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Objective(s): Bisphenol A (BPA) as a synthetic compound is applied in many plastic industries. BPA 
has been reported to have endocrine-disrupting feature with cytotoxic effects. The study aimed to 
evaluate the efficiency of Naringin against testicular toxicity induced by BPA in adult rats.
Materials and Methods: The animals were assigned into six groups of control, BPA-treated (50 mg/kg), 
BPA+Naringin-administrated (40, 80, 160 mg/kg) and Naringin-treated (160 mg/kg) for 30 days. At the 
end of experiments, testicular weight, total testicular protein, epididymal sperm count, testicular enzymes, 
serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone and estradiol, testicular 
enzymatic and non-enzymatic antioxidants and histopathology of testis tissue were evaluated by their own 
methods.  
Results: The results showed a reduction in testicular weight, total testicular protein, epididymal sperm 
count, testicular enzymes (alkaline phosphatase and lactate dehydrogenase) and decrease in the 
serum TSH, LH, testosterone and estradiol in BPA-administrated rats. Furthermore, BPA reduced the 
enzyme activities of glutathione peroxidase, superoxide dismutase, and catalase in testis tissue. Also, 
BPA caused an induction in lipid peroxidation and increase in reactive oxygen species levels, whereas 
it decreased the glutathione content of testis tissue. Histological findings exhibited seminiferous 
tubules vacuoles, atrophy and separation of the germinal epithelium in BPA-administrated rats. 
Oral administration of Naringin along with BPA normalized the biochemical, morphological and 
histological changes and reduced the testicular toxic condition. 
Conclusion: These results demonstrated that Naringin significantly managed male reproductive 
toxicity by antioxidant capabilities, preventing morphological modifications and escalating defense 
mechanism, thereby reducing oxidative stress from BPA-induced damage.
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Introduction
Statistical surveys show that 72.4 million couples 

in the world suffer from infertility problems (1), and 
about 90% of male infertility is due to low sperm 
count, a decrease in sperm quality, or both. There 
are many factors contributing to sperm defects, such 
as environmental pollutants, genetic abnormalities, 
alcohol or cocaine use, smoking and hormone deficiency 
(2). Bisphenol A (2, 2-bis (4-hydroxyphenyl) propane; 
BPA) is one of the most abundant chemical produced 
around the world (about 6 billion pounds a year) (3). 
This material that is used to make polycarbonate 
plastics and epoxy resins contains two unsaturated 
phenolic rings and is considered to be an estrogenic 
endocrine-disrupting chemical. Polycarbonate plastics 
and epoxy resins are used as coatings for metal cans 
and various plastic products such as toys, water 
pipes, drinking bowls, glasses, sports equipment, 
dental monomers and medical equipment (4). It has 
been reported that BPA may release from the walls of 
containers (5) and penetrate into the blood circulation 

and exert the genotoxic and cytotoxic effects (6). Also, 
heating of plastic cans exacerbates the BPA release (7). 
Given the high availability and side effects of the BPA on 
infertility, it is possible that increased contact with the 
BPA may be the underlying cause of increased infertility 
and breast cancer in industrialized countries over the 
past 50 years (3, 8, 9). In addition, in vitro studies have 
shown that the BPA binds to the receptors of estrogen 
(10), androgen, and thyroid hormones as well as 
peroxisome proliferator-activated receptor gamma 
(11). Most studies on male rodents reported that the 
BPA reduces fertility factors. For example, exposure to 
the BPA has been reported to reduce sperm count (7, 12, 
13), and sperm motility (14), and increase sperm DNA 
impairment in rats and mice (15-17). Furthermore, 
the BPA exposure caused a decrease in testosterone 
level in rats (15, 18) and mice (19). It is known that 
the BPA produces reactive oxygen species (ROS), such 
as hydroxyl radical, hydrogen peroxide, and superoxide 
anion in the body (20). In addition, the BPA can exert 
reproductive toxicity and damage spermatogenesis 
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through production of ROS and impairment of natural 
antioxidant (21). The use of pharmaceutical properties 
of plants in the treatment of male reproductive toxicity 
is gaining more momentum due to its availability and 
affordability (22).

