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Objective(s): Among several cell sources, adult human neural stem/progenitor cells (hNS/PCs) have 
been considered outstanding cells for performing mechanistic studies in in vitro and in vivo models 
of neurological disorders as well as for potential utility in cell-based therapeutic approaches. Previous 
studies addressed the isolation and culture of hNS/PCs from human neocortical and hippocampal 
tissues. However, little data are available on hNS/PCs obtained from the adult human amygdala.
Materials and Methods: The present study explored the capacity of the amygdala harvested from resected 
brain tissues of patients with medically refractory epilepsy to generate neurosphere-like bodies and motor 
neuron-like cells.
Results: Although the proliferation process was slow, a considerable amount of cells was obtained 
after the 3rd passage. In addition, the cells could generate motor neuron-like cells under appropriate 
culture conditions. 
Conclusion: Isolation and culture of these cells enable us to improve our knowledge of the role of the 
amygdala in some neurological and psychological disorders and provide a novel source for therapeutic 
cell transplantation. 
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Introduction
In recent decades, neural stem/progenitor cells (NS/

PCs) have been used in enormous basic and therapeutic 
investigations (1) and several sources are identified 
for these cells, including embryonic, fetal, and adult 
stem cells (2, 3). Most of these studies have focused on 
embryonic and fetal cells, use of which in transplantation 
therapy raised immunological, availability, and ethical 
concerns (4). In contrast, adult stem cells can be 
considered an outstanding cell source for autologous 
transplantations (5). Among different adult sources for 
NS/PCs, the subventricular zone (SVZ) of the lateral 
wall of the lateral ventricle and the subgranular zone 
of the hippocampus are well-identified areas as the 
active sources for NS/PCs (6-8). Moreover, an active 
neurogenesis has been identified in the subependymal 
zone near the hypothalamus (9). In addition to active 
neurogenesis in the adult mammalian brain, quiescent 
NS/PCs are located in different adult mammalian brain 
regions that can be isolated and cultured in appropriate 
conditions (10). 

Isolation and expansion of human neural stem/
progenitor cells (hNS/PCs) from various human brain 
regions, including the neocortex (11), the olfactory 
bulb (12), the SVZ (13), the hippocampus (14, 15), and 

subcortical white matter (16), as well as from different 
brain tumors (17) have been reported. Data on the 
amygdala as a source for NS/PCs are scarce (11). The 
amygdala, a group of nuclei located in the anterior 
temporal lobe, is involved in several brain functions, 
including emotional responses, social interaction and 
judgments, learning and memory, and decision making 
(18). In addition, the amygdala is one of the brain 
regions involved in temporal lobe epilepsy (19). Since 
amygdalectomy is a part of the surgical treatment of 
patients with medically intractable epilepsy (20), the 
obtained tissue can be considered as a human source 
for molecular and cellular studies of brain disorders. 
Characterization of cellular properties of the stem 
cells harvested from epileptic amygdala tissue can be 
useful in designing reliable models of amygdala-related 
disorders, such as epilepsy and anxiety. Furthermore, 
these stem cells may be used as a source for autologous 
stem cell transplantation.

Generation of motor neurons from stem cells has been 
considered as a therapeutic choice for motor neuron 
diseases (21). To date, several sources were used to 
provide these specific neurons, including human, rodent, 
and primate embryonic stem cells as well as induced 
pluripotent stem cells (iPSCs) and murine cortical stem 
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cells (22, 23). However, there is no report on production 
of motor neurons from the adult human brain. Since 
proliferation and differentiation capacities are two main 
properties of stem cells, the ability of human amygdala 
tissue to generate NS/PCs was evaluated in the present 
study. In addition, the obtained NS/PCs were exposed 
to a differentiation medium to test whether they can 
develop into motor neurons.

Materials and Methods
Brain tissue collection

All procedures were approved by the ethics committee 
of the Shefa Neuroscience Research Center, Tehran, 
Iran. Samples were collected during brain surgery 
for treatment of patients with medically intractable 
temporal lobe epilepsy. The medical history of the 
patients is presented in Table 1. Resected amygdala 
specimens from 8 patients were placed in a tube 
containing cold phosphate-buffered saline (PBS; Gibco, 
Germany) with 10% penicillin-streptomycin (Gibco, 
Germany) in the operating room and transported to 
the lab within next 5–10 min. From each individual 
specimen, alternate sections were used for identification 
of the amygdala tissues (Figure 1) (24).

