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ABSTRACT

Objective(s): Administration of antidepressants and exercise are among the therapeutic approaches
to chronic stress. Therefore, this study compared the therapeutic effects of different doses of
escitalopram, exercise, and exercise-accompanied escitalopram on synaptic potency and long-term
plasticity in the hippocampal CAT area in rats under chronic restraint stress.

Materials and Methods: The rats were allocated to different groups. The chronic restraint stress (6 hr/
day) continued for 14 days. Injection of escitalopram (10 and 20 mg/kg) and treadmill running (1 hr/
day) were performed after the stress induction. The input/output (I/O) functions and LTP induction
were evaluated in the hippocampal CA1 area.

Results: The fEPSP slope and amplitude after the LTP induction significantly decreased in the
chronically stressed group. However, the serum corticosterone levels had significant enhancement
in this group. In addition to serum corticosterone levels, the fEPSP slope and amplitude after the
LTP induction were enhanced by exercise, escitalopram 20 mg/kg alone, and exercise-accompanied
escitalopram 10 and/or 20 mg/kg in chronically stressed groups.

Conclusion: Overall, chronic stress impaired synaptic potency and long-term plasticity. These
impairments were effectively reversed by exercise, escitalopram 20 mg/kg alone, and exercise-
accompanied escitalopram 10 and 20 mg/kg. However, escitalopram 10 mg/kg alone could not
alleviate the memory deficits in chronically stressed subjects. Therefore, exercise with both doses of
escitalopram seems to have had additive effects on chronic stress conditions.
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Introduction

Chronic stress leads to exacerbation and acceleration
of some mental illnesses, such as depression and anxiety
via the hyperactivity of the hypothalamic-pituitary-
adrenal (HPA) axis (1). Also, the elevated levels of serum
cortisol under chronic stress exert neurotoxic effects on the
hippocampal neurons, which result in reduced functions of
various mechanisms, such as neurogenesis, synaptogenesis,
dendritic spines, long-term potentiation (LTP), and brain
functions, as well as increased neural apoptosis (1-3).
Numerous pieces of evidence have shown that hippocampal
LTP is the electrophysiological basis for learning and
memory (4). Therefore, it has been used to assess experience-
dependent plasticity or memory (5).

Nowadays, the treatment of stress has become very
important in societies as it is involved in various mood and
brain disorders including, anxiety, depression, and cognitive
impairments (1). Antidepressants are used for treatment of
stress and potential brain dysfunctions that are caused by
it (6). Selective serotonin reuptake inhibitors (SSRIs) are
a class of first-line antidepressants that are recommended
for improving the state of stress-associated disorders (e.g.,
depression and anxiety) (6, 7). As an important mechanism,
they enhance the net serotonergic transmission by blocking
the presynaptic serotonin uptake sites (7). Escitalopram

(S-enantiomer of citalopram), the most common SSRI
in the treatment of stress, anxiety, and depression (8) is
more potent than citalopram (9). In different studies,
escitalopram has either ameliorated or decreased memory,
and in some cases, it had no impact on memory (10).
Therefore, the memory-associated effects of escitalopram
remain controversial. Drug therapy has different side effects
and a slow response time; therefore it might need an extra
treatment regimen to be effective (11). Therefore, further
safe treatment procedures are required to reverse the effects
of memory disorders that are induced by chronic stress.
According to previous studies, aerobic exercise is a
non-pharmacological strategy for improving various brain
functions, such as cognition and mood (12, 13). Similar to
antidepressants and anxiolytics, exercise has also beneficial
effects (14) and suppresses the decreased proliferation of
hippocampal cells due to chronic stress or corticosterone
administration (15). Also, regular exercise enhances
angiogenesis, neurogenesis, and synaptic plasticity in the
brain (16, 17). Different protocols like pharmacological
manipulation and exercise could modulate LTP (18). Hence,
in the treatment of stress and stress-related disorders, such as
memory impairments, exercise could serve as an alternative
approach to SSRIs or could be integrated with SSRI-driven
methods. Therefore, this study has aimed to investigate the
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effects of exercise, two escitalopram doses, and exercise-
accompanied escitalopram on synaptic potency and long-
term plasticity in the hippocampal CAl area in rats with
chronic stress.

