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Objective(s): Global cerebral ischemia (GCI), a consequence of cardiac arrest (CA), can significantly 
damage the neurons located in the vulnerable hippocampus CA1 areas. Clinically, neurological 
injury after CA contributes to death in most patients. Mastoparan-M extracted from Vespa magnifica 
(Smith) can be used to treat major neurological disorders. Hence, this study aimed to assess the 
effects of Mastoparan-M on GCI. 
Materials and Methods: To evaluate the neurotoxicity and neuroprotective effect of Mastoparan-M, the 
CCK8 and Annexin V-FITC/PI apoptosis assays were first performed in hippocampal HT22 neuronal 
cells in vitro. Then, Pulsinelli’s 4-vascular occlusion model was constructed in rats. After treatment 
with Mastoparan-M (0.05, 0.1, and 0.2 mg/kg, IP) for 3 or 7 days, behavioral tests, H&E staining 
or Nissl staining, immunohistochemistry, and ELISA were employed to investigate neuroprotective 
effects of Mastoparan-M on GCI in rats.
Results: In vitro, the growth of HT22 neuronal cells was restrained at concentrations of 30-300 µg/ml 
(at 24 hr, IC50=105.2 µg/ml; at 48 hr, IC50=46.81 µg/ml), and Mastoparan-M treatment (0.1,1 and 5 µg/
ml) restrained apoptosis. In vivo, Mastoparan-M improved neurocognitive function and neuronal loss 
in the hippocampal CA1 area of rats. In addition, these effects were associated with the prevention of 
neuroinflammation, oxidative stress, and apoptosis. 
Conclusion: Mastoparan-M acts as a neuroprotective agent to alleviate neuronal death in rats.
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Introduction
Global cerebral ischemia-reperfusion injury (GCI/R) 

is commonly seen in emergency medicine. Restoration of 
spontaneous circulation (ROSC) after a cardiac arrest (CA) 
is the most common type of GCI/R in clinical practice. 
When encountering ROSC after CA, <9% of patients 
survive with good neurological outcomes (1) because 
the sudden cessation of blood flow drastically reduces 
glucose and oxygen supply to the brain, causing severe 
neuronal injury, including oxidative stress, metabolic 
dysfunction, and neuronal death (2, 3). The hippocampal 
region, particularly within the CA1 area, is most extensively 
involved in neuronal injury (4). This type of neuronal 
death in the hippocampal CA1 region begins 2–3 days 
after reperfusion and matures 7 days after the insult. This 
is known as apoptotic neuronal cell death (5, 6). Several 
biomechanisms are involved in the pathology of cerebral 
ischemia-reperfusion damage, including inflammation, 
oxidative stress, and apoptosis. Thus, it is critical to restore 
damaged neuronal structures and prevent neuronal loss for 
GCI/R treatment. The search for a cure remains a challenge 
in targeting neuronal apoptosis. 

Wasp venom extracted from Vespa magnifica (Smith) 
represents a complex mixture of biologically active proteins 
and peptides, such as phospholipases, hyaluronidase, 
phosphatase, α-glucosidase, serotonin, histamine, 
dopamine, noradrenaline, and adrenaline, with significant 
pharmacological effects and biological activity. Clinically, 
compounds extracted from wasp venom have been used 
as anti-inflammatory medicines to relieve pain and treat 
chronic inflammatory diseases, such as rheumatoid arthritis 
(7) and multiple sclerosis (8). Additionally, compounds 
extracted from wasp venom have been used to treat major 
neurological disorders, including epilepsy (8, 9), Parkinson’s 
disease (PD) (10-12), and Alzheimer’s disease (AD) (13). 
Mastoparan and bradykinin are exclusive to wasps (14-17). 
Recently, Mastoparans were classified as cell-penetrating 
peptides (18), while bradykinin was used to protect 
apoptosis-like delayed neuronal death in post-ischemic rat 
hippocampus (19, 20). Furthermore, increasing evidence 
has shown that bradykinin has significant anti-inflammatory 
properties and inhibits the activation of microglia by 
down-regulating tumor necrosis factor-alpha (TNF-α) and 
interleukin-1beta (IL-1β) (21). These findings suggest that 
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wasp venom can be further explored for treatment in the 
pathology of GCI/R. 

