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Objective(s): Acute lung injury (ALI) has a high mortality rate and is characterized by damage to 
pulmonary system giving rise to symptoms such as histological alteration, lung tissue edema and 
production of proinflammatory cytokine. p-Coumaric acid (p-CA), as a phenolic compound, that is 
found in many types of fruits and vegetables has been reported to exhibit a therapeutic effect in several 
inflammatory disorders. The aim of our study was evaluation of pretreatment with p-CA against heart 
dysfunction, oxidative stress and nuclear factor-erythroid 2 -related factor 2 (Nrf2) modifications 
following lipopolysaccharide (LPS)-induced acute lung inflammation. 
Materials and Methods: The rats were divided into four groups (n=8): Control, LPS (5 mg/kg, it), p-CA (100 
mg/kg, IP), and LPS+pCA. Inflammatory response and oxidative stress were evaluated by measurement 
of interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α) and malondialdehyde (MDA) levels in heart 
tissue. For evaluation of the effect of LPS on cardiac response, electrocardiography (ECG) and hemodynamic 
parameters were recorded.
Results: A significant increase in lipid peroxidation (P<0.001, cytokine parameters (TNF-α and IL-6 
(P<0.01), gene expression of Nrf2 (P<0.05), and antioxidant activity of superoxide dismutase and 
glutathione (P< 0.05) in addition to glutathione peroxidase (P<0.01) was demonstrated in heart tissue 
of ALI rats. LPS can impair cardiac function (in in vitro measurement of hemodynamic parameters by 
using Langendorff setup, and in in vivo measurement of ECG parameters), and pretreatment with p-CA 
recovered these parameters to control levels in heart. Pretreatment with p-CA causes modulation of 
cytokines and MDA level that protected cardiac injury caused by LPS in ALI model. 
Conclusion: Our results showed anti-inflammatory and antioxidative effect of p-CA on LPS-induced ALI.
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Introduction
Acute lung injury (ALI) is related to inflammation in 

pulmonary system and leads to serious illness and death 
(1). In lipopolysaccharide (LPS)-induced inflammation, 
alveolar–capillary barrier is disrupted, and lung 
permeability is increased, which leads to infiltration of 
neutrophils into the lungs (2). Chronic and acute lung 
injury has a profound effect on cardiovascular system. 
Many studies have shown that airway exposures to 
cigarette smoke, pollutants and infectious agent leads 
to cardiac diseases (3). Evidences show association 
between lung and cardiac disease (4). Cardiac disorders 
associated with lung inflammation increase morbidity 
and morbidity. Patients with lung disease also show 
an increased risk of mortality due to heart failure, 
myocardial infarction and arrhythmia compared to 
healthy individuals. Since the cardiac dysfunction 
and abnormalities obviously contribute to the overall 
morbidity associated with pulmonary disease (5); 
therefore, an understanding of their role and potential 
for treatment is necessary.

 Also, ALI has been reported to lead to systemic 
inflammation and increased endothelial dysfunction in 
systemic blood vessels and disrupted cardiac output, 
which are major risk factors for the cardiovascular 

system (6, 7). The concentration of interleukin 6 
(IL-6), as a proinflammatory cytokine,  increases in 
bronchoalveolar lavage fluid (BALF), and in the lung 
upon exposure to particulate matter (8), but its high 
concentration in the blood poses a cardiovascular risk 
factor in patients with coronary artery disease (9). LPS 
initiates a sequence of cellular disorders, which reduce 
cardiac contractile efficiency (10). Systemic infections 
lead to serious destruction in cardiomyocytes, such as 
cell apoptosis, impairment of calcium homeostasis and 
excitation/contraction coupling (11). 

