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Ischemia-reperfusion injuries (IRI) occur in different clinical conditions such as stroke, trauma, organ 
transplantation, and so on. Ischemia damages mainly arise from oxygen depletion in tissues. The lack 
of oxygen as the last acceptor of electron in the respiratory chain causes a decrease in ATP production 
and eventually leads to disruption of membrane transport, acidosis, cellular edema and membrane 
distortion of organelles, and cells. Reperfusion can intensify ischemic injuries by the infiltration of 
inflammatory cells and also oxygen and calcium overloading. Since the tissue antioxidant contents 
decreased due to increased generation of reactive oxygen species (ROS) during IRI, the application 
of antioxidants is considered an appropriate strategy to ameliorate IRI. Silymarin constitutes about 
70–80% of silybum marianum dry extract and is known as a strong free radical scavenger with 
anti-inflammatory properties. In several studies, silibinin as a major component of Silymarin could 
provide protective effects in various tissue IRI by different mechanisms such as scavenging free 
radicals, decreasing inflammatory cytokines, inhibiting cellular death, and increasing the expression 
of antioxidant enzymes. To clarify functional mechanisms, the present article evaluates studies about 
silymarin effects in different tissues IRI.

Article history:
Received: Aug 18, 2018
Accepted: Mar 8, 2019

Keywords: 
Inflammation
Ischemia
Oxidative stress
Reperfusion
Silymarin

►Please cite this article as:  
Akbari-Kordkheyli V, Abbaszadeh-Goudarzi K, Nejati-Laskokalayeh M, Zarpou S, Khonakdar-Tarsi A. The protective effects of silymarin on ischemia-
reperfusion injury: A mechanistic review. Iran J Basic Med Sci 2019; 22:968-976. doi: 10.22038/ijbms.2019.34284.8147

Introduction
Ischemia occurs during relative or complete 

obstruction of tissue blood circulation. Ischemia 
damages mainly arise from oxygen depletion in the 
tissue. In pre-acute phase, the lack of oxygen as the last 
acceptor of electron in the respiratory chain causes a 
decrease in ATP production and eventually leads to the 
disruption of membrane transport, acidosis, cellular 
edema and membrane distortion of organelles, and cells 
(1, 2). 

Blood flow restoration into the ischemic tissues 
known as reperfusion is a vital process to compensate 
oxygen deficiency and eliminate any cytotoxic 
metabolites accumulated during ischemia. It should 
be noted that it can intensify ischemic injuries, about 
12–24 hr after reperfusion, named IRI (3, 4). During 
reperfusion, the high influx of blood into the ischemic 
tissues results in the infiltration of inflammatory cells, 
and oxygen and calcium overloading which can increase 
the generation of ROS. In addition to local tissues, IRI 
triggers a systemic inflammatory response and multiple 
organ dysfunctions via metabolite distribution, such as 
inflammatory cytokines (5, 6).

IIRIs occur during different clinical conditions such as 
vascular obstruction, myocardial infarction, thrombolytic 
treatment, orthopedic surgeries, hemorrhagic shock, 
cardiopulmonary bypass, revascularization, and organ 
transplantation which is considered the main one (7-10). 

The clinical manifestations of IRI include myocardial 
hibernation/stunning, cerebral dysfunction, destruction 
of the gastrointestinal barrier, systemic inflammatory 
responses, and multiple organ dysfunctions (11-13).

The clinical factors affecting the intensity of 
IRI include the duration and severity of ischemia, 
reperfusion rate, organ health status, and age of the 
affected person (14). There are many contemporary 
treatment strategies for IRI whose supporting effects 
have been tested in experimental studies and clinical 
trials, e.g., the application of anti-inflammatory drugs 
(dexamethasone, prednisone and tacrolimus), inhibitors 
of broad spectrum of serine proteases (aprotinin), 
selective inhibitor of Na+/H+-exchange (cariporide), 
anti-apoptotic agent (Bax inhibitor-1), anti-ischemic 
component (trimetazidine), antioxidants (SOD, 
CAT, N-acetyl cysteine, vitamin E and D, melatonin), 
ischemic preconditioning induction, and controlled 
reperfusion (15-20). Despite different studies, IRI is still 
an unresolved problem in different clinical conditions. 
Many researchers have shown that the severity of the 
damage depends on the rate of antioxidant exposure 
to the tissues. Since the tissue antioxidant contents 
decreased due to a large amount of ROS during IRI, 
the application of antioxidant agents is considered an 
appropriate strategy to ameliorate IRI (21-24).