Naringin (NG) is a flavone found in citrus fruits, 
tomatoes, cherries, grapefruit, and cocoa (23). This 
compound acts as a nontoxic natural product with 
several functions, such as anticancer (24), anti-oxidative 
(25), anti-inflammatory (26), nephron-protective (27) 
and hepatoprotective activities (28). In one study, it was 
reported that NG restored normal testicular function, 
including sperm parameters in type 1 diabetic rats (29). 
With this background in mind, the present study aimed 
to assess the effect of BPA against the testicular function 
of Wistar rats and the therapeutic efficacy of NG in this 
regard. It is notable that the research was conducted 
using biochemical and histological methods.

Materials and Methods
Chemicals

BPA and NG were purchased from Sigma-Aldrich Corp. 
(St. Louis, MO, USA). ). Bovine serum albumin (BSA), 
2,7- di chloro fluorescein diacetate (DCFH-DA), 3,4 
3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium 
bromide (MTT), thiobarbituric acid (TBA), trichloroacetic 
acid (TCA), 1,1,3,3-tetramethoxypropane, reduced 
glutathione, oxidized glutathione, and Coomassie 
Brilliant Blue powder were purchased from Sigma-
Aldrich (St Louis, Missouri, USA). Sucrose 5, 5’-dithiobis-
2-nitrobenzoic acid (DTNB), dimethyl sulfoxide (DMSO), 
NaCl, KCl, CaCl2, MgCl2 and NaHCO3 were obtained from 
Merck Company (Darmstadt, Germany). Glutathione 
peroxidase (GSH-Px; Cat No. S0058), and glutathione 
(GSH) assay kit (Cat. No. S0052) were purchased from 
Beyotime institute of Biotechnology (Jiangsu, China). 

Study animals 
This experimental study was performed on 36 

male Wistar rats aged 44-48 days weighing 160-180 g 
prepared from the Animal Center of Ahvaz Jundishapur 
University of Medical Sciences (AJUMS). The rats were 
tested in this study according to the guidelines of the 
Animal Ethics Committee (IR.AJUMS.REC.1395.141). 
They were kept at a temperature of 20 ± 4 °C with a 
12/12 hr light/dark cycle and free access to standard 
diet and water.

Study test design
The rats were divided into six groups with six rats in 

each group.
Group 1: The animals received 1 ml of olive oil 

emulsion for 30 days orally (control group).
Group 2: The animals received 1 ml of BPA (50 mg/kg 

body weight) in olive oil for 30 days orally.
Groups 3, 4 and 5: The animals received 1 ml of BPA 

(50 mg/kg body weight) in olive oil plus NG (40, 80 or 
160 mg/kg body weight) for 30 days orally.

Group 6: The animals only received NG (at a 
concentration of 160 mg/kg body weight) for 30 days 
orally.

Overnight after the trial, the animals were sacrificed 
by cervical dislocation under mild anesthesia. Plasma 
samples were collected from the heart blood and 

centrifuged at 3500 rpm for 20 min and stored at -80 
°C until the hormonal testing. The right and left testicles 
of all animals were immediately dissected and the 
testicular weight and morphology (width, length, and 
volume) were examined in each group. The testicular 
volume was calculated using the following equation: 
Volume = (D2/4 × π) L × K (length [L], width [D], K = 0.9, 
π = 3.14) (30).

Rat sperm count
Epididymis cauda was separated from the testicles 

of each rat, and after conversion into small pieces, 3 ml 
of normal saline was added. For sperm count, one drop 
of the above solution was transferred on a Neubauer 
chamber (depth 0.100 mm and area 0.0025 mm2; 
HBG Henneberg-Sander GmbH, Gießen, Germany) and 
sperm count was performed manually using an optical 
microscope (Olympus Light Microscope; Olympus Corp, 
Japan). At the end, the data were calculated as the sperm 
count per ml (31). 

Sample collection
In this stage, 0.1 mol/liter hydrochloric acid buffer 

(pH = 7.4) was added to the right testis and mixed with 
a homogenizer and centrifuged at 3000 rpm for 15 min.

Estimation of total testicular proteins
The total testicular proteins were determined 

using the Lowry method (32) and using BSA (1 mg/
ml) as the standard. The absorbance was read by 
spectrophotometer at a wavelength of 750 nm.