Recently, several plant-derived compounds have 
been found to be immunosuppressive, and are now 
used as an anti-autoimmune and anti-inflammatory 
factor (12). p-Coumaric acid (p-CA) is a phenolic 
compound, which is found in vegetables, fruits, and 
other herbal products (cranberry syrups, rice, grape 
juices, tomatoes, and apple) (13). p-coumaric acid 
can convert to phenolic acids such as chlorogenic 
acid, rosmarinic acid, flavonoids, and other secondary 
metabolites and also possesses various effects including 
antioxidant, anti-angiogenic, anti-UV damage, and anti-
platelet properties (14). Nuclear factor-erythroid 2 
-related factor 2 (Nrf2), a transcription factor, binds to 
antioxidant response elements  encoding antioxidant 
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enzymes such as glutathione S-transferase (GST), 
NAD(P)H dehydrogenase quinone 1 (NQO1), heme 
oxygenase-1, glutathione peroxidase (GPx), NAD(P)H 
quinone oxidoreductase, and glutamate cysteine ligase 
(GCL) (15). Via scavenging the cytotoxic electrophile 
agents and reactive oxygen species (ROS), and 
responding to pro-inflammatory stimuli, it plays a key 
role in cellular defense (16).

In this study, we used LPS to induce ALI. We 
hypothesized that systemic inflammation during ALI 
induces myocardial dysfunction through oxidative 
stress. Therefore, we investigated the in vitro and in vivo 
effects of p-CA in heart injury followed by LPS-induced 
ALI.

Materials and Methods
LPS (Escherichia coli LPS, 055:B5), p-CA (Sigma-

Aldrich, USA), xylazine 2%, ketamine HCl 10% (Alfasan 
Co. Netherlands), antioxidant assay kits (ZELLBIO, 
Germany), Krebs salts (Merck, Germany), and ELISA kits 
(IBL, Germany) were provided.

Thirty two young male rats (Sprague-Dawley, 
weighting 180–200 g) were purchased from animal 
house of Ahvaz Jundishapur University of Medical 
Sciences, Ahvaz, Iran. The animals were divided into 
four groups: Control, pCA, LPS, and LPS+pCA (n=8): 
Rats received saline (Control) or p-CA (100 mg/kg) 
intraperitonealy for a period of ten days prior to the 
intratracheal (IT) administration of saline on the 8th day. 
LPS (5 mg/kg, IT) was instilled in the airway (17) on the 
8th day in LPS and LPS+ pCA groups. Rats received saline 
or pCA (100 mg/kg) (18) intraperitonealy for a period 
of ten days prior to the intratracheal administration of 
LPS on the 8th day. The rats were sacrificed 72 hr after 
LPS or saline treatment. Concentration-effect study 
(25, 50 and 100 mg/kg, IP) was performed with p-CA 
to determine the effective dose. In heart tissue, p-CA 25 
mg/kg does not have significant effect on tumor necrosis 
factor alpha (TNF-α), but p-CA 50 (P<0.05) and 100 mg/
kg can (P<0.001) decreased TNF-α level, and p-CA at 
100 mg/kg can significantly inhibit TNF-α as marker 
of inflammation. The experiments were carried out in 
accordance with the ethical guidelines, and the protocol 
was approved by the Ethics Committee for Animals 
at Ahvaz Jundishapur University of Medical Sciences, 
Ahvaz, Iran (No: IR.AJUMS.REC.1396.275).

LPS instillation
After anesthetizing the animals by Xylazine and 

Ketamine (IP), the normal saline containing 5 mg/kg 
of Escherichia coli lipopolysaccharide was instilled into 
the airways. Control animals received saline by the same 
route (17).

Cardiac TNF-α and IL-6 analyses
The rats were anesthetized and sacrificed 72 hr after 

injection of LPS or normal saline. Then, 100 mg of heart 
tissue was used to homogenize and centrifuged at 4000 
rpm.  The supernatant was kept at -80 ºC for other 
analyses. IBL kits (Germany) was used for determination 
of the TNF-α and IL-6 levels.