Silymarin makes up about 70–80% of Silybum 
marianum; it is known as a strong free radical scavenger 
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with anti-inflammatory and anticancer properties (25, 
26). Also, several investigations demonstrated that 
silymarin and its main component silibinin act against 
different biological (bacterial toxins and mycotoxins) 
and chemical (pesticides, metals, fluoride, cardiotoxic, 
and hepatotoxic) poisons (27-30). More than 400 
articles have been published about the beneficial effects 
of silymarin and its components in the last few years. The 
article’s focus is to review the functional mechanisms of 
silymarin and silibinin on IRI.

Pharmacology of silymarin 
Silymarin consists of seven flavonolignans including 

silybin A and B, isosilibin A and B, silychristin, 
isosilychristin, silydianin and two flavonoid compounds, 
taxifolin, and quercetin (Figure 1). Silibinin or mixture 
of silybin A and B constitutes about 60–80% of 
silymarin components and its main effective ingredient 
(25). After a little intestinal absorption (20–30%) of 
silymarin (silibinin), about 70–80% is conjugated with 
glucuronide and rapidly excreted through the bile 

system. Furthermore, the low blood concentration of 
silymarin explains its less adverse effect. In some liver 
and kidney disorders, the unconjugated form increased 
in circulation, which is biologically active (31, 32). Based 
on the non-ionizable structure of silymarin, it has low 
solubility in aqueous solutions, about 0.5 g/l. Organic 
solvent solubility is about 0.1, 10, and 20 g/l in ethanol, 
dimethyl sulfoxide (DMSO), and dimethylformamide, 
respectively. In this regard, the application of conjugated 
forms such as silibinin phosphatidylcholine (siliphos) 
and silibinin dihydrogen succinate disodium (Legalon) 
are in preference due to their high solubility in aqueous 
solution. The serum half-lives of silibinin are about two 
and three hours for free and protein-conjugated forms, 
respectively (32-34). 

The supportive effects of silymarin on tissue IRI 
are well-documented. Silymarin can improve total 
antioxidant capacity by scavenging free radicals and 
elevating antioxidant gene expression. It is able to 
suppress inflammatory response by inhibiting the 
activation of NF-κB and cyclooxygenase-2 (COX2) (35, 

 

  

Quercetin 

Figure 1. The structure of silymarin components
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36). Silymarin’s antiapoptotic properties are exerted 
by preventing the release of cytochrome (Cyt c) and 
inhibiting the activation of caspase (37, 38). We found 
that inflammatory response, oxidative stress, and cell 
death are the major causes of IRI. In the present study, 
we evaluate the effects of silymarin on these injuries. 

Ischemia-reperfusion injuries and silymarin helpful 
effects
Inflammatory response during IRI

Inflammation is one of the main mechanisms of 
IRI, especially during the lateral phase. In ischemic 
tissues, macrophages are activated by the release of 
damage-associated molecular patterns (DAMPs) from 
injured cells. The macrophages secrete inflammatory 
cytokines, mostly IL-1β, TNF-α, and IL-6 leading 
to other inflammatory cells especially neutrophils. 
The infiltration of inflammatory cells triggers the 
production of ROS and reactive nitrogen species (RNS) 
by pathways such as myeloperoxidase (MPO) and 
inducible nitric oxide synthase (iNOS). According to 
Figure 2, inflammatory cells can produce proteases 
such as elastase that distort cellular skeleton (39-
42). Microvascular aggregation of inflammatory cells 
reduces blood fluidity, which results in the no-reflow 
phenomenon during reperfusion (43). It should be 
noted that vascular endothelium, which is directly 
exposed to blood’s mechanical force, responds earlier to 

circulation abnormalities. Microvascular contraction is 
another cause of the no-reflow phenomenon that begins 
in ischemia and continues during reperfusion (44, 45).