Determination of alkaline phosphatase and lactate 
dehydrogenase enzymes in rat testicles

Diagnostic kits using spectrophotometer were 
applied to determine the alkaline phosphatase (ALP) 
and lactate dehydrogenase (LDH) enzymes in testicular 
homogenization.

Measurement of the ROS level in the rat testicles
The ROS level in testicular tissue was measured 

using DCFDA, which was converted to DCF fluorescence 
by cell peroxides. In a nutshell, 2 ml of testicular 
homogenization was mixed with 4 ml of DCFDA in 1.25 
mM of methanol and incubated at 37 °C for 15 min. 
Fluorescence level was measured using a fluorimeter 
(24, 33).

Measurement of glutathione in rat testicles 
The GSH levels were measured using the method 

of Thomas and Screnska. Thus, 1 ml of testicular 
homogenization was incubated with 1 ml of 20% TCA 
and 1 ml of EDTA for 5 min and then centrifuged at 1000 
rpm in 4°C for 30 min. Next, 200 μl of supernatant was 
mixed with 1.8 ml of DTNB. GSH reacts with DTNB and 
forms a yellow compound. The absorbance was read at 
a wavelength of 412 nm (34).

Measurement of malondialdehyde level in rat testicles
The level of lipid peroxidation was determined by 

measuring malondialdehyde (MDA). Thus, 1 ml of 
testicular homogenization was heated with 1 ml of 20% 
TCA and 2 ml of 0.67% TBA for 1 hr in boiling water. 
After cooling down, the mixture was centrifuged and 



317Iran J Basic Med Sci, Vol. 22, No. 3, Mar 2019

Effect of naringin on testicular toxicity of bisphenol Alboghobeish et al.

the absorbance of supernatant was read at a wavelength 
of 532 nm. The MDA level was calculated using a molar 
coefficient of è = 1.56 × 105/M/cm (35).

Measurement of catalase in rat testicles
The catalase was measured using Goth method. Thus, 

500 μl of Tris-HCl, 1 ml of H2O2 and 50 μl of the sample 
were mixed and incubated for 10 min and then 500 μl 
of ammonium molybdate 4-hydrate was added and the 
absorbance was read at a wavelength of 410 nm (36).

Measurement of Superoxide dismutase level in rat 
testicles 

The superoxide dismutase (SOD) activity was measured 
using a xanthine/xanthine oxidase system to generate 
superoxide radical. Optical density was determined using 
spectrophotometer (UV- 1601, Shimadzu) at a wavelength 
of 550 nm (37). The SOD activity was expressed as a unit 
per milligram of protein (U /mg protein).

Measurement of glutathione peroxidase activity 
The GSH-Px activity was calculated by measuring the 

oxidation level of reduced GSH to oxidized GSH via H2O2 
catalyzed by GSH-Px. A laboratory kit was used for this 
purpose (Jiancheng Bioengineering, China) (38).

Measurement of hormones 
ELISA kits were used to measure the hormones of 

follicle-stimulating hormone (FSH), luteinizing hormone 
(LH), estradiol and testosterone (DRG Instruments 
GmbH, Marburg, Germany). 

Histopathological examination of rat testicles
After blood sampling, the left testicles of the animals 

were separated and placed in the Bouin’s fluid for 
histopathological examination. After overnight, the 
samples were cleaned by alcohol dehydration in 
benzene and subjected to paraffin wax. Sections of 5 
to 7 micrometers were prepared from the tissue and 
stained with hematoxylin/eosin staining method. Six 
microscopic slides were explored to evaluate tissue 
changes in each rat, and their average was calculated. 
The diameters of tubules and lumen were measured 
using Motic Images plus 2.0 image analysis software 

(Motic, Hong Kong, China). The height of the epithelium 
was calculated by removing the diameter of the lumen 
from the diameter of the tubules. For each animal, 150 
tubules were examined (37, 39).

Statistical analysis
All results were expressed as mean ± SEM using 

Graph Pad Prism software (version 5.04) and then 
analyzed by one-way ANOVA and then by Tukey’s test. 
Kruskal-Wallis and then Mann-Whitney U tests were 
used for data with non-normal distribution and non-
homogeneous variance. P<0.05 was considered as 
statistically significance level.