Materials and Methods
Animals

Seventy-two male Wistar rats (200-250 g) were
purchased from the animal nest in the Faculty of Pharmacy,
Istahan University of Medical Sciences, Iran. The rats were
under a 12-hour light/dark cycle (lights on at 07:00) at
constant temperature (2312 °C) and humidity (55+5%).
These rats received food and water ad libitum. Also, before
the experimental procedures, they were acclimatized to
the standard conditions for a week. All experiments were
performed in compliance with the Ethics Committee
of Animal Use and were approved by it (IR.MULMED.
REC.1398.607). The rats were restrained 6 hr/day for 14 days
and different treatment protocols were applied during the
next 14 days. At the beginning of the study, the animals were
randomly assigned to nine equal groups (n=_8):

1) Control (Co) group, in which the rats were transferred
to the laboratory and received no special treatments.

2) Sham Exercise (Sh.Exe) group, in which the rats were
placed on the turned-off treadmill apparatus (1 hr/day) for
the next 14 days.

3) Sham Injection (Sh.Inj) group, in which the rats
received equal volumes of normal saline (drug vehicle) for
the next 14 days.

4) Chronic Restraint Stress (CRS) group, in which the
rats were exposed to restraint stress of 6 hr/day for 14 days.

5) Chronic Restraint Stress-Exercise (CRS-Exe) group, in
which the rats were first exposed to restraint stress of 6 hr/
day for 14 days, and then received regular exercise 1 hr/day
for the next 14 days.

6) Chronic Restraint Stress-Escitalopram10 (CRS-Esc10)
group, in which the rats were exposed to restraint stress of
6 hr/day for 14 days, and then received escitalopram at a
dose of 10 mg/kg/day for the next 14 days.

7) Chronic Restraint Stress-Escitalopram20 (CRS-Esc20)
group, in which the rats were exposed to restraint stress of
6 hr/day for 14 days, and then received escitalopram at a
dose of 20 mg/kg/day for the next 14 days.

8) Chronic Restraint Stress-Escitalopram10-Exercise (CRS-
Esc10-Exe) group, in which the rats were exposed to restraint
stress of 6 hr/day for 14 days, and then simultaneously
received escitalopram at a dose of 10 mg/kg/day and regular
exercise for the next 14 days.

9) Chronic Restraint Stress-Escitalopram 20-Exercise (CRS-
Esc20-Exe) group, in which the rats were exposed to restraint
stress of 6 hr/day for 14 days, and then simultaneously
received escitalopram at a dose of 20 mg/kg/day and regular
exercise for the next 14 days.

Induction of chronic restraint stress

Chronic restraint stress is a common animal model
to induce emotional stress, anxiety, depression, and their
associated physiological changes (19). In this study, chronic
restraint stress (6 hr/day, 8:00-14:00) was induced for
14 days (20); therefore, each rat was separately placed in a
transparent plastic cylinder.

Drug treatment
Escitalopram was administered by the intraperitoneal
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(IP) injections of pure escitalopram oxalate powder (10 and
20 mg/kg; Sobhan-Daru Co., Iran), dissolved in the sterile
normal saline (0.9%) for 14 consecutive days (21).

Exercise treatment

The rats were subjected to a 1 hr/day treadmill (Maze
router apparatus, Tabriz, Iran) running for 14 consecutive
days in compliance with a previous study protocol (3). The
exercise speed was 20-21 m/min at a zero-degree (0°) slope.
The animals were familiarized with the treadmill running
3 days before the experiment. They were forced to run at
the speed of the treadmill and received a mild electric shock
(about 0.3 mA) from the grid at the back of the apparatus.
Electric shocks were used sparingly to promote running.
These mild shocks were applied at the beginning of the
experience and then discontinued to avoid any pain stress
after familiarization. During the remaining exercise period,
the treadmill running was completed without shock to the
animals.