Tissue dissociation 
PBS solution was removed and the tissue was 

transferred to a petri dish containing 5 ml fresh PBS, 
washed 2 to 3 times with PBS to remove debris and 
associated blood vessels. Mechanical dissociation was 

done using a surgical knife and blood vessels were 
removed. For enzymatic digestion, the tissue was 
incubated with 1–3 ml accutase (Gibco, Germany) for 10 
min at room temperature and the suspension was broken 
up by pipetting for 2–3 times. An equal volume of fresh 
medium was added to the tube to stop the enzymatic 
reactions. Then, the suspension was centrifuged for 5 
min at 110 g at room temperature.

After disposing of the supernatant, the pellet was 
resuspended in 1 ml of Dulbecco’s modified Eagle’s 
medium/F12 (DMEM/F12; Gibco, Germany). The 
clumps were dissociated by gently pipetting up and 
down until a smooth milky single cell suspension was 
attained. To remove un-dissociated pieces, 10 ml of 
medium was added to the tube and the cell suspension 
was filtered through a strainer (40 μm pore size; BD 
Falcon) and centrifuged at 110 g for 5 min at room 
temperature. Next, the supernatant was discarded. The 
pelleted cells were then re-suspended in 1 ml of medium 
for cell counting.

Cell counting and plating
10 μl of the cell suspension was mixed with 90 μl 

of trypan blue 0.04% (Biomedical, USA). 10 μl of the 
mixture was transferred to hemocytometer in order 
to count the cells. The single cells were cultured in 
neurosphere medium, including DMEM/F12 containing 
20 ng/ml EGF (Sigma, Germany), 20 ng/ml FGF2 (Sigma, 
Germany), 2 μg/ml heparin (Sigma, Germany), 1% 
L-glutamine (Sigma, Germany), 1% pen/strep (Gibco, 
Germany), 2% B27-Supplement (Gibco, Germany), and 
0.5% N2-Supplement (Gibco, Germany) in non-coated 
flasks (~4×105 cells/T-25 flask). The flasks were placed 
in a 37 °C incubator set at 5% CO2. 

Passaging and expansion of the amygdala tissue 
derived spheres

After reaching a size of about >200 µm within 2–3 
weeks, the neurospheres were transferred to 15 ml 
tubes and centrifuged at 110 g for 5 min. The cell 
viability of the neurospheres reduces at the diameter 
larger than 200 µm (25). Then, the pellet was re-
suspended in accutase (1 ml) for 10 min under the hood 
and later an equal volume of medium was added to the 

 

Case Gender Age 
(year) 

Age at the 
onset of the 
first seizure 

(year) 

Seizure 
frequency Drug history Histology and 

imaging Seizures 

 
1 

 
Female 

 
24 

 
1 

5-10 
weekly LEV, LTG Sclerosis GS 

2 Male 35 32  1-2 
monthly CBZ, VPA Sclerosis GS 

3 Female 39 4 2-3 
monthly LEV, CBZ, LTG Sclerosis GS 

4 Female 37 7 2-3 daily CBZ, LTG, PRM Sclerosis GS 
5 Female 30 18 1-2 weekly LEV, TOP Sclerosis GS 
6 Male 42 19 1 weekly LEV, OCBZ Sclerosis GS 

7 Male 13 2 7-8 daily VPA, OCBZ, LEV 
Sclerosis + 

occipital lobe 
vascular 

abnormality 
PS 

8 Male 30 5 3-4 
monthly 

LEV,VPA, CBZ, 
TOP Sclerosis PS 

CBZ: carbamazepine; GS: generalized seizures; LEV: levetiracetam; LTG: lamotrigin; OCBZ: oxcarbazepine; PS: partial seizure; TOP: Topiramate; 
VPA: valproate