Results
Effect of BPA and NG on body weight, testis weight and 
testicular morphology (width, length and volume)

According to the results, there was no difference in 
body weight between the research groups. In addition, 
the weight of testes significantly decreased after BPA 
treatment, in comparison with normal control rats. 
Furthermore, an increase in testis weight was indicated 
in the group treated with NG plus BPA (P<0.05). On the 
other hand, an insignificant difference was observed 
between the NG and control rats (P>0.05). The 
morphological findings of the rat testicles represented 
a decrease in testicular volume after BPA treatment 
(P>0.05), and a significant increase was observed in the 
volume after administration of NG plus BPA (P<0.05)
(Table 1).

Effect of BPA and NG on total testicular protein
By using BPA, total testicular protein was significantly 

reduced compared to normal rats (P<0.01). In contrast, 
in rats that used NG plus BPA, there was a significant 
increase in total testicular protein content compared to 
rats that used only BPA (P<0.05) (Figure 1A).

Effect of BPA and NG on sperm count
The results showed that the sperm count was 

decreased significantly with the use of BPA compared to 
the control group (P<0.05), but after NG administration, 
it was close to normal compared to BPA-treated group 
(P<0.05); however, no significant difference was found 

Table 1. Effect of bisphenol A (BPA) and naringin (NG) on final body weight, testis weight and testicular morphology (width, length and volume)

Data are Mean±SDSEM; n= 6. Difference between control and other groups is significant at P< 0.01 (**) and P<0.05 (*). Difference between BPA-
treated and other groups is significant at P<0.01 (##) and P<0.05 (#). P-values were from one-way ANOVA, followed by Tukey’s test for multiple 
comparisons

Parameters 

Treatment 

Body weight (g) Testis weight (g) Testis length (mm) Testis width (mm) Testis volume (mm3) 

 Control 230.14±3.12 1.5±0.03 2.01±0.03 1.34±0.05 1.83±0.04 

 BPA 50 mg/kg 225.20±1.13 0.90±0.01* 1.85±0.1 1.07±0.15 1.368±0.12** 

BPA 50 mg/kg + NG 40 mg/kg 224±5.7 1±0.03* 1.95±0.2 1.21±0.06 1.623±0.13# 

BPA 50 mg/kg + NG 80 mg/kg 227±4.8 1.1±0.05 2±0.11 1.2±0.09 1.65±0.1# 

BPA 50 mg/kg + NG 160 mg/kg 229.56±2.02 1.40±0.10# 2.08±0.09 1.2±0.07 1.716±0.08## 

NG 160 mg/kg 230.44±4.30 1.5±0.22 2.12±0.07 1.3±0.07 1.895±0.07 
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between the NG and the control groups (Figure 1B).

Effect of BPA and NG on testicular enzymes   
Results demonstrated that the levels of ALP and LDH 

were significantly decreased in testis (P< 0.05) after BPA 
treatment. Furthermore, an increase (P<0.05) in ALP 
and LDH of testis was observed after the concomitant 
administration of NG plus BPA (Figure 2A, B).

Effect of BPA and NG on plasma levels of LH, FSH, 
testosterone and estradiol

The amount of FSH, LH, estradiol, and testosterone in 
plasma were significantly reduced due to BPA-induced 
toxicity (respectively, P<0.05, 0.05, 0.01), but after 
treatment with NG, there was a growth in the amount 
of these hormones. Furthermore, no change was 

observed in this parameter in animals with independent 
administration with only NG (Table 2).

Effects on enzymatic and non-enzymatic antioxidants
After BPA intoxication, MDA and ROS amounts were 

significantly increased (P<0.05, 0.001), but their levels 
significantly decreased when NG was administered to 
BPA-intoxicated rats (respectively, P<0.05, 0.001). In 
addition we showed an induction in the GPx enzyme 
after BPA intoxication (P<0.05); however, this factor 
was elevated in NG-BPA co-treatment groups. The GSH 
level was reduced following the BPA intoxication, but 
incremented after NG-BPA intake (P< 0.01). On the other 
hand, SOD and CAT levels were significantly decreased 
after BPA intoxication (P<0.05), and increased after 

 

  

Figure 1. Effects of bisphenol A (BPA) and naringin (NG) on testis total protein (A) and sperm count (B). Each value was presented as means±SEM 
(n=6). *: Significantly different from control group (P<0.05), #: Significantly different from BPA-treated group (P<0.05), **: P<0.01. P-values were 
from one-way ANOVA, followed by Tukey’s test for multiple comparisons