Electrophysiological procedures

The electrophysiological procedures complied with the
protocols described in previously published studies (3,
22). The rats were anesthetized with urethane (1.5 g/kg, IP;
Sigma-Aldrich Co., USA), and then placed in a stereotaxic
frame (Stoelting Co., USA). A bipolar stimulation electrode
(Teflon-coated stainless steel, diameter: 0.125 mm;
Advent, UK) was placed in the right hippocampal Schaffer
collateral pathway (AP=—4.2 mm; ML=3.8 mm; DV=-2.7
to —3.8 mm) and a unipolar recording electrode (Teflon-
coated stainless steel) was moved to the right CAl area
from the upper left at an angle of 52.5° (AP=-3.4 mm;
ML=1.5 mm; DV=-4.4 to —5.1 mm) until the maximal
response was received. To minimize brain tissue trauma,
the electrodes were inserted slowly (2 mm/min). Proper
implantation of these electrodes in the correct position was
confirmed by considering the physiological and stereotaxic
indicators. Notably, the electrophysiological experiments
were performed a day after the last day of the experiment
(Day 29). Extracellular recording of the field excitatory
postsynaptic potential (fEPSP) waveform is a commonly
used technique for studying synaptic plasticity and long-
term potentiation (LTP). Therefore, the fEPSP indices (i.e.,
slope and amplitude) were used as the preferred criteria for
measuring synaptic plasticity (23). The fEPSP slope has been
defined as the slope between the baseline and peak of the
negative wave; however, the fEPSP amplitude is measured
as the voltage difference between the negative peak and
baseline of the fEPSP wave (3, 22) (Figure 1).

Henceforth, astimulation 0of0.1 Hzinthe CA1 area evoked
fEPSPs. As such, these potentials were amplified (x10°) and
1-3 kHz band-pass filtered. Subsequently, the signals were
transferred through an analog-to-digital interface (Science
Beam-D3111, eProbe Experiment software) to a computer.
The obtained data were analyzed using the eTrace analysis
software (Science Beam; Parto Danesh, Tehran, Iran). The
stimulus-response or input-output (I/O) functions were
acquired to verify if the interventions had influenced the
basal circuity properties and synaptic potency (excitability)
in the intended areas. As such, a systematic variation of
the current stimulus (100-1000 pA) was used before LTP
induction. After verifying the steady state of baseline fEPSP
responses, recordings were obtained 30 min before and
60 min after LTP induction (Figure 1). Any alterations in the
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Figure 1. A schematic representation of the changes in the slope and amplitude of fEPSP before and after LTP induction by high-frequency stimulation in
the control group in Wistar rats: (a) and (a’) fEPSP slope; (b) and (b") fEPSP amplitude

LTP: Long-term potentiation; fEPSP: Field excitatory postsynaptic potential

synaptic responses of the CA1 neurons could be determined
this way. High-frequency stimulation (HFS) protocol of
100 Hz (4 bursts of 50 stimuli, 0.15 ms stimulus duration,
at 10 sec inter-burst intervals) was used to induce LTP. The
stimulation intensity was adjusted to approximately 50%
of the maximum fEPSP slope response after recording the
I/O functions. LTP was indicated as the initial baseline
value percentage which was monitored after 60 min tetanic
stimulation. It was measured by the varying initial fEPSP
slope and amplitude values.

Assessing serum corticosterone levels

The rats were decapitated a day after the final session
(Day 29, 16:00-18:00) of the electrophysiological recording
procedures. After collecting the blood samples from the
trunk, the serum samples were separated (centrifuged for
20 min, 6000 rpm) and stored at —80 °C for subsequent
analyses. Also, the serum corticosterone levels were
evaluated by a commercial enzyme-linked immunosorbent
assay (ELISA) kit (Zellbio, Germany).