Our previous studies have confirmed that wasp venom 
(0.125, 0.25, and 0.5 mg/kg) alleviated paw swelling and 
decreased arthritis scores in rheumatoid arthritis rats 
(22). Four compounds in the wasp venom have been 
purified and identified, including 5-Hydroxytryptamine, 
Vespakinin-M, Mastoparan M, and Vespid chemotactic 
peptide M (23). Interestingly, the analogs of Vespakinin-M 
and Mastoparan-M have neuroprotective effects (24-26). 
Mastoparan-M accounts for 70-80% of crude venom. 
However, no study has reported the effect of Mastoparan-M 
on GCI/R. Therefore, to evaluate the neurotoxicity and 
neuroprotective effects of Mastoparan M, the CCK8 and 
Annexin V-FITC/PI apoptosis assay were first performed 
in hippocampal HT22 neuronal cells in vitro. Then, we 
investigated the neurologic impairment and neuronal loss 
of hippocampal CA1 on GCI/R using Pulsinelli’s 4-vascular 
occlusion (4-VO) in rats by treating with Mastoparan-M 
(0.05, 0.1, and 0.2 mg/kg, IP). Meanwhile, we evaluated 
the release of pro/anti-inflammatory cytokines (e.g., Il-
1β, TNF-α, IL-6, IL-8, and IL-10), oxidative stress, energy 
metabolism, and apoptosis in this model.

Materials and Methods
Animals 

Adult male Wistar rats weighing 280-300 g were obtained 
from the Liaoning Changsheng Biotechnology Co, Ltd, 
with an animal certificate no. of SCXK(Liao)2015-0001. 
The handling and surgery of the rats were approved by the 
Animal Care and Use Committee of Dali University, China 
(Animal Ethics no.: DLULAC2017-0117). All the rats were 
housed in a specific pathogen-free facility under 12-hr light/
dark cycles in a temperature-controlled environment (22-
25℃) with 40-70% humidity. The rats had free access to 
food and water.

Global cerebral ischemia (GCI)
Except for the sham group, all the rats were subjected to 

the 4-VO model, as previously described (27, 28). In brief, 
the rats were deeply anesthetized with 5.0% isoflurane and 
maintained by inhalation of 1.5% Isoflurane driven by 100% 
oxygen flow using the EZ-Anesthesia system (Euthanex 
Corp., Palmer, PA). The isolated bilateral vertebral arteries 
(VAs) were occluded using electrocautery (0.5 mm), and 
the wound was closed. Then, common carotid arteries 
(CCAs) were gently isolated and occluded using a surgical 
clamp. Next, GCI was induced by clamping both arteries 
with miniature artery clips, and the incision was primarily 
sutured. After 15 min of GCI, the clips were removed, and 
blood circulation was restored to the brain from CCAs. The 
incision was sutured using 4-0 Mersilk. The rats in the sham 
group underwent the same procedure without blocking 
bilateral VAs and CCAs. During the procedure, the rats’ 
systemic arterial blood pressure and electroencephalograph 
(EEG) signals were consistently monitored.

Drug treatment 
Mastoparan-M was provided at the National-Local 

Joint Engineering Research Center of Entomoceutics. To 
control the quality of the wasp venom, a method based 
on high performance liquid chromatography (HPLC) was 
developed for chemical fingerprint analysis as previously 
described (Zhou et al. 2019). Edaravone (EDA), a free 

radical scavenger (Biomedical Engineering Center, Hebei 
Medical University, China, Number: H20090353), was 
utilized as a positive control. Three rats were raised in a cage 
and marked in groups. Male Wistar rats were randomly 
divided into six groups, including (a) the sham group 
(n=16), (b) the GCI group with vehicle (n=16), (c) the GCI 
group with EDA (6 mg/kg) treatment (n=16), and (d) the 
GCI group with Mastoparan-M (0.05, 0. 1, and 0.2 mg/kg, 
IP) treatment (n=41), respectively. After GCI/R at 0 h, the 
rats within the vehicle and drug-treated groups were treated 
with normal saline (NS) solution or Mastoparan-M (0.05, 
0.1, and 0.2 mg/kg, IP), respectively. All the rats were treated 
after ischemia-reperfusion at 0, 22.5, 70.5, and 118.5 hr. At 
72 hr, brains were collected from half of the animals in each 
group.

Behavior test
After GCI/R at 0, 24, 48, 72, 96, 120, and 144 hr, behavioral 

tests were performed as described in Tables 1 and 2 (29, 30) 
and continuously assessed for 7 days. In Table 1, the total 
score is 25 points. The stroke index is categorized into three 
grades, with 0−3 points representing mild injury, 4−10 points 
representing moderate injury, and >11 points (including 
death) representing severe damage. In Table 2, the total 
score is 10, with 0 representing normal, 1-3 representing 
mild damage, 4-6 representing moderate damage, and 7-10 
representing severe damage.

