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Objective(s): Pioglitazone (PGZ), a peroxisome proliferator-activated receptor gamma (PPAR-γ) 
agonist, has significant neuroprotective effects and has been reported to regulate inflammatory 
processes.
Materials and Methods: We evaluated the effects of PGZ on febrile seizure (FS) in rat pups. Three groups 
of male rat pups received intraperitoneal (IP) injections of PGZ (5, 10, and 20 mg/kg). Lipopolysaccharide 
(LPS) and kainic acid (KA) were injected to induce FS. The rat pups behaviors were recorded and analyzed. 
Seizure latency, duration, and severity were recorded to evaluate the effect of PGZ on FS. Novel object 
recognition task (NORT) was used to evaluate the effect of PGZ on cognitive deficits induced by FS. At the 
end of the experimental protocol, molecular and histological tests were done.
Results: PGZ significantly increased seizure latency and decreased seizure duration and median 
of seizure scores (P<0.05, P<0.01, and P<0.001) after induction of FS. Rat pups exposed to FS had 
memory deficits both in short-term and long-term memories in the NORT that were reversed by PGZ-
treatment (P<0.01 and P<0.001). PGZ significantly reduced interleukin-1β, tumor necrosis factor-α, 
and inducible nitric oxide synthase concentration in the hippocampus (P<0.05 and P<0.01). In 
addition, PGZ decreased the number of degenerating and TUNEL positive neurons in CA1, CA3, and 
DG subfields of the hippocampus (P<0.05, P<0.01 and P<0.001).
Conclusion: The present results indicated that PGZ had anticonvulsant, anti-inflammatory, and anti-
apoptotic effects with ameliorative effects on cognitive deficits induced by FS in rat pups. 
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Introduction
Febrile seizure (FS) is the most prevalent seizure 

in children aged from 6 months to 5 years (1, 2). 
Prolonged FS has both acute and long-lasting effects on 
the developing brain (3). Inflammation is considered 
to be a key element of the pathophysiology of epilepsy 
and febrile seizure (4). Therefore, anti-inflammatory 
drugs retain significant anticonvulsant properties both 
in experimental and clinical settings (5).

Inflammatory mediators, which are known as triggers 
of fever, have also been implicated in the onset of seizure 
attacks (6). During fever, brain temperature is elevated, 
at least in part, via the release of inflammatory mediators 
such as cytokines (7, 8). Pro-inflammatory cytokines 
including interleukin-1β (IL-1β), tumor necrosis 
factor-α (TNF-α), and IL-10, as an anti-inflammatory 
cytokine, have been implicated in the initiation and 
propagation of seizures (9). IL-1β increases N-methyl-
D-aspartate (NMDA) receptor activity via activation 
of tyrosine kinases and subsequent NR2A/B subunit 
phosphorylation and eventually provokes glutamate-
mediated neurodegeneration (10). TNF-α also modulates 
glutamate receptor trafficking via TNF receptor 1 to 
increase excitatory synaptic transmission and to induce 
acute seizures (11). Moreover, inducible nitric oxide 

synthase (iNOS) is believed to have a fundamental role 
in the inflammatory processes. It is induced by pro-
inflammatory stimuli such as lipopolysaccharide (LPS) 
or various cytokines (12). Overexpression of iNOS 
leads to production of nitric oxide (NO), as a cytotoxic 
mediator, in large amounts and for long periods (13, 
14). In addition, NO may be converted to a number of 
reactive derivatives such as peroxynitrite, NO2, N2O3, 
and S-nitrosothiols, which can kill neuronal cells by 
triggering apoptosis (13).

Prolonged FS has been reported with changes 
in hippocampal synaptic plasticity and may impair 
long-term memory (15). FS can be provoked by using 
a combination of LPS and kainic acid (KA) (16, 17). 
Injection of KA, as an analogue of glutamate, evokes 
seizures that are accompanied by nerve cell damage 
primarily in the limbic system (18). 