 

  

Figure 2. Effects of bisphenol A (BPA) and naringin (NG) on testicular homogenate enzymes: (A) Alkaline phosphatase (ALP), (B) lactate 
dehydrogenase (LDH). Each value was presented as means±SEM (n=6). *: Significantly different from control group (P<0.05), #: Significantly 
different from BPA-treated group (P<0.05). P-values were from one-way ANOVA, followed by Tukey’s test for multiple comparisons

Table 2. Effect of bisphenol A (BPA) and naringin (NG) on hormonal levels in serum of control and experimental animals

Data are Mean±SDSEM; n=6. Difference between control and other groups is significant at, P<0.01 (**) and P<0.05 (*). Difference between BPA-
treated and other groups is significant at P<0.01 (##) and P<0.05 (#). FSH: follicle stimulating hormone; LH: luteinizing hormone. P-values were 
from one-way ANOVA, followed by Tukey’s test for multiple comparisons

 

  

                               Parameters               

Treatment 

Plasma FSH level  
(pg/ml) 

Plasma LH  level  
(pg/ml) 

Plasma testosterone level 
(ng/ml) 

Plasma estradiol level 
(ng/ml) 

 Control 33.30 ± 0.89 19.55 ± 2.10 3.98 ± 1.90 0.86 ± 0.07 

 BPA 50 mg/kg 12.42 ± 0.73** 9.18 ± 0.36** 1.07 ± 0.25* 0.58 ± 0.09* 

BPA 50 mg/kg + NG 40 mg/kg 20.9±5.7## 10.76±0.03 1.95±0.2 0.68 ± 0.07 

BPA 50 mg/kg + NG 80 mg/kg 19.75 ± 0.61## 15.27 ± 1.00## 2.04 ± 2.81 0.69± 0.04 

BPA 50 mg/kg + NG160 mg/kg 21.95±2.02## 16.00±0.10## 3.08±0.09# 0.76± 0.06 

NG 160 mg/kg 32.99 ± 1.24 19.09 ± 0.70 3.90 ± 3.03 0.83 ± 0.09 
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treatment with NG (P<0.05) (Table 3).
Effects on testicular histopathology

The seminiferous tubule diameter and epithelial 
height were decreased in BPA-treated rats, compared to 
the control group (P<0.001). But co-administration of 
NG (80, and 160 mg/kg) with BPA significantly increased 
the tubular diameter, and epithelial height (respectively, 
P<0.05, 0.01, 0.001) (Figure 3 and Table 4). In the 
control and NG 160 mg/kg groups, testicular tissues 
appeared normal. In the BPA-treated group, atrophy and 
separation of the germinal epithelium was observed in 
the most of the seminiferous tubules vacuoles. In group 
BPA+NG 40 mg/kg, the separation was observed in 
some of the tubes vacuoles. In group BPA+NG 80 mg/
kg, the testicular tissue damage was less than that of the 
BPA+NG 40 group. There was no separation in group NG 

                          Groups 

Variables 

 

Control 

 

BPA 50 mg/kg 

 

BPA 50 mg/kg 
+NG 40 mg/kg 

 

BPA 50 mg/kg 
+NG 80 mg/kg 

 

BPA 50 mg/kg 
+NG 160 mg/kg 

 

NG 160 mg/kg 

MDA (nmol/mg protein) 
 

6.65± 2.3 

 

3.31± 0.7* 

 

3.93± 0.4 

 

4.83± 0.6 

 

5.1±0.88# 

 

6.6±0.81 

ROS (% of Control) 
 

100 ±10.1 

 

197.87±12.61*** 

 

166.65±11.76 

 

141.76±11,6## 

 

117.64±14.7### 

 

94.89±17.1 

GSH (µg/ mg of protein) 
 

0.7±0.09 

 

0.2±0.01*** 

 

0.29±0.02 

 

0. 42± 0.03 

 

0.58±0.02## 

 

0.8±0.01 

Catalase (µmol/ mg of protein) 
 

60.22±1.34 

 

31.58±2.31* 

 

42.3±3.8 

 

53.7±2.9 

 

53.90±1.72 

 

61.28±1.87 

SOD (U/mg of protein) 
 

2.5±0.56 

 