Evaluation of electrocardiography
Seventy-two hr after LPS or saline treatment, the 

animals were anesthetized, and cardiac function was 
examined 72 hr after LPS administration (Powerlab, 
ADInstruments, Australia) in all groups for 15 min. 
The electrodes were connected to a Bioamplifier and 
digitalized using an A/D converter, Powerlab 8sp. Then, 
the heart rate (HR), PR, QT, RR, QRS interval, and the QRS 
complex voltage were measured using Chart software 
(ADInstruments, Australia). By using Bazett’s formula 
(QTc = QT interval/square root of the RR interval), the 
corrected QT interval (QTc) was calculated (19).

Preparation of isolated hearts using Langendorff setup
The trachea was cannulated after anesthesia, 

and then ventilation was performed using a rodent 
ventilator (UGO BASILE Co., model 7025). The  aorta  
was cannulated  and heart was removed from the 
animal’s body, severing  the blood vessels; transmitted 
to a Langendorff setup, it was then perfused in a reverse 
fashion via the aorta with a nutrient rich, oxygenated 
solution (Krebs–Henseleit solution at temperature of 
37± 0.1 °C and a constant flow of 10 ml/min). To allow 
stabilization of coronary perfusion pressure, the hearts 
were perfused for 30 min. The balloon volume was set 
to maintain a left ventricular end diastolic pressure 
(LVEDP) of 5 mmHg. The signal from the pressure 
transducer was analyzed using a PowerLab system 
(ADInstruments, Australia). Indicator of hemodynamic 
status such as left ventricular end systolic pressure 
(LVESP), HR, LVEDP, perfusion pressure, left ventricular 
developed pressure (LVDP: LVSP-LVEDP), ±dp/dt: 
Maximal and minimum rate of pressure development 
and rate pressure product (calculated as HR × LVDP) 
were measured. HR and perfusion pressure were 
continuously monitored (20).

Antioxidant enzymes and lipid peroxidation 
After treatment of all groups, we homogenized 100 

mg of heart tissue in 1 ml of PBS (50 mM at pH 7.4) and 
then centrifuged (4000 rpm, 10 min). For measurement 
of superoxide dismutase (SOD), GPx, and glutathione 
(GSH) activities, and malondialdehyde (MDA) levels 
(ZellBio GmbH kits, Germany), the supernatant was 
collected and analyzed. 

Expression of Nrf2 gene
RNeasy plus mini kit (Qiagen Co, Netherlands) was 

used for RNA extraction. The total RNA was extracted 
from the homogenized tissue and purity of the total RNA 
was measured by spectrophotometry at 260 and 280 
nm (BioPhotometer Plus; Eppendorf, Germany). One μg 
of total RNA was used for complementary DNA (cDNA) 
synthesis (cDNA synthesis kit (Qiagen USA). A light 
cycler PCR (Roche, Diagnostics) was used to determine 
the levels of Nrf2 mRNA and the housekeeping gene 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH). 
Sequences of our primers (Bioneer, Daejeon, South Korea) 
were: Nrf2 (Forward: 5’ GGTTTCTTCGGCTACGTTTC 3’ 
and reverse: 5’ CCTCCCAAACTTGCTCAATG 3’), GAPDH 
(Forward: 5’ GTATTGGGCGCCTGGTCACC 3’ and reverse: 
5’ CGCTCCTGGAAGATGGTGATGG 3’) (21).

Statistical analysis
Statistical analyses were performed and described 

as means ± SEM. Data comparisons were made by the 
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Student’s t-test or one-way analysis of variance followed 
by the Tukey-Kramer multiple comparisons test. Results 
were considered significant if P<0.05.

Results
Confirmation of LPS-induced systemic inflammation

IL-6 and TNF-α levels were analyzed 72 hr after LPS 
exposure, which were significantly higher compared to 
control group (P<0.01, Figure 1) suggesting that the LPS 
induced systemic inflammation.

