%0 Journal Article %T Recombinant PBP2a/autolysin conjugate as PLGA-based nanovaccine induced humoral responses with opsonophagocytosis activity, and protection versus methicillin-resistant Staphylococcus aureus infection %J Iranian Journal of Basic Medical Sciences %I Mashhad University of Medical Sciences %Z 2008-3866 %A Haghighat, Setareh %A Siadat, Seyed Davar %A Akhavan Sepahi, Abbas %A Mahdavi, Mehdi %D 2022 %\ 04/01/2022 %V 25 %N 4 %P 442-450 %! Recombinant PBP2a/autolysin conjugate as PLGA-based nanovaccine induced humoral responses with opsonophagocytosis activity, and protection versus methicillin-resistant Staphylococcus aureus infection %K Autolysin %K Methicillin-resistant - Staphylococcus aureus %K Nanovaccine %K PBP2a %K PLGA %R 10.22038/ijbms.2022.59992.13303 %X Objective(s): Methicillin-resistant Staphylococcus aureus (MRSA) reasons extreme infections, can resist various conventional antimicrobial agents, and cause morbidity and mortality worldwide. Vaccination seems to help modulate MRSA infections. Nanovaccine is considered a novel strategy in vaccine technology. The primary purpose of the present study was to develop a conjugate vaccine based on recombinant PBP2a and MRSA autolysin formulated in PLGA as a nanoparticle capable of enhancing protective responses against MRSA in the murine model.Materials and Methods: Recombinant PBP2a and autolysin have been expressed and purified by nickel-nitrilotriacetic acid (Ni-NTA) affinity column and characterized by SDS-PAGE and western blot. PLGA was bound to recombinant proteins by using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDAC) and adipic acid dihydrazide (ADH) as a linker and spacer, respectively. Conjugation of recombinant proteins to PLGA was confirmed by the AFM assay, zeta potential, and size distribution, and its efficacy was evaluated in mice. Total IgG, IgG1, IgG2a, IgG2b, and IgM titers were analyzed to assess immune responses. Lastly, the bioactivity of antibodies was tested by using the opsonophagocytosis assay. Results: Mice immunized with the r-PBP2a-r-autolysin–PLGA nanovaccine led to increased levels of opsonic antibodies and IgG1, IgG2a, IgG2b, and IgM when compared with other experimental groups. Our results confirmed that vaccination with nanovaccine could reduce the mortality rate against the sub-lethal dose of MRSA challenge. Furthermore, the nanovaccine could eliminate MRSA from the kidney of infected mice. Conclusion: This study may provide valuable insights into the protective power of the r-PBP2a-r-autolysin–PLGA conjugate vaccine against MRSA infection. %U https://ijbms.mums.ac.ir/article_20058_76d36599fe05d79de42884471af4fa25.pdf