Statistical analyses

The obtained electrophysiological data were compared
in all experimental groups via repeated-measures analysis
of variance (ANOVA) and Tukey’s post hoc test. Serum
corticosterone levels were analyzed by one-way ANOVA
and Tukey’s post hoc test, and calculated in SPSS statistics
software (v.24). In this study, the P-values less than 0.05
(P<0.05) were statistically significant. All data were
expressed as means+SEM.

Results

The control (Co) and both sham (Sh.Exe and Sh.Inj)
groups presented no significant differences. Therefore, the
Co group became the frame of reference for all comparisons
in this study.

Input-Output (I/0) functions

The Chronic Restraint Stress (CRS) group showed
significant (both P<0.001) decreases in the fEPSP slope and
amplitude of their associated I/O curves compared with
the Co group; this result indicated that CRS had reduced
synaptic potency of the hippocampal CA1 apical dendritic
layer. However, there was no significant difference in any of
the other experimental groups in comparison with the Co
group (Figure 2).

The fEPSP slope and amplitude of the I/O curves in
the CRS-Escl0 and CRS-Escl0-Exe groups exhibited
no significant difference compared with the CRS group
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(Figure 2). However, the fEPSP slope and amplitude
presented significant enhancements in the CRS-Exe (both
P<0.05), CRS-Esc20 (both P<0.05), and CRS-Esc20-Exe
(P<0.01 and P<0.05, respectively) groups in comparison
with the CRS group. Hence, exercise and escitalopram
at a dose of 20 mg/kg/day were almost equally effective;
nonetheless, the exercise-accompanied escitalopram20 had
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Figure 2. Input-output (I/O) curves of fEPSP (A) slope and (B) amplitude
in the CA1 region for different experimental groups. The input-output
(I/O) curves show the responsiveness of the apical dendritic layer and
synaptic potency (excitability). Results are expressed as means+SEM
(ANOVA test, Tukey’s post hoc test); ***P<0.001 compared with the Co
group; ###P<0.001 compared with the Sh.Inj group; g¥ P<0.01 compared
with the Sh.Exe group; 8 P<0.05 and #8P<0.01 compared with the CRS group
Co: Control group, Sh.Inj: Sham injection group, Sh.Exe: Sham Exercise
group, CRS: Chronic Restrain Stress group, CRS-Exe: Chronic Restrain
Stress-Exercise group, CRS-Esc10: Chronic Restrain Stress-Escitalopram 10
mg/kg group, CRS-Esc20: Chronic Restrain Stress-Escitalopram 20 mg/kg
group, CRS-Esc10-Exe: Chronic Restrain Stress-Escitalopram 10-Exercise,
CRS-Esc20-Exe: Chronic Restrain Stress-Escitalopram 20-Exercise group
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a partially non-significant therapeutic effect on the synaptic
potency of the CA1 region (Figure 2).

Long-term potentiation (LTP)

The fEPSP slope and amplitude reduced significantly
(P<0.001 both) in the CRS group compared with the Co
group, indicating poor LTP induction and maintenance in
this group. Also, the fEPSP slope and amplitude after the
LTP induction were non-significantly lower in the CRS-
Escl0 and CRS-Escl0-Exe groups compared with the
Co group (Figure 3). According to these results, although
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Figure 3. Effects of different treatment protocols on LTP induction in the
CAT1 region using 100 Hz high-frequency stimulation. (A) Changes in the
fEPSP slope as percentages of the baseline response. (B) Changes in the
fEPSP amplitude as percentages of the baseline response. (C) Sample traces
of typically recorded fEPSPs in the hippocampal CA1 neurons before and
after HFS induction for the LTP in all experimental groups. Results are
expressed as means=SEM (ANOVA test, Tukey’s post hoc test); ***P<0.001
compared with the Co group; ###P<0.001 compared with the Sh.Inj group;
¥ P<0.01 and % P<0.001 compared with the Sh.Exe group; & P<0.05, ¢
P<0.01, and €& P<0.001 compared with the CRS group