Effects of p-CA on antioxidant enzymes’ activity and 
Lipid peroxidation  

The effect of LPS was investigated on antioxidant 
enzymes’ activity and lipid peroxidation in heart tissue. 
As shown in Figure 2, SOD (P<0.05), GPx (P<0.01), 
GSH (P<0.05), and MDA (P<0.001) levels increased 
significantly in LPS (5 mg/kg) group compared to 
control group. In groups receiving p-CA, a significant 
decrease was found in these antioxidant enzymes and 
MDA level compared to LPS rats. 

ECG measurements
As shown in Table 1, there was an increase in HR (bpm) 

(P<0.01), and RR interval (S) (P<0.01), QRS Complex 
(S) (P<0.01) and PR interval (S) (P<0.01), and QT 
interval (S) (P<0.01), while QRS complex (mv) (P<0.01) 
decreased in LPS rat compared to control group. Also, in 
group that received p-CA, these alterations significantly 

Parameters Control p-CA LPS LPS+p-CA 

HR (bpm) 236±3.54 237±5.24 267±1.82** 249±4.34# 
PR interval (S) 
 0.053±0.01 0.049±0. 24 0.041±0.01** 0.049±0.02# 

QRS complex (S) 0.028±0.01 0.026±0.05 0.021±0.02** 0.027±0.01## 
 

QRS complex (mv) 0.58±0.02 0.56±0.04 0.37±0.04** 0.55±0.02# 

QT interval (S) 0.077±0.015 0.071±0.003 0.064±0.001* 0.076±0.001# 

QTc (S) 0.148±0.003 0.156±0.011 0.139±0.001 0.153±0.003 

RR interval (S) 0.25±0.005 0.24±0.004 0.2±0.002** 0.24±0.005# 

 

  

Table 1.  ECG records from all groups. Data are expressed as the mean ±SEM (n=8)

 

  Figure 1. Effects of p-CA on LPS-induced systemic inflammation. The 
concentrations of TNF-α and IL-6 in heart tissue analyzed by ELISA. 
Data are expressed as the mean±SEM (n=8)
 ** P<0.01 versus the control group; ## P<0.01, # P<0.05 versus the 
LPS group. LPS: Lipopolysaccharide; p-CA: p-Coumaric acid; TNF-α: 
Tumor necrosis factor alpha; IL-6: Interleukin 6

Parameters p-CA Control LPS LPS+p-CA 

RPP (mmHg/min) 22037.9±182.5 21314.6±76.2 26364.9±225.2*** 21706.5±288.9### 
Perfusion pressure (mmHg) 61.83±2.36 60.19±1.21 58.34±0.61 63.82±1.68 
+dp/dt (mmHg) 2406.45±35.97 2479.69±31.57 2281.71±25.35** 2471.4±59.89 # 
-dp/dt (mmHg) -2350.25±44.8 -2252.67±31.95 -2403.11±20.06 -2332.01±42.56 
LVDP (mmHg) 70.47±1.44 69.098±0.68 75.57±1.06 * 70.52±0.79 # 
LVEDP (mmHg) 6.58±0.28 6.8±0.13 7.98±0.19 * 6.96±0.24 # 
LVSP (mmHg) 71.94±0.77 68.99±1.1 75.89±3.22 73.59±1.07 
HR (bpm) 241 ±1.5 247±4.56 280±3.19*** 249±2.97### 

 

Table 2. Hemodynamic records from all groups. Data are expressed as the mean±SEM (n=8)

* P<0.05, ** P<0.01, *** P<0.001 versus the Control, # P<0.05, ### P<0.001 versus the LPS 
RPP: rate pressure product; ±dp/dt: Maximal and minimum Rate of Pressure Development; LVDP: left ventricular developed pressure; LVEDP: left 
ventricular end diastolic pressure; LVESP: Left ventricular end systolic pressure; HR: heart rate; LPS: Lipopolysaccharide; p-CA: p-Coumaric acid

* P<0.05, ** P<0.01, versus the Control, # P<0.05, ## P<0.05 versus the LPS rat. LPS: Lipopolysaccharide; p-CA: p-Coumaric acid; ECG: 
Electrocardiography. HR: Heart rate
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restored compared to LPS group.