A target that has been reported to be involved in 
neuroinflammation is peroxisome proliferator-activated 
receptor-γ (PPAR-γ) (19). Previous studies demonstrated 
that activation of PPAR-γ using thiazolidinediones 
(TZDs) prevented neurodegeneration by decreasing 
neuroinflammation, improving mitochondrial function, 
and reducing neuronal death. Pioglitazone is an anti-
diabetic drug from the TZDs family and acts as an agonist 
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for PPAR-γ (20). Activation of PPAR-γ by pioglitazone 
regulated inflammation and protected neurons against 
LPS insult at least via inhibiting iNOS expression and NO 
generation (21). Moreover, pioglitazone via suppression 
of TNF-α and IL-1β expression induced a survival 
improving effect on mortality of the septic mice (22). 
On the other hand, pioglitazone has been reported with 
significant antiepileptic effects in PTZ-induced seizures 
in mice. This effect of pioglitazone has been attributed 
to modulation of NO synthesis (23) and prevention 
of inflammation and apoptosis (24). So, the aim of 
the present study was to determine if pioglitazone 
ameliorates seizure and cognitive deficits induced by FS 
and to determine the underlying protective mechanisms. 

Materials and Methods
Chemicals

Escherichia coli LPS (serotype O26:B6) and KA were 
purchased from Sigma-Aldrich (USA) and Tocris (UK), 
respectively. PGZ was a gift from Samisaz Pharmaceutical 
(Iran) and was dissolved in sterile saline 0.9%. In situ 
cell death detection kit (fluorescein) was purchased 
from Roche (Germany). Rat IL-1β and TNF-α ELISA kits 
were purchased from Abcam (USA), and iNOS ELISA kit 
was purchased from Mybiosource (USA).  

Animals
Pregnant female Wistar rats were maintained in the 

animal house of Faculty of Sciences, Ferdowsi University 
of Mashhad, under standard environmental conditions 
(12:12 hrs. of light/dark cycle, 22+2 °C, food and water 
available ad libitum). Rats were monitored daily for 
the parturition day, which was taken as day 0 (P0). All 
experimental and animal handling procedures were 
carried out in accordance with animal care guidelines 
and were approved ethically by the Ethics Committee 
for Human and Animal Care of Ferdowsi University of 
Mashhad.

Febrile seizure induction
At day 7 (P7), male rat pups were separated from 

their dams and placed in cages holding 3–4 pups. FS 
was induced as reported in previous studies (16, 25). 
In brief, rats were given intraperitoneal (IP) injections 
of LPS (200 μg/kg). Rectal body temperatures were 
recorded by a digital multimeter with 1 hr. intervals till 
2.5 hrs., after that, during the increase of fever, rat pups 
received a sub-convulsive dose of KA (1.75 mg/kg, IP). 

The LPS injections were given between 9:00 and 10:00 
a.m., while KA injections were given between 12:00 and 
13:00 p.m. The doses for LPS and KA were chosen based 
on previous studies (16, 17, 25). The rat pups behaviors 
were videotaped for 1 hr. and videos were analyzed 
later by a trained observer. Seizure-related behaviors 
were rated on the following scale: rat pups exposing 
only wet dog shakes were rated as stage 1; those who 
showed chewing, head bobbing, and forelimb clonus 
were rated as stage 2; rats with generalized seizures 
and rearing were rated as stage 3; rats with generalized 
seizures, rearing, and falling (loss of postural tone) were 
considered as stage 4; and rat pups that died during 
seizure were scored as stage 5 (26, 27).

 Seizure latency, the time from injection of LPS and 
KA to the onset of seizure, and seizure duration, the 
time to recovery from seizure onset, were recorded 
(28). Seizure severity was evaluated by calculating 
the median of seizure scores after induction of febrile 
seizure (29). Febrile seizure was also repeated later at 
days 12 and 17 (See Figure 1 for details). 

Experimental protocol
Male rat pups were divided into four experimental 

groups. At day 8 (P8), rat pups were treated with three 
different doses of PGZ (5, 10, and 20 mg/kg, IP) till day 
12 (P12). They also received pioglitazone from day 13 
(P13) till day 17 (P17). The pioglitazone injections were 
given between 9:00 and 11:00 a.m. The control group 
was given just normal saline (Figure 1).