Table 1. Medical history of patients. The tissues were obtained from 8 patients with refractory epilepsy undergone amygdalohippocampectomy

 

  Figure 1. Histological verification of the amygdala tissue. Schematic 
design of an amygdala section and a represented example of 
histological confirmation based on cytoarchitecture of the amygdala 
complex. (morphological aspects of neurons in the amygdala are 
pyramidal, modified pyramidal, ovoid, and gliaform that have been 
labeled. types that have been labeled. Magnification of toluidine blue 
staining photomicrographs is 20X
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tube and pipetting was gently done 2–4 times. Following 
repeated centrifugation, the supernatant was discarded 
and the cells were re-suspended in neurosphere 
medium and were cultured in the appropriate size 
of non-coated flasks (~35×104 cells/T-25 flask). The 
number of spheres and cells was calculated after each 
passage. Data are represented as the mean ± SEM.

Differentiation
To induce motor neuron-like cells, the neural stem-

like cells were plated at 104 cells/cm2 in 24-well plates 
that were pre-coated with poly-D-lysine (0.1 mg/ml in 
dH2O; Chemicon, USA) and laminin (5 µg/ml in dH2O; 
Sigma, Germany). The cells were incubated with a 
DMEM/F12 medium with 10% fetal bovine serum (FBS; 
Sigma, Germany), 1% L-glutamine, and pen/strep for 24 
hr at 37 °C.

Differentiation of the cells was induced by treating the 
cells with DMED/F12 containing 10% FBS, 0.1% B-27 
supplement, 0.5% N2-supplement, 1%L-glutamine, 
200 ng/ml Sonic hedgehog (SHH, Sigma, Germany), 1 
µM retinoic acid (Sigma, Germany), and 1% pen/strep, 
and the medium was replaced twice a week. Retinoic 
acid and SHH are two main factors that promote motor 
neuron generation during embryogenesis (26).

After 7 days, the brain-derived neurotrophic factor 
(BDNF; 10 ng/ml, Sigma, Germany), the glial-derived 
neurotrophic factor (GDNF; 10 ng/ml, Chemicon, USA), 
and the ciliary neurotrophic factor (CNTF; 5 ng/ml, 
Chemicon, USA) were added to the culture medium, 
which was replaced every 2 days for one week.  BDNF and 
CNTF promote cell viability whereas GDNF increases the 
number of motor neurons and promotes neuritogenesis 
(27). Adding the abovementioned neurotrophic factors 
and survival-promoting compounds are necessary for 
developing human motor neurons from hNS/PCs (28). 

Immunofluorescence assay
To characterize the isolated cells, immunocyto-

chemistry was performed against NS/PCs markers, 
nestin and Sox2; astrocyte markers, glial fibrillary acidic 
protein (GFAP); microglial marker, CD68; and neuronal 
marker, MAP-2. In addition, immunostaining for choline 
acetyltransferase (ChAT), insulin gene enhancer protein 
(Isl-1), and homeobox protein HB9 (HLXB9) was 
performed to evaluate the motor neuron-like cells. The 
cells were cultured on coverslips coated with gelatin 
(Sigma, Germany), fixed with 4% paraformaldehyde 
(Merck, USA) for 20 min, permeabilized using 0.2% 
Triton X-100 (Sigma, Germany) for 30 min, incubated 
with 5% bovine serum albumin (Sigma, Germany) for 1 
hr at room temperature. The primary antibodies used 
overnight at 4 °C were mouse anti-nestin (1: 50 diluted 
in PBS; Santa Cruz), rabbit anti-Sox2 (1: 100 diluted 
in PBS; Santa Cruz), mouse anti-GFAP (1: 200 diluted 
in PBS; Millipore), rabbit anti-MAP-2 (1:500 diluted 
in PBS; Millipore), mouse anti-CD 68 (1:200 diluted in 
PBS; Abcam), rabbit anti-ChAT (1:300 diluted in PBS; 
Abcam), rabbit anti-Isl-1 (1:200 diluted in PBS; Abcam), 
and rabbit anti-HB9 (1:200 diluted in PBS; Abcam). 
Subsequently, the cells were washed three times with 
PBS and then incubated with goat anti-mouse IgG 
(FITC) (1:1000 diluted in PBS; Abcam) or goat anti-
rabbit IgG (FITC) (1:1000 diluted in PBS; Abcam) 

for 1 hr at room temperature. Nuclei were stained 
using 4’, 6-diamidine-2-phenylindole dihydrochloride 
(DAPI; Sigma, Germany). The immunostained samples 
were photographed using a fluorescence microscope 
(Olympus, Japan). In control studies, the primary 
antibody was replaced with mouse or rabbit control IgG 
(Abcam, USA). There was no immunoreactivity in these 
controls (29).