any investigations have proven the anti-inflammatory 
effects of silymarin during ischemia-reperfusion (IR). 
Investigation clarified that pretreating rat kidney 
tissues exposed to 45 min ischemia followed by 24 
hr reperfusion with silymarin (100 mg/kg, iv) could 
decrease the levels of IL-6, IL-1β, TNF-α, MPO activity 
(an indicator of inflammatory cell infiltration), and CD65 
gene expression (expressed in high levels in monocyte/
macrophage) (46). 

Silymarin administration during kidney IRI, reduced 
urinary kidney injury molecule 1 (KIM-1) (47) and 
neutrophil gelatinase-associated lipocalin (48) and 
increased inhibitor of NF-κB (I-κB) (49). A study 
examined the gastroprotective effects of silymarin 
during IRI; ischemia was induced by occlusion of the 
celiac artery for 30 min, and reperfusion lasted for 60 
min. The results showed that the number of neutrophils 
in the gastric mucosa and circulation and MPO activities 
were diminished by silymarin (50–100 mg/kg, IV), but 
not as well as dexamethasone (50). Anti-inflammatory 
properties of silymarin on lung IRI was identified. 
Silymarin (250 mg/kg, IV) to be taken each day for seven 
days before surgery, could decline serum levels of IL-6, 
IL-1β, TNF-α, NF-κB, hypoxia-inducible factor-α (HIF-α) 
and iNOS protein expression by lung tissue (51). 

 

  

Figure 2. Inflammation process during ischemia-reperfusion. ↓ Decreased by silymarin/silibinin. COX: Cyclooxygenase; DAMPs: Damage-associated 
molecular pattern; ICAM: Intercellular adhesion molecules; LPO: Lipoxygenase; LT: Leukotrienes; MPO: Myeloperoxidase; NF-κB: Nuclear factor-
Κb; NOX: NADPH oxidase; PGA2: Prostaglandin A2; RNS: Reactive nitrogen species; ROS: Reactive oxygen species; VCAM: Vascular cell adhesion 
molecule
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A study demonstrated that the brain tissue levels of 
COX2, intracellular adhesion molecule-1 (ICAM-1), P65

 

NF-κB, TNF-α, IL-1β, iNOS, and I-κB degradation were 
suppressed by silymarin (1-10 mg/kg, iv) after cerebral 
IR (1 hr ischemia and 24 hr reperfusion) (52). Other 
studies on cerebral IR indicated that inflammatory cell 
infiltration, leukotriene synthesis, phagocytosis, and 
edema were prevented by silymarin (53, 54). Younis et al. 
tested the efficacy of silymarin in insulin-resistant rats; 
the liver of rats underwent 30 min ischemia followed 
by 1 hr reperfusion. Treatment by silymarin (100 mg/
kg, IV), 15 min before reperfusion decreased the serum 
levels of TNF-α and nitrite, while the levels of IL-10 (an 
anti-inflammatory cytokine) were increased (55). 

Anti-inflammatory effects of silymarin are mostly due 
to inhibiting the nuclear translocation/activation of NF-
κB that resulted in reducing inflammatory cytokines. 
These events led to preventing the aggregation of 
inflammatory cells, which was followed by the reduction 
of iNOS and MPO activities (56, 57). It has been reported 
that silymarin is able to suppress 5-lipooxygenase and 
COX activities that lead to inhibiting leukotriene and 
prostaglandin production (58, 59).