Novel object recognition task (NORT)
A typical apparatus for NORT is a 32 × 52 × 30 cm box 

made of Plexiglas (30). This test consists of a habituation 
phase, which is followed by a familiarization phase. 
During the habituation phase, at day 18 (P18), each rat 
pup was allowed to explore the empty arena freely for 
3 days. Habituation consisted of three 10-min sessions 
per day. During familiarization trials, at day 21 (P21), 
rat pups were exposed to two identical objects (A1 and 
A2) (30). The objects were positioned in two adjacent 
corners, 9 cm away from the walls (31). In the test trials, 
animals were exposed to a familiar object (A1) and two 
novel objects that were similar in texture, color, and 
size, but had distinctive shapes (B and C). Short-term 
memory (STM) retention test trial was given 1.5 hr. 
after the familiarization session; rat pups were allowed 
to explore the open field for 5 min in the presence of 

 

  

Figure 1. A schematic diagram of experimental protocol. P: Post neonatal day; LPS: Lipopolysaccharide; KA: Kainic acid; PGZ: Pioglitazone; NS: 
Normal saline
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two objects: the familiar object (A1) and a novel object 
(B). These objects were placed in the same locations 
as in the familiarization trial (32). Long-term memory 
(LTM) retention test trial was carried out 24 hrs. after 
the familiarization trial; at day 22 (P22), rat pups 
were allowed to explore the open field for 5 min in the 
presence of the familiar object (A1) and a third novel 
object (C) (32).

Object exploration was measured using two 
stopwatches to record the time spent exploring the 
objects during the experimental sessions. Exploration 
was defined as sniffing or touching the object with 
the nose. Sitting on the object was not considered 
exploration. A recognition index for each animal was 
calculated as follows: [TN/(TF + TN)], in which TF = 
time spent exploring the familiar object (A1) and TN = 
time spent exploring the novel object (B or C) (33).

Enzyme-linked immunosorbent assay (ELISA)
To prepare the tissue for the ELISA assay, the 

hippocampi were collected, frozen, and stored at -80 °C 
until the measurement of IL-1β, TNF-α, and iNOS (34).

For analysis, hippocampi were homogenized. After 
that, samples derived from homogenization were 
centrifuged at 4500 x g for 15 min. Supernatants were 
collected and immediately stored at -80 °C. Levels of 
IL-1β, TNF-α and iNOS were measured with ELISA kits 
according to the manufacturer’s instructions (35, 36). 
Total protein content was measured in each sample 
using the Bradford assay (37). Data were expressed as 
pg/mg or U/mg of total protein.

Toluidine blue staining
24 hrs. after the experiments, the rat pups were 

deeply anesthetized and brain samples were removed 
carefully, washed with sterile normal saline, and 
fixed in 10% neutral buffered formalin for 5 days at 
ambient temperature. After fixation, the samples were 
dehydrated with ascending ethanol series, cleared with 
xylene, and embedded in paraffin. The paraffin blocks 
were cut into 10 µm coronal sections at the level of the 
dorsal hippocampus (1–3 mm posterior from bregma) 
using a microtome. Six sections from each brain at 150 
µm intervals were collected and stained with toluidine 
blue (38, 39).

All slides were observed with a light microscope 
(Olympus BX51, Japan) using a 40 x objective lens. 
Images were captured digitally from different subfields 
of the hippocampus including CA1, CA3, and DG of both 
hemispheres (40).

TUNEL assay
Paraffin-embedded brain sections of 10 µm were 

used for evaluation of apoptosis. An in situ cell death 
detection kit (fluorescein) was used to determine 
apoptotic neurons in the hippocampus according to the 
manufacturer’s protocol (41).