1.3±0.99* 

 

1.54±0.29 

 

1.72±0.59 

 

2.02±0.48# 

 

2.87±0.19 

GSH-Px (µmol/ mg of protein) 
 

2.3±0.47 

 

1.2±0.17* 

 

1.3±0.05 

 

1.43±0.07 

 

1.7±0.45# 

 

2.4±0.99 

MMP (% of Control) 
 

100 ±16.7 

 

64.87±12.61** 

 

73.65±11.76 

 

85.76±11,6# 

 

95.64±14.7## 

 

99.99±17.1 

 

  

Table 3. Effect of bisphenol A (BPA) and naringin (NG) on enzymatic and non-enzymatic antioxidants

Data are Mean±SDSEM; n=6. Difference between control and other groups is significant at P<0.001(***), P<0.01 (**) and P<0.05 (*). Difference 
between BPA-treated and other groups is significant at P<0.001(###), P<0.01 (##) and P<0.05 (#). MDA: Malondialdehyde, ROS: Reactive oxygen 
species, GSH: Glutathione, SOD: Superoxide dismutase, CAT: Catalase, GSH-Px: Glutathione peroxidase, and MMP: Mitochondrial Mmembrane 
potential. P-values were from one-way ANOVA, followed by Tukey’s test for multiple comparisons

Treatment Seminiferous tubule diameter (μm) Epithelial height (μm)) 

 Control 223.7±9.52 85.4±2.85 

 BPA 50 mg/kg 136.65±13.13*** 56.92±0.61*** 

BPA 50 mg/kg + NG 40 mg/kg 139.65±5.7***# 49.58±1.33***# 

BPA 50 mg/kg + NG 80 mg/kg 147.52±4.8**## 64.53±2.5**## 

BPA 50 mg/kg + NG160 mg/kg 206.56±12.02*### 83.35±3.10### 

NG160 mg/kg 219.59±4.30 86.64±2.22 

 

Table 4. Effect of bisphenol A (BPA) and naringin (NG) on tubular diameter and epithelial height

Data are Mean±SDSEM; n=6. Difference between control and other groups is significant at P<0.001(***), P<0.01 (**) and P<0.05 (*). Difference 
between BPA-treated and other groups is significant at P<0.001(###), P<0.01 (##) and P< 0.05 (#). P-values were from one-way ANOVA, followed 
by Tukey’s test for multiple comparisons

 

Figure 3. Effects of bisphenol A (BPA) and naringin (NG) on testicular 
histopathology (H&E, ×400). A: Atrophy, D: detachment of germinal 
epithelium, V: vacuoles in germinal epithelium
A: Atrophy; D: detachment; V: vacuoles in germinal epithelium
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160 mg/kg and only some tubes had vacuoles.

Discussion
Increased toxic effects of drugs and environmental 

substances have been recently reported on reproductive 
system (40). Plants and their bioactive components are 
the most extensively accessible materials that have the 
ability to scavenge free radical ions (41). Therefore, this 
context investigated the possible effects of NG treatment 
against BPA-induced reproductive toxicity and testicular 
damage in adult male rats. The significant decrease 
in testicular mass and volume may be due to reduced 
bioavailability of gender hormones, which points to the 
reproductive endocrine stipulation of the male. Testis 
weight and volume are directly related to the mass of the 
spermatogenic cells. Therefore, reduced testis mass and 
volume affects spermatogenesis activity with decreased 
germ cells in turn. In addition, it was noted that BPA 
intoxication decreases the testis weight and volume 
of the experimental rats by damaging the important 
molecules, such as proteins in the testis. These results 
were in line with studies reporting the testicular weight 
loss because of exposure to BPA (42). Furthermore, we 
showed an increase in the testes weight and volume in 
NG-BPA co-treated animals due to therapeutic efficacy 
and protective potential of NG.

In addition, we showed a reduction in amount of 
testicular total protein of BPA-treated rats. Previous 
studies have suggested that environmental testicular 
toxicants directly exert antagonistic effects on proteins 
and lipids of reproductive organs (43). Multiple 
stimulatory and inhibitory factors are in testicular fluid 
that selectively change the production of proteins (18). 
As a result, alteration in testicular protein level proposed 
a decrease in the synthetic activity of testes. In addition, 
we showed that NG can somewhat reduce the testicular 
total protein level.