Results
Neurosphere assay

Neural stem-like cells proliferated after the initial 
tissue culture in the neurosphere medium. The free-
floating neurospheres were observed four days after the 
primary culture of the amygdala tissue (Figure 2 A1). 
The diameter of most neurospheres reached about 200 
µm after 2 weeks of the primary culture (Figure 2, A2 
and 3). At this time, the neurospheres were ready for 
the passaging procedure. Secondary neurospheres were 
formed 5 to 8 days after the first passage. The number 
of neurospheres increased after each passage (Figure 2 
A4). 

Proliferation assay
Before each passage, eight fields were chosen 

randomly and the number of spheres was counted by 10X 
objective in each flask. An increasing trend was observed 
in the mean number of neurospheres after each passage. 
However, the process of cell proliferation was slow. In 
the first passage (2 weeks after primary culture), the 
mean number of primary neurospheres was 24.3 ± 0.5. 
The mean number of neurospheres increased to 67.6 ± 
0.3 after 12 days and to 157.6 ± 9.9 after 15 days in the 
second and third passages, respectively (Figure 2 B). In 
line with neurosphere proliferation, the mean number 
of cells also enhanced after each passage (Figure 2 C). 

Characterization of the obtained cells
After the third passage, characteristic features of 

 

  Figure 2. Formation of neurospheres from the epileptic human 
amygdala tissue. A: The neurospheres proliferated slowly 4 (A1), 
7 (A2), and 14 (A3) days after primary culture of the adult human 
amygdala (magnification 20X). A4 represents the neurospheres 
at passage 3. Scale bars for all micrographs are equal to 50 µm. B: 
Quantification of spheres from the adult human amygdala tissue was 
obtained from 8 patients with refractory epilepsy during brain surgery 
(~150 neurospheres/amygdala tissues in passage 3). The mean 
number of spheres exponentially increased during three passages. C: 
The mean number of cells obtained after each passage. Calculation of 
the cell number represented a rising trend during passages
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cells were evaluated using immunocytochemistry. The 
majority of isolated cells expressed progenitor NS/PCs 
markers, nestin and Sox2. Moreover, mature neuron 
marker MAP-2, as well as astrocyte marker GFAP, were 
expressed in a considerable number of cells. The cells 
showed little or no immunoreactivity for CD68 (Figure 
3).

Differentiation assay
To evaluate the differentiation capacity, the potential 

of the obtained cells to differentiate into motor 
neurons was investigated. As indicated in Figure 4, the 
morphology of cells changed during the first week of 
differentiation, in which the cells were exposed to SHH. 
These cells displayed neurite-like outgrowth at the 
periphery of their cell bodies. Adding trophic factors in 
the second week promoted the differentiation of the cells. 
Morphological analysis at day 14 revealed maturation of 
some motor neurons with elongated processes (Figure 
4). Immunofluorescence studies indicated that the cells 

expressed motor neuron markers, ChAT, Isl-1, and HB9, 
14 days after exposure to the differentiation medium. In 
contrast, the expression of the neural stem cell marker, 
nestin was very low in these cells (Figure 5).