Oxidative stress
Oxidative stress is considered the main mechanism 

of IRI. Following the destruction of the mitochondrial 
membrane during ischemia, dangerous components 
such as Cyt c and xanthine dehydrogenase are released 
(60). Under oxidative stress conditions, xanthine 
dehydrogenase is converted to xanthine oxidase, which 
is the main source of intracellular ROS during IR. The 
enzyme produces H2O2, which could be converted to 
OH- as a result of an ion entrance into the cell during 
reperfusion and undergoes the Fenton and Haber-
Weiss reactions. A large amount of ROS and RNS such 
as HCLO, NH2Cl, and ONOO- is generated by infiltrating 
inflammatory cells via MPO, NADPH oxidase (NOX2) 
and iNOS pathways. In this condition, the body’s 
antioxidants such as catalase, glutathione peroxidase 
(GPX) and superoxide dismutase (SOD) neutralize the 
reactive components. Because of the large amount 
of free radicals that exceeded the body’s antioxidant 
capacity, this resulted in peroxidation of proteins, lipids, 
and DNA (Figure 3) (61-64). 

Many studies have been done on silymarin/silibinin 

antioxidant effects during tissue IR. Flavonoids are 
strong free radical scavenger due to a multi-phenolic 
structure. Due to large amount of lipids deposit, high 
oxygen consumption, and low levels of antioxidants, the 
brain is very sensitive to ROS. Therefore, suppressing 
oxidative stress is in preference to decrease brain 
IRI (60). In the investigation of Rui et al. the cerebral 
effects of silibinin in rats have been evaluated; IR was 
induced by the obstruction of the carotid artery for 
30 min followed by 2 hr reperfusion. Treatment with 
silibinin could diminish malondialdehyde (MDA) as 
a lipid peroxidation yield and improve SOD activity in 
brain tissue. The results revealed that the efficacy of 
the drug was better in the dosage of 400 than 100 and 
200 mg/kg (54). In some other studies, the antioxidant 
effect of silymarin on cerebral IR was also reported 
via abrogating nitric oxide (NO) and nitrosylated 
tyrosine (NO-Tyr), while improving CAT (65), GPX, and 
glutathione reductase (GR) activities (66). Ergün and 
coworkers investigated the impacts of silibinin (50 mg/
kg, IP) prior to reperfusion on skeletal muscle IR injury. 
Taken to gather, silibinin could not meaningfully affect 
the SOD and CAT activities and MDA level (67). 

In the other study, researchers utilized silymarin and 
carvacrol in liver IRI; it was identified that these drugs 
could decrease MDA, while increasing glutathione-
SH levels and improving CAT activity (68, 69). An 
experiment showed that silibinin increases liver GSH 
levels and CAT activity during liver IRI (70). Cetinkunar 
et al. also tested the impact of silymarin on hepatectomy 
induced injuries. After clamping the left branch of 
the portal triad, two lobes of liver were harvested, 
treatments with silymarin (200 mg/kg) to be taken each 
day for six days decreased liver MDA, but no changes 
were seen in SOD and GSH levels (71). 

A study examined the effects of different doses of 
silymarin on rat kidneys. Results demonstrated that SOD 
and CAT were improved, while MDA was diminished in 
the kidneys. Silymarin has been used in different doses; 
the optimum dose of silymarin (200 mg/kg) had better 
efficacy than the other doses (72). Based on experimental 
research performed, rat kidney was exposed to 45 min 
ischemia followed by 24 hr reperfusion; the results 
illustrated that silymarin could increase the serum levels 
of SOD, GPX, and total antioxidant capacity (73) during 
IRI, but no effect on the levels of SOD and GPX in renal 

 

  

Figure 3. ROS and RNS-associated injuries during ischemia-reperfusion. ↓ Decreased by silymarin/silibinin
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tissue. Silymarin could decrease the level of MDA, while 
increasing TAC and antioxidant enzyme activities via 
scavenging free radicals and elevating antioxidant gene 
expression (74) in different organs that experienced IRI 
including mesenteric (75), myocardium (57), kidney 
(46, 49), corporal (76), and supraceliac (77).