Hemodynamic measurements
Hemodynamic results are shown in Table 2. There 

was a decrease in +dp/dt (mmHg) (P<0.01), rate 
pressure product (RPP) (P<0.001), LVDP (mmHg) 
(P<0.05), and LVEDP (mmHg) (P<0.05), whereas HR 
(P<0.001) increased in LPS compared to control group, 
but pretreatment with p-CA blocked the induction of 
these effects. However, no effect was observed on other 
parameters, such as LVSP (mmHg), dp/dt min (mmHg), 
and perfusion pressure (mmHg).

Effects of p-CA on Expression of Nrf2 gene
As presented in Figure 3, Nrf2 mRNA expression 

significantly increased 72 hr after LPS exposure in 
comparison with controls (P<0.05). However, p-CA 
pretreatment caused significantly decreased in mRNA 
expression of Nrf2 compared to LPS groups (P<0.05).

Discussion
Present findings with an E. coli induced ALI model 

indicate that intratracheal administration of bacterial 
LPS can produce inflammation in heart. IL-6 and TNF-α 
levels increased in ALI rats compared to control group, 
while pretreatment with p-CA (100 mg/kg) significantly 
inhibited IL-6 and TNF-a level in comparison with LPS-
treated rats (P<0.01). Zhao et al. (2016) demonstrated 
that p-coumaric acid has an anti-Inflammatory effects 
in LPS stimulated RAW264.7 cells. When tissues are 
infected or injured, inflammation occurs, which is a 
complex process involving immune cells, blood vessels, 
and molecular mediators (22). The pathological 
inflammatory procedure leads to activated monocytes, 
mast cells, macrophages, and lymphocytes, resulting in 
the producing large amounts of inflammatory mediators 
including chemokines, and cytokines that damage 
macromolecules including DNA and the generation of 
ROS (23).

LPS, a component of the outer membrane of gram-
negative bacteria, as an endotoxin is widely used in 
inflammatory animal models (24). LPS binds to cell 
membrane receptors (toll-like receptors, or TLRs) of 
different cells, including endothelial cells and leukocytes, 
and releases numerous cytokines (25). Cardiac myocytes 
have also TLRs, especially TLR4. It has been shown that 
LPS brings down the contractile function of the heart, 
and since TLR4 is the only LPS receptor, it seems that 
TLR4 plays a role in the heart function (26, 27).

In the current study, it was demonstrated that ALI, 
induced by LPS, causes myocardial dysfunction in 
in vitro and in vivo. Our results showed a significant 
elevation of the heart rate demonstrated by decreasing 
of R-R interval. Zhou et al. (1991) reported that 
increased plasma catecholamine concentration is 
related to the endotoxin, and thereby increases HR (28). 
QRS, QT interval and QRS voltage showed a significant 
reduction in LPS group, while QTc interval in LPS group 
was not significant. These results were also confirmed 

 

  Figure 2. Effects of p-CA on LPS-induced systemic inflammation. The concentrations of antioxidant enzymes and MDA levels in heart tissue 
analyzed by ZellBio kits. Data are expressed as the mean±SEM (n=8). * P<0.05, ** P< 0.01, *** P<0.001 versus the control group; # P<0.05, ## 
P<0.01, ### P<0.01 versus the LPS group. LPS: Lipopolysaccharide; p-CA: p-Coumaric acid; MDA: Malondialdehyde

 