The epididymal sperm count is among the most 
sensitive tests used to evaluate the spermatogenesis 
due to providing the result of all stages of meiosis, 
spermatogenesis, and transition in the epididymis. It 
is suggested that a reduction in sperm count is related 
to male infertility (44). In our study, NG treatment 
increased the sperm count, which might be due to 
suppression of the disturbances induced by free radicals 
in sperm.

LH, FSH and testosterone are essential hormones 
for spermatogenesis. The LH hormone is secreted 
from the pituitary gland and triggers the testosterone 
production. On the other hand, there is a need for 
testosterone to produce and maintain sperm (45). In 
addition, FSH and testosterone stimulate spermatid 
growth and sperm release (46). In our study, the BPA 
administration reduced the levels of LH, FSH and 
testosterone, possibly due to effects on Sertoli and 
Leydig cells. The results of our study were consistent 
with the findings of previous studies, in which the BPA 
caused a change in the hypothalamic-pituitary-gonadal 
axis and decreased sertoli cell function (47). In addition, 
previous studies suggested that reducing testosterone 
in rats treated with BPA may be due to interference 
with the proliferation and function of Leydig cells (48). 
According to Akingbemi et al. (49), the BPA has an 

effect on the pituitary and disrupts testicular activity, 
thereby reducing the LH release. The BPA has also been 
reported to reduce the testosterone production from 
Leydig cells by reducing the activity of 17α-hydroxylase 
or increasing aromatase activity (50).

However, the plasma levels of LH, FSH and testosterone 
were higher in animals treated with NG-BPA than in 
animals treated with BPA, which is consistent with 
increased spermatogenesis in the NG-treated group. 
This effect may be due to the direct or indirect effect of 
NG on the oxidative damage of cells. These results were 
consistent with previous reports in which NG treatment 
increased testosterone levels in diabetic rats (29). 
According to our results, estradiol level is reduced in 
BPA-exposed groups. Previous studies reported that low 
BPA doses have estrogen-inducing activity, while high 
BPA doses inhibit estrogen production (51). In addition, 
our results showed that NG was able to normalize the 
effects of changes caused by BPA on the estradiol levels.

Marker enzymes are sensitive indicators that are 
released when impairment happens in a tissue. It is an 
indicator used to evaluate the management of diseases. 
Most of the particular enzymes, such as LDH and ALP, 
are affected when there is an impact on homeostasis 
in the biological system. LDH is a cytoplasmic bi-
directional enzyme capable of forming pyruvate and 
lactate in cells. In addition, LDH extensively exists in 
Sertoli and spermatogenic cells, which is importantly 
involved in testis energy generation, biotransformation 
and translocation of hydrogen from the cytoplasm to 
mitochondria by redox coupling α-hydroxyl acid/α-
keto acid associated with spermatozoa metabolism 
(43). The LDH enzyme in testicles is associated with the 
maturation of germinal epithelial layer of seminiferous 
tubules and postmeiotic spermatogenic cells (18, 52). 
BPA-treated animals indicated a significant induction 
in LDH activity. In contrary, the administration of NG 
enhanced the activity of this enzyme. The testicular levels 
of ALP enzyme in rats declined after BPA administration, 
but increased by NG administration. The ALP enzyme in 
testicles is mainly of testicular and epididymal origin 
(53). In our study, reduced ALP activity revealed that 
the treatment with BPA may decrease the activity of 
testicular tissues.

Free radicals and lipid peroxidation are two leading 
factors in testicular pathology. The lipid peroxidation 
occurs in unsaturated lipids and is involved in the 
formation of active oxygen (54). On the other hand, 
the sperms are subject to increased lipid peroxidation 
because of the prevalence of unsaturated fatty acids 
in their membranes (55). In the present study, there 
was a significant increase in the incidence of testicular 
lipid peroxidation, probably due to the effect of BPA-
induced oxidative damage. In this regard, previous 
study marked an induction in ROS generation due to 
the association of lipid peroxidation with abnormalities 
and decreased sperm counts (56). Spermatozoa are 
generally susceptible to injury, which is attributed to 
the deliberation of unsaturated fatty acids and also 
the ability of spermatozoa to generate ROS (57). BPA-
motivated oxidative stress may involve in the destruction 
of intracellular ATP production, which directly displays 
the effect on declined sperm motility, improved cell 
penetrability, inactivation of biological enzymes and 
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manufacturing of spermicidal products (58).
In contrast, the effects of NG may be due to its protective 