Discussion
The present data revealed the potential of the resected 

amygdala tissues during epilepsy surgery to generate 
neurospheres. Furthermore, our study revealed that 
these neurospheres under definite conditions could be 
differentiated into motor neuron-like cells. To date, only 
a few investigations have tested the isolation of hNS/
PCs (11,16). We addressed a reproducible method for 
culturing the neurosphere-like bodies from the adult 

 

  Figure 3. Characterization of the neural stem-like cells isolated from the epileptic human amygdala. Immunocytochemistry analysis showed that 
almost all of the cells isolated and cultured from the adult human amygdala by the neurosphere culture method expressed nestin (B, green) and 
Sox2 (C, green). In addition, the expression of GFAP was considerable (D, green). In contrast, only a few MAP-2 (E, green) or CD68 (F) positive cells 
were seen. A is a phase contrast micrograph of adherent neural stem-like cells. Nuclei are seen in blue

 

  

Figure 4. Morphological changes during differentiation of neural stem-
like cells. Neural stem-like cells obtained from the epileptic human 
amygdala differentiated during 14 days exposure to differentiation 
medium

 

  

Figure 5. Generation of motor neurons from neural stem-like cells 
from human amygdala obtained during epilepsy surgery. The cells 
were evaluated for motor neuron differentiation. Generated neurons 
expressed motor neuron-specific markers ChAT, Isl-1, and HB9 but 
not neural stem cells marker, nestin
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human amygdala. 
The majority of the cells isolated from the adult 

human amygdala in the present study expressed nestin 
and Sox2, two main markers of NS/PCs (30, 31), whereas 
GFAP, a marker of astrocytes (32), was expressed in a 
considerable number of cells. Considering the fact that 
the expression of MAP-2 and CD68 in the cells were 
low, it can be concluded that these cells maintained 
their stemness capacity in the neurosphere medium. 
The process of cell proliferation in this specific type 
of human brain tissue is slow. It is worth pointing out 
that any excess shaking of culture flasks during the first 
four days of primary culture decreases the quality of 
neurosphere culture and may affect cell proliferation.

The results of the present study revealed that the 
stem cells harvested from human amygdala could 
differentiate into motor neurons using SHH and 
retinoic acid. Previous studies reported the production 
of motor neurons from the other sources. It has been 
reported that motor neurons can be generated from 
iPSCs derived from a patient with amyotrophic lateral 
sclerosis using an agonist of the SHH signaling pathway 
and retinoic acid (21). Furthermore, motor neurons 
have been produced from embryonic stem cells. They 
reported that these stem cells could differentiate into 
motor neurons by developmentally relevant signaling 
factors (33). Hester and colleagues revealed that the 
generation of functional motor neurons from iPSCs is a 
prolonged process that required about 60 days. Using 
motor neuron-inducing transcription factors, they could 
reprogram the stem cells and reduce the differentiation 
time to 30 days (22). Induced pluripotent stem cell-
derived motor neurons have been suggested for the 
treatment of amyotrophic lateral sclerosis and motor 
neuron diseases (34).

Several million people worldwide suffer from 
medically intractable epilepsy and the risk of seizures 
is associated with marked mortality and co-morbidity 
(35). Animal models and in vitro human-derived iPSC 
models improved our understanding of various aspects 
of epilepsy and suggested the importance of cell therapy 
in the treatment of intractable epilepsy (36). Autologous 
stem cell therapy is a therapeutic option that is gaining 
ground for the treatment of different neurological and 
psychiatric disorders and can be used for the treatment 
of refractory epilepsy (37, 38). Since the cells in the 
present study were isolated from epileptic patients, 
characterization of the obtained stem-like cells is very 
important. Determination of the electrophysiological 
properties, as well as the pattern of gene expression, 
can be helpful in future applications of these motor 
neurons. If hNS/PCs obtained from epileptic surgery 
have epileptic activity, they could be utilized for creation 
of cell-based models of intractable epilepsy and provide 
valuable information about cellular and molecular 
mechanisms of epilepsy. If properties of these stem-like 
cells are not similar to those of epileptic cells, they could 
be considered an outstanding source in autologous cell-
based therapeutic strategies. Furthermore, hNS/PCs 
obtained from human amygdala may contribute to our 
understanding of pathophysiological mechanisms of 
other amygdala-related disorders, such as anxiety (39, 
40).

In conclusion, human amygdala tissue not only 

provides a valuable source for hNS/PCs but also 
can be differentiated into motor neurons. Further 
characterization of the generated cells is required 
to use them for mechanistic studies or therapeutic 
applications.
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