Figure 3. Effects of p-CA on LPS-induced systemic inflammation. Nrf2 
mRNA expression in heart tissue analyzed. Data are expressed as the 
mean±SEM (n=8). * P<0.05, versus the Control rats. # P<0.05 versus 
the LPS group. Nrf2: Nuclear factor-erythroid 2 -related factor 2; LPS: 
Lipopolysaccharide; p-CA: p-Coumaric acid
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by Karjalainen et al. (29). Pretreatment with p-CA 
prevented early deterioration of cardio-respiratory 
parameters in LPS-induced ALI. In patients with 
sepsis, the cardiovascular system is affected, and many 
studies have shown that myocardial depression is one 
of the signs of septic syndromes (30). Determining the 
direct effects of LPS on the cardiac response that cause 
alteration in neuro-humoral activity, afterload and 
preload, is difficult because in response to peripheral 
hemodynamic changes, the heart is constantly changing 
(31). In this study, isolated hearts from LPS group 
showed a significant increase in LVEDP (mmHg) and 
LVDP (mmHg), and also a decrease in +dp/dt, which 
is an index of decreased contraction of myocardium. 
Increasing of oxygen consumption and myocardial 
work load is due to increase in the RPP (32). However, 
pretreatment with p-CA in ALI rats recovers these cardiac 
responses compared to LPS group. Many in vitro and 
animals studies have shown  elevated ROS production 
in the cardiovascular system in response to various 
stressors and in the failing heart (33). Ion balance is 
a key element in normal cardiac function, and there is 
notable data showing that the flux of ion channel and 
function of ion pump across a cell membrane is altered 
by ROS in a biological manner in heart tissue (34). ROS 
causes lipid peroxidation followed by secondary damage 
to membrane; the mechanism by which this can occur 
is: suppression of the Ca2+ current and alteration in 
sarcolemma L-type calcium channels (35). A membrane 
calcium pump whose activity is suppressed by ROS is 
sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2), which 
has a critical role in cardiac calcium regulation and acts 
as a marker of myocardial contractility (36).

In the current study, myocardial function was 
impaired as demonstrated by increased MDA level. 
MDA, as a marker of oxidative stress, reflects the effects 
of reactive oxygen metabolites on the cell damage 
(37). Endogenous antioxidative factors including SOD, 
GPx and GSH, had an important function in preventing 
oxidative stress condition, activated by ROS (38, 39). 
In agreement with the study of Moura et al. (2012) 
who investigated the effects of Eutrpe Oeracea Mart 
extract on cigarette smoke-induced ALI, in our study 
there was a significant increase in heart SOD, GPx and 
GSH and in MDA concentration in LPS group compared 
to control rats. Treatment by p-CA lowered heart 
MDA level and antioxidant enzymes compared to the 
LPS group. This can be a sign of a balance between 
antioxidants and oxidant elements (40). Prasanna 
et al. (2013) concluded that p-CA could be a critical 
candidate for protecting the cardiotoxicity induced by 
sodium arsenite in rats through its antioxidant activity 
(41). P-CA has been shown to inhibit oxidation of low-
density lipoproteins in both in vitro and in vivo studies 
(42). In protection against inflammatory tissue injuries, 
expression of cytoprotective and antioxidative genes 
follows activation of Nrf2–ARE system (43, 44). In acute 
inflammation, Nrf2−/− mice compared to wild-type 
mice showed a significant increase in duration of lung 
inflammation and susceptibility to pulmonary injury 
(45). Expressing of cytokines, chemokines, and cell 
adhesion molecules/receptors were observed at highest 
levels in Nrf2−/− lungs compared to Nrf2+/+ (46). The 
pathogenic manifestations of Nrf2 knockout mice were 

inflammatory lesions in multi-organ, intravascular 
deposition of immunoglobulin (Ig) complexes and 
premature death due to rapidly progressing glomerular 
nephritis (47), in response to pro-inflammatory 
condition, suggesting that Nrf2 has a critical role in 
noxious stressors and cellular adaptation.

Conclusion
In conclusion, this study demonstrated that 

pretreatment with p-CA attenuated systemic 
inflammation in ALI model induced by LPS in rats. 
P-CA reduced oxidative stress, TNF-α, and IL-6 level in 
heart tissue of LPS group. However, our study did not 
investigate scavenging role of p-CA in ROS production 
induced in ALI or whether p-CA can control the 
synthesis, release, or activity of antioxidant enzymes.
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