M, Kita M, Torihashi S, Miyamoto S, Won KJ, Sato K *et al.* Upregulation of iNOS by COX-2 in muscularis resident macrophage of rat intestine stimulated with LPS. Am J Physiol Gastrointest Liver Physiol 2001; 280:930-938.

21. Suthar SK, Sharma M. Recent developments in chimeric NSAIDs as safer anti-inflammatory agents. Med Res Rev 2015; 35:341-407.

22. Iranshahi M, Emami SA, Mahmoud-Soltani M. Detection of sesquiterpene lactones in ten Artemisia species population of Khorasan provinces. Iran J Basic Med Sci 2007; 10:183-188.

23. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunological Methods 1983; 65:55-63.

24. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 1982; 126:131-138.

25. Zamanai Taghizadeh Rabe S, Iranshahi M, Rastin M, Tabasi N, Mahmoudi M. *In vitro* immunomodulatory properties of a sesquiterpene lactone-bearing fraction from *Artemisia khorassanica* J Immunotoxicol 2015; 12:223-230.

26. Kim SF, Huri DA, Snyder SH. Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science 2005; 310:1966-1970.