First, tissue samples were fixed in 10% neutral 
buffered formalin for 24 hrs. and embedded in paraffin. 
Sections were adhered to glass slides pretreated with 
0.01% aqueous solution of poly-L-lysine then air dried. 
Tissue sections were deparaffinized by heating the slides 
for 30 min at 60 °C followed by 2×5 min incubations 
in a xylene bath at room temperature, rehydrated by 

transferring the slides through a graded ethanol series: 
3 min 100% ethanol, 3 min 95% ethanol, 3 min 90% 
ethanol, 3 min 80% ethanol, 3 min 70% ethanol, 3 min 
double-distilled water, and 3 min PBS (42).

Then, sections were treated with 20 μg/ml proteinase 
K for 20 min at room temperature. The sections 
were treated with 3% H2O2 in methanol for 10 min 
to inactivate endogenous peroxidase. After washing 
with PBS, sections were permeabilized by adding the 
permeabilization solution (0.1% Triton X-100 + 0.1% 
sodium citrate). After that, sections were washed again 
in PBS, incubated in the labeling reaction mixture 
containing terminal deoxynucleotidyl transferase and 
the deoxynucleotide for 1 hr. at 37 °C, avoiding exposure 
to light. Tissue sections were washed 2×5 min in PBS 
then air dried; they were covered with coverslips using 
antifade mounting medium. TUNEL positive neurons 
were detected under a fluorescence microscope 
(Olympus BX51, Japan). Images were captured from 
different subfields of the hippocampus including CA1, 
CA3, and DG of both hemispheres (43, 44).

Counting of degenerating and TUNEL positive neurons
For counting of degenerating and TUNEL positive 

neurons per unit area of the CA1, CA3, and DG subfields 
of the hippocampus, the morphometric method was 
used. All selected sections were digitally photographed 
and the number of degenerating neurons and TUNEL 
positive neurons were computed by a 10000 μm2 
counting frame. The mean number of neurons (NA) in 
different subfields of the hippocampus was calculated 
using the following formula: NA= ΣǬ/(a/f×ΣP)

In the mentioned formula, “ΣǬ” is the summation of 
counted neurons that appeared in the sections, “a/f” is 
the area associated with each frame (10000 μm2), “ΣP” 
is the summation of frame-associated points hitting the 
reference (45, 46). 

Statistical analysis
The data are expressed as means±SEM except for 

seizure severity, which was represented as median 
± interquartile. The GraphPad Prism 6.0 software 
(GraphPad Software Inc., USA, version 6) was used for 
statistical analysis. Comparisons among different groups 
were performed using one-way analysis of variance 
(ANOVA) followed by Tukey’s test as post-test. The data 
that were not normally distributed (seizure severity) 
were analyzed using non-parametric tests. Differences 
were considered statistically significant when P<0.05.

Results
Behavioral evaluation of febrile seizure

Seizure latency, duration, and severity were used to 
assess the anticonvulsant effect of PGZ on FS. Rat pups 
were monitored for 1 hr after induction of FS. Wet-dog 
shakes were the first seizure-related behavior which 
rated as stage 1. While generalized seizures and rearing 
were rated as stage 3. Latencies for both stage 1 and 3 of 
FS were examined. Also, durations of previous stages of 
FS were recorded. 

Results showed that PGZ at doses of 10 and 20 mg/kg 
significantly increased stage 1 and 3 latencies at both 2nd 
and 3rd FS (Figure 2A, 2B, P<0.05, P<0.01 and P<0.001). 
Also, PGZ (10 and 20 mg/kg) significantly decreased 
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stage one and three durations (Figure 2C, 2D, P<0.05 
and P<0.001).

In addition, PGZ (10 and 20 mg/kg) significantly 
reduced the median of seizure scores (Figure 3, P< 0.001). 
So, the rat pups that were treated with PGZ showed less 
seizure-related behaviors than their control group.

Body temperature
The body temperature of rat pups was monitored 

after induction of FS. One-way ANOVA demonstrated 
no significant difference between groups after 1st FS. 
However, PGZ significantly lowered body temperature 
when compared to the control group after 2nd and 3rd FS 
(Figure 4, P<0.05, P<0.01 and P<0.001).