Cell death
During IRI, irreversible lesions conduct a group of cells 

to death. As a result of changes in membrane transport, 
an influx of Ca2+ and ROS creation, proapoptotic proteins 
are activated that can trigger mitochondrial permeability 
transition pore (MPTP) formation (78). The release of 
mitochondria components such as Cyt c can stimulate 
caspase-3 and -9 activities that lead to apoptosis and 
necrosis (79). Some studies indicated that glycolysis-
induced acidosis during ischemia prevents MPTP 
formation. However in reperfusion, after normalizing of 
pH, MPTP can exist. Therefore, cell death usually occurs 
during reperfusion (80).

 Apoptosis can happen with intracellular pathways 
such as DNA injuries, p53 activation, excess glycolysis, 
Cyt c excretion, and extracellular pathways via death 
receptors. It is proven that in intracellular pathways, 
B cell leukemia/lymphoma 2 (Bcl2) family proteins 
are the most important regulators. The Bcl2 family 
proteins consist of proapoptotic members (Bax, Bak, 
Bad, and Bid) and antiapoptotic members (Bcl-2, Bcl-
Xl, and Bcl-W). In extracellular pathways, inflammatory 
cytokines such as tumor necrosis factor α (TNF-α) 
and Fas ligand (FasL) have the main role in apoptosis. 
The receptor activation can lead to caspase-8 activity 
that finally stimulates caspase-3 activation (Figure 4). 

During MPTP formation, ATP production is stopped, 
which resulted in the inhibition of caspase activation, 
plasma membrane degradation and eventually necrotic 
cell death known as necroptosis (81-83). Also recently 
the role of microRNAs in regulation of mitochondrial 
apoptotic pathways has been determined during I/R. 
For example miR-1 and miR-15 induce proapoptotic 
factors by targeting Bcl-2 and Arl2, respectively, and 
miR-21 and miR-22 increase anti-apoptotic proteins by 
targeting AP-1 and P53, respectively during I/R (84, 85).

Silymarin’s beneficial effects on cell death during IR 
are well established; a study showed that administration 
of silibinin in conjugated forms with hydroxypropyl-
β-cyclodextrin during hepatic IR could reduce the 
protein expression of apoptosis  such as Fas ligand 
(FasL), high mobility group box-1 protein (HMGB1) 
and lymphocyte common antigen (LCA) as a CD45 (86). 
HMGB1 is released by apoptotic and necrotic cells after 
stimulating the toll-like receptors (TLRs) by damage-
associated molecular patterns (DAMPs) considered a 
cell death marker (87). Death receptors such as Fas and 
its ligand are stimulated during IR (88). Pre-treatment 
with silymarin could abrogate caspase-3 and-9 levels 
after pulmonary IR (51). 

Cetinkunar et al. proved the anti-necrotic properties 
of silymarin after partial liver hepatectomy (71). 
Moreover, a study tested silibinin effects on kidney 
damages induced by hepatic IR. It is identified that 
M30 as an apoptotic biomarker decreased by silibinin 
(89).  By increasing Bcl2 as an antiapoptotic protein and 
decreasing Bax as a proapoptotic protein in kidney IR, 
silymarin decreased apoptotic cells (46). Bax is a protein 
that activates the cleavage of caspase-3 and induces 

 

Figure 4. Cell death processes during ischemia-reperfusion. ↓ Decreased by silymarin/silibinin, ↑ Stimulated by silymarin/silibinin. Apaf-1: 
Apoptotic protease activating factor 1; Cyt C: Cytochrome C; FADD: Fas-associated protein with death domain; HIF-a: Hypoxia-inducible factor 
1-alpha; mTOR: Mammalian target of rapamycin; MPT: Mitochondrial permeability transition; TLR: Toll-like receptor
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apoptosis. It should be noted that the ratio of Bax/
Bcl2 determines whether cells experience apoptosis or 
survival (90). 