Co: Control group; Sh.Inj: Sham injection group; Sh.Exe: Sham exercise
group; CRS: Chronic restrain stress group; CRS-Exe: Chronic restrain
stress-exercise group; CRS-Esc10: Chronic restrain stress-escitalopram 10
mg/kg group; CRS-Esc20: Chronic restrain stress-escitalopram 20 mg/kg
group; CRS-Esc10-Exe: Chronic restrain stress-escitalopram 10-exercise;
CRS-Esc20-Exe: Chronic restrain stress-escitalopram 20-exercise group;
LTP: Long-term potentiation; HFS: High-frequency stimulation; fEPSP:
Field excitatory postsynaptic potential

Iran ] Basic Med Sci, Vol. 25, No. 12, Dec 2022

MS

NE=

Serum Corticosterone levels (ng/ml)

Zamani et al.

the aforementioned therapeutic approaches to chronic
stress were partially effective, chronic stress had severely
disrupted the LTP data to an extent that it could not re-
attain the normal levels again. The effects of administering
escitalopram at a dose of 10 mg/kg alone failed to reverse
the CRS-induced memory impairments. However, chronic
stress for 14 days might induce a state of depression that
administration of escitalopram at a dose of 10 mg/kg alone
seemed incapable of improving its slope and amplitude after
the LTP induction.

After the LTP induction, slope and amplitude had
significant enhancements in the CRS-Exe (P<0.01 both),
CRS-Esc20 (P<0.01 and P<0.05, respectively), CRS-
Esc10-Exe (P<0.05 both) and CRS-Esc20-Exe (P<0.01 and
P<0.001, respectively) groups in comparison with the CRS
group. These results suggested that all of these treatment
methods were beneficial for improving memory deficits
in the chronically stressed group. However, there was no
significant difference in the fEPSP slope and amplitude
among these therapeutic groups, including the CRS-Exe,
CRS-Esc20, CRS-Esc10-Exe, and CRS-Esc20-Exe groups
concerning the LTP data (Figure 3). These results indicated
that exercise accompanied by both doses of escitalopram,
especially a 20 mg/kg dose of escitalopram, had a partial
additive impact on memory improvement after the
induction of chronic stress.

Changes in serum corticosterone levels

As shown in Figure 4, serum corticosterone levels were
significantly higher (P<0.001) in the CRS group compared with
those in the Co group. These results indicate that CRS activated
the HPA axis. In all treatment groups, serum corticosterone
levels did not show any significant differences compared with
the Co group. As seen in Figure 4, the serum corticosterone
levels had significant differences in the CRS-Exe, CRS-Esc10,
and CRS-Esc10-Exe groups compared with the CRS group
(P<0.01, P<0.05, and P<0.05, respectively). In this figure, more
significant decreases in the serum corticosterone levels were
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Figure 4. Changes in the serum corticosterone levels (ng/ml) in all
experimental groups in Wistar rats. Results are expressed as means+=SEM
(one-way ANOVA followed by Tukey's post hoc test). ***P<0.001
compared with the Co group; ###P<0.001 compared with the Sh.Inj group;
¥ P<0.001 compared with the Sh.Exe group; & P<0.05, #6P<0.01, and &€
& P<0.001 compared with the CRS group

Co: Control group; Sh.Inj: Sham injection group; Sh.Exe: Sham exercise
group; CRS: Chronic restrain stress group; CRS-Exe: Chronic restrain
stress-exercise group; CRS-Esc10: Chronic restrain stress-escitalopram 10
mg/kg group; CRS-Esc20: Chronic restrain stress-escitalopram 20 mg/kg
group; CRS-Esc10-Exe: Chronic restrain stress-escitalopram 10-exercise;
CRS-Esc20-Exe: Chronic restrain stress-escitalopram 20-exercise group
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Figure 5. An electrode site sample in (A) the CAl region and (B) the
Schaffer collateral pathway of the hippocampus by observing tissue
incision (2.5%10 magnified)

observed in the CRS-Esc20 and CRS-Esc20-Exe groups in
comparison with the CRS group (P<0.001 both). These results
indicated that exercise simultaneous with receiving either dose
of escitalopram administration slightly contributed to reducing
serum corticosterone levels.