NORT
NORT was used to evaluate the effect of PGZ on 

cognitive deficits following FS in rat pups. One-way 
ANOVA demonstrated significant effects of PGZ on STM 
and LTM recognition indexes compared to the control 
group (Figure 5, P<0.01 and P<0.001). This means 
that PGZ-treated rats had better short- and long-term 
memory performances than their control group.

ELISA
The results demonstrated that PGZ at the doses 

of 10 and 20 mg/kg significantly reduced IL-1β and 
TNF-α levels compared to the control group (Figure 
6A, 6B, P<0.05 and P<0.01, respectively). Moreover, 
PGZ decreased the iNOS level at the dose of 20 mg/kg 
(Figure 6C, P<0.05 and P<0.01). 

Figure 2. Effect of PGZ (5, 10, and 20 mg/kg) on stage 1 (A) stage 3 seizure latencies (B) stage 1 (C) and stage 3 (D) seizure durations after 
induction of FS (2nd and 3rd) in rat pups. n=10. *: P<0.05, **: P<0.01 and ***: P<0.001 different from control group. FS: Febrile seizure; S: Stage; 
Ctrl: Control; PGZ: Pioglitazone

Figure 3. Effect of PGZ (5, 10, and 20 mg/kg) on seizure severity after 
induction of FS in rat pups. n=10. ***: P< 0.001 different from control 
group. Ctrl: Control; PGZ: Pioglitazone

Figure 4. Effect of PGZ (5, 10, and 20 mg/kg) on body temperature 
of rat pups after induction of FS (2nd, and 3rd). n=10. *: P<0.05, **: 
P<0.01 and ***: P<0.001 different from control group. FS: Febrile 
seizure; Ctrl: Control; PGZ: Pioglitazone
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Apoptosis
We measured the number of degenerating and 

TUNEL positive neurons in different subfields of the 
hippocampus. Results showed that PGZ (10 and 20 
mg/kg) reduced the number of degenerating neurons 
in the CA1, CA3, and DG subfields (Figures 7, 8, 9, and 
10, respectively, P<0.05 and P<0.001) in comparison 
with the control group. Also, PGZ (10 and 20 mg/kg) 
diminished the number of TUNEL positive neurons in 
the CA1, CA3, and DG subfields (Figures 11, 12, 13, and 
14, respectively, P<0.01 and P<0.001).

Figure 5. Effect of PGZ on cognitive deficits (A and B) of rat pups 
following FS.  n=10. **: P<0.01 and ***: P<0.001 different from control 
group. STM: Short-term memory; LTM: Long-term memory; Ctrl: 
Control; PGZ: Pioglitazone

Figure 6. Effect of PGZ on IL-1β levels (n=7. *: P<0.05) (A), TNF-α 
levels (n=7. *: P<0.05 and **: P<0.01) (B) and iNOS levels (n= 7. *: 
P<0.05) (C)  in the hippocampus of rat pups following FS, different 
from control group. IL-β: Interleukin 1 beta; TNF-α: Tumor necrosis 
factor-alpha; iNOS: Inducible nitric oxide synthase; Ctrl: Control; PGZ: 
Pioglitazone   

 

  Figure 7. Photomicrographs of the rat pups’ hippocampus. PGZ 
decreased the degenerating neurons in the CA1 subfield of the 
hippocampus following FS. A: Ctrl group, B: PGZ (5 mg/kg) group, C: 
PGZ (10 mg/kg) group and D: PGZ (20 mg/kg) group. Arrowheads 
point to representative degenerating neurons. Scale bars: 100 µm. PGZ: 
Pioglitazone

 

  Figure 8. Photomicrographs of the rat pups’ hippocampus. PGZ 
decreased the degenerating neurons in the CA3 subfield of the 
hippocampus following FS. A: Ctrl group, B: PGZ (5 mg/kg) group, C: 
PGZ (10 mg/kg) group and D: PGZ (20 mg/kg) group. Arrowheads 
point to representative degenerating neurons. Scale bars: 100 µm. PGZ: 
Pioglitazone
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  Figure 9. Photomicrographs of the rat pups’ hippocampus. PGZ 
decreased the degenerating neurons in the DG subfield of the 
hippocampus following FS. A: Ctrl group, B: PGZ (5 mg/kg) group, C: 
PGZ (10 mg/kg) group and D: PGZ (20 mg/kg) group. Arrowheads 
point to representative degenerating neurons. Scale bars: 100 µm. 
PGZ: Pioglitazone