Hematoxylin-eosin (H E) and toluidine blue (Nissl) 
staining

The rats were anesthetized on day 3 or day 7 after cerebral 
reperfusion (I/R). The brains were collected and fixed in 4% 
paraformaldehyde (PFA) for 12−18 hr. Then, the brain was 
dehydrated by an automatic dehydrator (Leica ASP-300S, 
Germany) and embedded in paraffin (Biological Tissue 
Embedding Machine, Xiaogan Hongye Medical Instrument 
Co, Ltd, model: BM-VIII). Then, the brain was coronally 
cut (4 µm) at the level of the hippocampus (bregma: -3.00 
to -3.80 mm) using a rotatory microtome (Leica RM2245, 
Germany). The sections were then subsequently stained with 
H&E or Nissl staining. Sections were selected from each rat, 
and images of the hippocampus CA1 area were provided, 
respectively. The cells were counted and analyzed by ImageJ 
software. The average number of surviving cells on the right 
and left sides (neurons per 1 mm linear length in a single 
section of the dorsal hippocampus) was calculated for each 
rat. Three sections from each animal were used for counting. 
The calculation formula of neuronal density is: 

                                                                                                        ×100%

Biochemical estimations
The rats were decapitated under anesthesia either on 

day 3 or day 7 post-GCI. Then, the hippocampus was 
collected, weighed, and homogenized. Using NS as the 
homogenization medium, 10% tissue homogenate was 
prepared and centrifuged at 3500 rpm for 10 min to acquire 
the supernatant, which was packed into the EP tube and 
kept at -80°C for future use. Lactic acid (LD kit, 20171014), 
lipid peroxide (LPO kit; 20170926), malondialdehyde (MDA 
kit; 20171011), nitric oxide synthase, (NOS kit; 20171014), 
nitric oxide (NO kit; China, 20171013), and superoxide 
dismutase (SOD kit; 20171012) were all purchased from 
Nanjingjiancheng Bioengineering Institute, in China, 
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measured as previously described (31, 32), and employed 
according to manufacturers’ instructions. 

Cytokine enzyme-linked immune sorbent assay (ELISA)
The rats were decapitated under anesthesia on day 3 or 

day 7 after GCI. IL-1ꞵ (#147425023), TNF-α (#147881045), 
IL-6 (#146379036), and IL-10 (#152025018) were purchased 
from Thermo Fisher Scientific. According to manufacturer 
specifications, the levels of these cytokines were measured 
by ELISA kits.

Immunohistochemistry
Immunohistochemical staining (IHC) was conducted 

to identify the expression of cysteine aspartate specific 
proteinase-3 (Caspase-3), B-cell lymphoma-2 (Bcl-2), or 
c-fos in the hippocampus. Briefly, antigen retrieval was 
carried out by a 10-mM sodium citrate buffer at pH=6.0 
in a microwave for 20 min at 100ºC. These sections were 
incubated for 1 h in the blocking solution (0.1% Triton-X, 
10% normal goat serum in 1×PBS) at room temperature 
(RT). Then, the primary antibody Caspase-3 (1:200, Abcam, 
US, ab184787), Bcl-2 (1:200, Abcam, US, GR80570-12), 
c-fos (1:200, Abcam, US, GR3175387-1), and cleaved 
Caspase-3 (1:200, CST, #9664) were added to each section, 
respectively, and placed overnight at 4°C. The samples were 
then incubated using biotin-labeled secondary antibodies 
at RT for 30 min. The streptavidin-horseradish peroxidase 
(HRP) working medium was added and incubated at 
RT for 30 min. The positive signals of protein expression 
of Caspase-3, Bcl-2, and c-fos were localized to the cell 
cytoplasm, manifested as pale yellow, brown, or sepia 
positive granules. The positivity rate = (positive cells/total 
cells per field) ×100%.

Cell cultures, treatment, and OGD 
HT22 hippocampal neuron cells were routinely cultured 

with a complete medium (DMEM containing 10% FBS, 
100 U/ml penicillin G, and 100 mg/ml streptomycin) 
in a conventional incubator (37°C, 5% CO2, unlimited 
O2 content). The experiments were divided into eight 
treatment groups: the control group, the oxygen and glucose 
deprivation (OGD) group, and Mastoparan-M (0.1, 1, and 5 
µg/ml). To establish the OGD/reperfusion (R) model, HT22 
cells were incubated with DMEM free of glucose and FBS 

and placed in an anaerobic incubator defined as 1% O2, 5% 
CO2, and 94% N2 at 37 °C. After 18 hr of OGD, the cells 
were changed to a complete medium and reoxygenated in a 
conventional incubator for 8 hr. 