Brain tissue histology

The primary clue about the stimulation and recording
sites in the hippocampus is the field potential pattern. In
this study, these sites were histologically verified (further
assurance) by rapidly discarding and storing the brains of
decapitated animals in 10% formalin for at least 3 days. For
the histological confirmation, a freezing microtome was
used for the frozen brain serial transverse sections (60 um).
Additionally, the injection sites were determined by a light
microscope following the rat brain atlas (Figure 5).

Discussion

The effects of exercise, different doses of escitalopram
(10 and 20 mg/kg), and exercise-accompanied escitalopram
(both doses) were investigated on synaptic potency and LTP
of the hippocampal CA1 area in rats that were exposed to
chronic stress.

Chronic stress reduced synaptic potency and the intensity
of long-term plasticity in the hippocampal CA1 area. Also,
chronic stress increased serum corticosterone levels. A
decrease in synaptic potency was previously attributed to
the reduced proliferation rate (of new cells) due to chronic
stress (24). Moreover, chronic stress inhibits synaptic
flexibility and LTP in the hippocampal-nucleus accumbens
pathway (25). Nevertheless, different mechanisms could
be associated with the impairment of synaptic potency
and long-term plasticity in chronically stressed subjects.
For instance, chronic stress adversely affects N-methyl-D-
aspartate (NMDA) receptors, hyperpolarization amplitude,
calcium influx, and glutamate synaptic transmission
(26, 27). These factors may subsequently influence
the membrane potential and LTP capability through
hormonal and biochemical changes, as well as alterations
of neurotransmitters (26, 28). In this regard, some studies
have shown that increased corticosterone levels caused
changes in cerebral plasticity, which might in turn lead to
structural changes in the hippocampus (29, 30). According
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to some in vivo and in vitro studies, LTP was impaired in
the hippocampal neurons after exposure to high doses of
corticosteroids (31).

Based on present findings, exercise therapy in chronically
stressed subjects improved synaptic potency, LTP induction,
and maintenance, as well as serum corticosterone levels.
Both forced and voluntary exercise models increase LTP
and synaptic strength (32, 33), probably by activating the
serotonergic neurons and increasing their firing rate (34).
It is reported that exercise would ameliorate various brain
functions, such as increasing antioxidant defense, activating
synaptic plasticity mechanisms, and enhancing serotonergic
neuronal activity, neurogenesis, and metabolic capacity (34-
37). Moreover, the exercise duration was effective in the
LTP responses (38). However, forced exercise over a short
period could be regarded as a stressor that adversely affects
memory and even corticosterone levels (39, 40).

Based on the present data, escitalopram at a dose of
10 mg/kg alone did not have any significant therapeutic
impact on the cellular memory mechanisms in
chronically stressed subjects. Exposure to chronic stress
for 14 consecutive days could possibly induce a state of
depression such that administration of escitalopram at
a dose of 10 mg/kg alone could not significantly improve
LTP as a cellular model of memory. However, a 20 mg/
kg dose of escitalopram alone improved synaptic potency
and long-term plasticity in the stressed subjects. A study
reported that a 20 mg/kg dose of escitalopram ameliorated
protein markers (like BDNF and synaptophysin) involved
in hippocampal synaptic plasticity (41, 42). Popoli et al.
(2008) demonstrated that administration of escitalopram
at a dose of 25 mg/kg reduced LTP under stress (43).
Additionally, both doses of escitalopram (particularly the
20 mg/kg dose) decreased serum corticosterone levels more
significantly. Therefore, administration of escitalopram
might have positively affected the regeneration process
for the damaged dendrites in the prefrontal cortex and
hippocampus (41, 44). It is reported that administration of
10 mg/kg escitalopram in the chronic stress model reversed
LTP impairment and reduced corticosterone levels in the
stressed subjects (45, 46). Another study has similarly
indicated the potential impairment of LTP induction due
to the escitalopram dose of 10 mg/kg (10). Escitalopram
could not improve the recognition memory in the
serotonin-depleted rats (47); also, it could not enhance the
hippocampal BDNF levels in the stressed rats (48). As such,
these doses of escitalopram did not affect NMDA receptors
in rodents under chronic stress (49). Hence, various
signaling pathways seem to be associated with the efficacy
of different escitalopram doses in the brain (50). According
to some studies, escitalopram is a dose-dependent drug
because the increase in the drug dosage has enhanced
serotonin concentrations (51). Moreover, the serotonergic
system positively affected LTP induction and maintenance
(52). It is proposed that increasing the drug dosage might
positively contribute to the treatment of memory disorders
(53). Overall, the outcome of drug usage may depend on
the type, time, and duration of drug treatment as well as
the presence of stress, type of stress induction, and drug
usage (54). Furthermore, the difference between these two
escitalopram doses might be related to an initiation delay
in the manifestation of SSRI-related therapeutic effects. For
instance, desensitization or neuroadaptation of monoamine
receptors, and especially serotoninergic auto-receptors in
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the brain, may lead to such types of delayed reactions (55).
Moreover, increased serotonin levels due to a sustained
administration of antidepressants led to down-regulation or
desensitization of these receptors (55). Nevertheless, higher
doses of escitalopram seem more potent in increasing and
maintaining serotonin (51). While escitalopram at a dose of
10 mg/kg had a 2-week interval for neural adaptation in the
rat’s brain, neuroadaptation occurred faster with its higher
dose (20 mg/kg) (56).