Figure 10. Effect of PGZ on degenerating neurons in CA1 (A), CA3 (B), 
and DG (C) regions of the hippocampus of rat pups following FS.  n= 7. 
*: P<0.05 and ***: P<0.001 different from control group. Ctrl: Control;  
PGZ: Pioglitazone

 

 

  Figure 11. Photomicrographs of the rat pups’ hippocampus. PGZ 
decreased the TUNEL positive neurons in the CA1 subfield of the 
hippocampus following FS. A: Ctrl group, B: PGZ (5 mg/kg) group, C: 
PGZ (10 mg/kg) group and D: PGZ (20 mg/kg) group. Scale bars: 100 
µm. PGZ: Pioglitazone

 

  

Figure 12. Photomicrographs of the rat pups’ hippocampus. PGZ 
decreased the TUNEL positive neurons in the CA3 subfield of the 
hippocampus following FS. A: Ctrl group, B: PGZ (5 mg/kg) group, C: 
PGZ (10 mg/kg) group and D: PGZ (20 mg/kg) group. Scale bars: 100 
µm. PGZ: Pioglitazone

 

  Figure 13. Photomicrographs of the rat pups’ hippocampus. PGZ 
decreased the TUNEL positive neurons in the DG subfield of the 
hippocampus following FS. A: Ctrl group, B: PGZ (5 mg/kg) group, C: 
PGZ (10 mg/kg) group and D: PGZ (20 mg/kg) group. Scale bars: 100 
µm. PGZ: Pioglitazone
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Discussion
Our findings revealed the ability of PGZ to ameliorate 

seizure severity and cognitive deficits induced by FS in 
rat pups. In addition, PGZ reduced inflammation and 
apoptosis in the hippocampus. 

Frequent seizures, during brain development, may 
provoke impairment of learning and memory (47, 
48). Also, they may lead to sustained dysfunction of 
the hippocampal cells even in the absence of neuronal 
damage (49). FS can change the hippocampal expression 
of both Bcl2 and Bax proteins, resulting in apoptosis of 
neuronal cells in the hippocampus (50). In addition, 
early-life inflammation with FS may lead to long-lasting 
molecular changes and increased excitability in the adult 
rat hippocampus (51). Pro-inflammatory cytokines 
have been reported to be elevated in the developing 
brains exposed to FS. FS, by triggering inflammation, 
may enhance rapid kindling epileptogenesis in the 
immature rat brain (52). So, finding anti-inflammatory 

drugs for preventing FS and subsequent epileptogenesis 
and cognition dysfunction has been explored (53, 
54). As mentioned, we found that PGZ protected rat 
pups against febrile seizures. PGZ increased seizure 
latency and decreased seizure duration and severity 
after induction of FS. In accordance with our finding, 
Adabi Mohazab et al. (2012) and Okada et al. (2006) 
in their studies demonstrated that PGZ exhibited 
anticonvulsant effects through activation of PPAR-γ in 
two different experimental models of seizure (55, 56). It 
was demonstrated that PGZ, via enhancement of PPAR-γ 
expression, prolonged the latency to flurothyl-induced 
seizures (57). Furthermore, PGZ was able to improve 
the anti-seizure effect of ketogenic diet against flurothyl-
induced seizures in mice (57). Thus, it may be suggested 
that PGZ, by activation and expression of PPAR-γ, has 
the potential to reduce seizures. 

There are reports showing that repeated febrile 
seizures in children can affect their recognition memory 
(58). To investigate the effect of FS on memory, we 
used NORT to assess cognitive deficits. STM and LTM 
indexes were increased in animals pre-treated with 
PGZ. Therefore, it may be suggested that PGZ enhanced 
cognitive performance in rats that were exposed to FS. 
In line with the present findings, Jiang et al. (2012) and 
Yin et al. (2013) showed that PGZ reversed memory 
impairment in rats via various mechanisms including 
activation of PPAR-γ, inhibition of inflammation, and 
improvement in antioxidant defense system (59, 60). 