In an experiment, silymarin reduced signal transducer 
and activator of transcription-1 (STAT-1), p38 mitogen-
activated protein kinases (MAPKs) and caspase-3 and 9 
during cerebral IR (91). Research showed that silymarin 
reduced the expression and activities of the apoptotic 
protease activating factor-1 (Apaf-1), P53, and caspase-3 
and 9 in rat brain insulted by IR (92). P53 activation 
triggers the release of Cyt c and is able to activate 
caspase-3 and 9 via apaf-1 (93). In a study performed on 
ischemic stroke, silymarin treatment (100 mg/kg) could 
inhibit the expression of Bax and NF-κb proteins, while 
inducing Bcl2, HIF-α, pAKT, and pmTOR levels in brain 
tissue (94). It should be noted that phosphorylated 
AKT (pAKT) and phosphorylated mTOR (pmTOR) can 
protect neurons from death through anti-apoptotic and 
anti-inflammatory actions by inducing HIF-α (95). 

The protective role of silymarin on cerebral IR is now 
well documented. In a study, a rat’s brain was exposed 
to 20 min ischemia followed by seven days reperfusion. 
One group of rats received silymarin (250 mg/kg), 
hematoxylin and eosin (H&E) staining; results revealed 
that the treatment had no effect on the cellular density of 
the hippocampus region during IR. Fluoro-Jade B (FJB) 
staining demonstrated that cell death was less in the 
treated group. Furthermore, terminal deoxynucleotidyl 
transferase-mediated dUTP nick end-labeling staining 
showed that silymarin was able to decrease apoptotic 
cells in brain tissue during IR (96). 

It seems that silymarin/silibinin can prevent intra- 
and extra-cellular pathways of apoptosis through 
stabilizing cell and mitochondria membranes, while 
decreasing inflammatory cytokines. Silymarin/silibinin 
can induce the expression of anti-apoptotic proteins 
such as Bcl2 and HIF-α while inhibiting the expression of 

proapoptotic proteins such as caspase families and Bax 
by activating signal transduction pathways.

It should be mentioned that the mechanisms of 
IRI are various, complex, and difficult to categorize. 
It is also proven that silymarin can affect multiple 
pathophysiological pathways (25). In this regard, 
various beneficial impacts of silymarin are reported 
during IR; some of the impacts are summarized in Table 1.

Conclusion and perspectives IR
The pathogenesis of IRI is complex and multifactorial; 

it involves ATP depletion, changes in membrane 
transportation, cellular edema, glycolysis-associated 
acidosis, microcirculation defects, inflammation, 
oxidative stress, and cell apoptosis. In different 
pathological status, the protective effects of silymarin 
make it attractive to utilize in IRI. Based on studies, 
the main action mechanisms of silymarin/silibinin 
are scavenging free radicals, increasing antioxidant 
capacity, preventing an excess inflammatory response, 
and inhibiting different types of cell death. These events 
lead to improved organ function after reperfusion. As 
mentioned, microcirculation impairments and miRNAs 
dysregulation may have a key role in IRI. In this regard, 
the authors strongly recommend investigating the 
efficacy of silymarin/silibinin in microcirculation 
related signal transduction and miRNAs pathways 
during tissue IR. 
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Tissue I/R Effects Ref 
Kidney DDecreased tubular vacuolation and 

dilatation, hyaline casts, hyperemia, 
cellular edema, and serum creatinine 

 

(46, 65, 72, 97) 

Stomach Diminish mean ulcer index (50) 
liver Improved ATP level, mitochondrial 

function, and respiratory chain 
parameters. Reduced AST, ALT, GGT, 

total bilirubin, vaculation, edema, 
hyperemia, hydroxyproline, and 

sinusoidal congestion, and increased 
glycogen phosphorylase activities 

 

(55, 69, 70, 98, 99) 

Multiple organs  Prevent intestinal edema, loss of 
intracellular border in the liver, alveolar 

congestion, and hemorrhage 
 

(77) 

Cerebral  Relieve infraction size, memory 
impairment, water content, and 

neurobehavioral alteration 
 

(52, 53, 92, 100) 

Coronary artery occlusion Ameliorate blood pressure, ventricular 
hypertrophy, and heart arrhythmia, and 

abrogate LDH and CK 
 

(57, 101) 

 

Table 1. Silymarin/silibinin effects on tissue ischemia-reperfusion

IR: Ischemia-reperfusion
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