Based on other data, the combined effects of escitalopram
(10 and 20 mg/kg) and exercise improved long-term
plasticity and serum corticosterone levels in subjects
with chronic stress. In this study, its positive effects were
not significant compared with the singular treatment
methods (by escitalopram 10 and 20 mg/kg or exercise).
In the present study, exercise accompanied both doses
of escitalopram (10 mg/kg and particularly 20 mg/kg)
and had a partial additive impact on improving synaptic
plasticity in the chronically stressed subjects. Therefore both
treatment models not only could effectively increase BDNFs
(35, 42) and serotonin (34, 51) but also possibly decrease
corticosterone levels in the brain (38, 41). Serotonin plays a
key role in memory and regulates important memory-related
neurotransmitters, such as GABA and glutamate (57). An
SSRI-related increase in serotonin levels leads to activation
of the HPA axis due to different serotonin receptors in the
hypothalamus (58). Moreover, desensitization of serotonin
receptors results in an activity-driven decrease of these
receptors over the injection period (58). Hence, with a
10 mg/kg escitalopram dose longer duration was required
for desensitization of serotonin receptors and increasing
the serotonin levels in the brain (55, 56). Therefore,
exercise seems to contribute to both doses of escitalopram
in serotonin changes. In addition, memory improvement
could develop further if the exercise period increases
(38). The onset of treatment response within a 2-week
interval could be an important indicator for the subsequent
responses (59). In this study, escitalopram administration at
both doses of 10 and 20 mg/kg produced proper therapeutic
effects; moreover, when accompanied by exercise, these
escitalopram dosages had a partial additive impact on
memory improvement over the 2-week study period. Based
on a previous study, the beneficial effects of exercise were
time-dependent in stress conditions (60). However, present
findings indicate that treatment continuation using both
escitalopram dosages and exercise could provide a desirable
additive response for memory improvement in chronically
stressed subjects.

Conclusion

In the hippocampal CA1l areas, synaptic potency and
long-term plasticity were severely impaired by chronic stress.
Also, serum corticosterone levels were increased by chronic
stress. Exercise, escitalopram (20 mg/kg), and exercise-
accompanied escitalopram (10 and 20 mg/kg) improved
synaptic potency and long-term plasticity and had a partial
additive impact on memory improvement in chronically
stressed subjects. However, escitalopram 10 (only with
exercise) was able to reverse memory deficits in chronically
stressed subjects. Therefore, to develop combined methods
using both escitalopram and exercise, further molecular
and biochemical research regarding neuroplasticity is
required. The potential implications of such methods in the
treatment of depression-induced memory deficits should be
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thoroughly understood.
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