In spite of the induction of FS, we detected a 
decrease in body temperature of rat pups treated with 
PGZ after 2nd and 3rd febrile seizures. Considering the 
important role of cytokines in the development of body 
temperature (61, 62), we speculated that change in the 
levels of the main pro- and anti-inflammatory cytokines 
might be responsible for this effect of PGZ. The results 
showed that PGZ reduced IL-1β, TNF-α, and iNOS levels 
in the hippocampus of rats indicating a significant anti-
inflammatory effect. Fever is a physiological response 
and mostly cytokine-mediated (63). Therefore, it may 
be suggested that PGZ, via attenuation of inflammation, 
reduced body temperature of rats. Similar to present 
findings, it was reported that PGZ attenuated 
inflammation in mice via activation of PPAR-γ receptor 
and suppression of IL-1β and TNF-α expressions (22, 24). 
Moreover, it was demonstrated that PGZ has a regulatory 
role in inflammation via inhibiting iNOS expression and 
NO generation (21, 23). The anti-inflammatory effect of 
pioglitazone has been implicated in other experimental 
models including the septic shock (22), nephropathy 
(64), atherosclerosis (65), and multiple sclerosis (66). 

The hippocampus is a brain region with a major role 
in the formation and recall of memories (67). Previous 
studies show that children with recurrent febrile 
seizures may have memory dysfunction that has a reverse 
association with their hippocampi size (58). So, we chose 
the hippocampus for more histological evaluation. In the 
present study, administration of a sub-convulsive dose 
of KA induced apoptosis. This finding is in accordance 
with the results of Lee and colleagues (67). This effect 
may be due to the net effect of KA on apoptosis or the 
combinational effect of both KA and LPS. We showed 
that PGZ attenuated the number of degenerating and 
TUNEL positive neurons in the hippocampus of rat pups 

Figure 14. Effect of PGZ on TUNEL positive neurons in CA1 (A), CA3 
(B), and DG (C) regions of the hippocampus of rat pups following FS. 
n= 7. **: P<0.01 and ***: P<0.001 different from control group. Ctrl: 
Control; PGZ: Pioglitazone
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exposed to FS. This finding implies that PGZ exhibited an 
anti-apoptotic effect in the hippocampus of rats. Similar 
to the present results, Lee et al. (2015) and Sauerbeck 
et al. (2011) in their studies showed that PGZ promoted a 
neuroprotective effect against KA-induced excitotoxicity 
due to attenuation of the activation of astrocytes and 
microglia (68, 69). Reductions of cytosolic cytochrome 
c and the key downstream executioner caspase-3 have 
also been reported as other anti-apoptotic mechanisms 
of PGZ (70). Similarly, it was reported that activation 
of PPAR-γ ameliorated KA-induced neuronal cell death 
in the hippocampus via reducing the mitochondrial 
dysfunction, hindering the translocation of Bax and 
cytochrome c, and DNA fragmentation (71). So, this 
effect of PGZ may justify our finding that shows PGZ 
reversed the memory impairment induced by FS. At 
present, the main drugs that are used in the treatment 
of FS are diazepam and phenobarbital. However, the 
rate of adverse effects for these drugs has been reported 
up to 30% (72). PGZ is a low-cost antidiabetic drug 
with a very low chance of hypoglycemia when used 
as a monotherapy (73). Also, the anti-apoptotic and 
anti-inflammatory effects of PGZ in the brain make 
it a potential candidate to treat febrile seizure and its 
consequences including cognitive dysfunction. However, 
much more study is needed to justify such application. 

Conclusion
The present results revealed the ability of PGZ to 
ameliorate febrile seizures and cognitive deficits through 
anti-apoptotic and anti-inflammatory mechanisms in 
the hippocampus of rat pups following febrile seizure.
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