effects on increased activity of lipid peroxidation or 
the production of free radicals. NG can protect the 
cell from oxidative damage by inhibiting intracellular 
ROS production and eliminating the produced ROS 
(23). To confirm this, previous studies have shown the 
protective role of NG against ROS-induced cytotoxicity 
by using arsenic (59), carbon tetrachloride (60), lead 
(61), cadmium (62), or cisplatin (63) in rats. It has been 
suggested that the NG may be coupled with Cu and Fe 
ions through the 5-hydroxy and 4-carbon groups in 
their C ring, thereby reducing the ROS (64). The NG 
has also been reported to stimulate expression of many 
antioxidant-related genes and inhibit the activity of 
ROS-forming enzymes such as NADPH oxidase (65).

Degradation and eventual rupture of the cellular 
membrane that leads to the release of cell organelle 
substances may be due to lipid peroxidation (66). 
In addition, it was reported that the BPA might be 
associated with the damage in mitochondrial membrane 
(67). Thereby, NG displayed anti-lipid peroxidation 
activity and protective effect on cell membrane against 
ROS by its free radical scavenging property.

The oxidative stress is an imbalance between the 
amount of free radicals production and the presence of 
antioxidants. The antioxidant defense system contains 
molecular antioxidants, antioxidant enzymes and 
metallic chemical agents (68). Antioxidant enzymes 
(e.g., SOD, CAT and GPx) protect the living system from 
the destructive effects of ROS and reduce their oxidative 
damage to testicular cell membranes (69). Reducing 
SOD activity results in the accumulation of superoxide 
radicals, which in turn inhibits the CAT enzyme (70). 
Reducing CAT activity decreases the ability of the 
testicles to eliminate H2O2 produced after exposure 
to BPA. The H2O2 can cause rapid oxidative damage to 
lipids, proteins and DNA (71). In addition, the GPx may 
act directly as an antioxidant enzyme, which is involved 
in inhibition of sperm lipid peroxides (72) and H2O2 
(73). The low GPx level in BPA-exposed rats can lead 
to an increase in H2O2 production or a decrease in GSH 
concentration (18). In the present study, the antioxidant 
enzymes (such as SOD, CAT and GSH-Px) were reduced 
in BPA-exposed animals, which is consistent with the 
results of Chitra et al. study (74).

The GSH plays an important role in cellular function, 
including H2O2 destruction, lipid peroxidation, and the 
amino acid translocation in the cell membrane (75). In 
the present study, reduced testicular GSH level in BPA-
exposed rats may be responsible for increasing ROS in 
the testes. In addition, reduced activity of antioxidant 
enzymes such as CAT, GPx, and SOD highlights the 
harmful effects of BPA. NG, on the other hand, reduces 
ROS-induced oxidative stress by stopping the lipid 
peroxidation in the testicle and increasing the enzymatic 
and non-enzymatic antioxidants.

According to the histological results, a decrease was 
observed in the seminiferous tubules diameter and 
the epithelial height in the BPA-administrated rats, 
which is in agreement with Tamilselvan et al. study 
(8). In contrast, treatment with NG shifted this change 
towards normal status, probably due to the medicinal 
property of this glycoside. The results of the current 

research showed several vacuoles in the seminiferous 
tubule epithelium in the BPA-treated group. Meanwhile, 
there was a reduction in the count and size of these 
vacuoles in the BPA+NG-administrated group. In the 
BPA-treated group, atrophy and separation of the 
germinal epithelium was observed. On the contrary, the 
tissue was significantly protected against BPA-induced 
histopathological changes by NG administration.

Conclusion
Based on the findings from the present study, the 

BPA exposure resulted in structural and functional 
impairments in rat testes and epididymis, leading to 
reproductive toxicity, spermatogenesis impairment 
and disturbing of the hormonal balance. However, 
administration of NG reduced the BPA-induced 
reproductive toxicity through modulating the lipid 
peroxidation level, decreasing the free radicals and 
maintaining homeostasis, emphasizing the potential 
therapeutic role of NG against BPA-induced reproductive 
toxicity.
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