CCK-8 assay
Cell viability was measured by the CCK-8 assay. In detail, 

HT22 cells were seeded on 96-well plates and treated with 
different concentrations of Mastoparan-M (3, 10, 30, 100, 
and 300 µg/ml). Cells treated with DMSO (0.1%, v/v) served 
as the vehicle control. After 24 hr of incubation, the OGD/R 
model was established, and 10 μl of the CCK-8 reagent was 
added to each well. The plate was incubated at 37°C for 4 
hr. Absorbance was surveyed at 450 nm by a Multiscan 
Spectrum (Spark, Tecan, Switzerland).

Annexin V-FITC/propidium iodide assay kit 
After OGD/R, HT22 cells were treated with 

Mastoparan-M (0.1, 1, and 5 µg/ml) for 24 hr. The FITC 
Annexin V Apoptosis Detection Kit (556419) was purchased 
from BD Biosciences. HT22 (105/well) cells were stained 
with this kit following the manufacturer’s instructions 
(http://www.bdbiosciences. com/ds/pm/tds/560931.pdf).

Statistical analysis
Statistical analyses were conducted using Graph Pad 

Prism 8 software. Kolmogorov-Smirnov test was used 
to determine the normal distribution of the samples. If 
the distribution of the sample was normal, we conducted 
statistical analyses in multiple groups using one-factor 
analysis of variance (ANOVA), followed by Dunnett’s test or 
Student’s t-test. If the samples were not distributed normally, 
a Kruskal-Wallis test was performed. A statistical difference 
was established when P<0.05. Chi-squared test was used to 
rank data, such as the behavioral test.

Results
Mastoparan-M extracted from wasp venom could be active 
components to restrain apoptosis in vitro 

To evaluate the neurotoxicity of Mastoparan-M, the 
CCK8 assay was performed in hippocampal HT22 neuronal 
cells. After treatment at 24 hr or 48 hr, the growth of HT22 
neuronal cells was inhibited at concentrations of 30–300 µg/
ml (at 24 hr, IC50=105.2 µg/ml and at 48 hr, IC50=46.81 µg/

 
 
  

Figure 1. Mastoparan-M extracted from wasp venom could be an active component to inhibit apoptosis. (A-B) To evaluate the neurotoxicity of Mastoparan-M, 
a CCK8 assay was first performed in hippocampal HT22 neuronal cells. (C-D) Neuronal apoptosis was measured and quantified using an FITC Annexin V 
Apoptosis Detection Kit by flow cytometry. Data are mean ± SD (n=6) (****P<0.0001 vs. OGD/R)
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ml) (Figure 1A and B). Therefore, Mastoparan-M was used 
at concentrations of 0.1–5 µg/ml for all the cell experiments. 
Herein, we built an OGD/R model of HT22 hippocampal 
neuron cells, which could remarkably decrease cell activity 
and cause apoptosis in HT22 cells compared to the control 
group. However, Mastoparan-M treatment (0.1, 1, and 5 µg/
ml) significantly inhibited apoptosis (Figure 1C and D). 

Mastoparan-M relieved neurological deficit 
During the process of GCI, various drug treatments and 

behavioral tests were conducted following the methods 
shown in Figure 2A. We evaluated the effect of Mastoparan-M 
treatment on animal behaviors previously mentioned (Tables 
1 and 2). We assessed the severity of neurological deficit 
on day 7 using the stroke index and neurology symptoms 
(Table 3). All the rats survived in the sham group, and there 
were no significant differences in mortality rate and degree 

of disability between the vehicle and Mastoparan-M groups 
(Table 3). We determined changes in spontaneous motor 
activity for 7 days; these changes gradually disappeared. On 
day 7, the rats in the vehicle group demonstrated the worst 
symptoms of central nervous system (CNS) damage, such 
as areflexia, spastic paralysis of limbs, tonic tension of torso 
muscles, lateral position by stroke index, and neurology 
symptoms, compared to the sham group (P<0.01). In 
contrast, Mastoparan-M (0.2 mg/kg, P<0.05) decreased the 
stroke index (Figure 2B). Compared to the sham group, 
neurology symptoms in the vehicle group were remarkably 
increased (P<0.05) (Figure 2C). Additionally, treatment 
with Mastoparan-M (0.1 and 0.2 mg/kg) or EDA prevented 
GCI-induced neurological symptoms (Figure 2C, Table 3).

 

  Figure 2. The effect of Mastoparan-M on neurological deficits after GCI/R. (A) The schedule of Mastoparan-M administration and behavioral assessment 
timeline is illustrated schematically. (B-C) Stroke index and neurology symptoms were evaluated according to the methods

 

 

  

Table 1. The calculation of combined behavioral score for stroke index

Table 2. Neurological symptom score  

 

  
 

 

Table 3. The effect of mastoparan M on neurological deficit

Using the contingency table chi-squared test, the overall χ2 = 9.830 a. The total P-value = 0.456
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Mastoparan-M prevented GCI-induced delayed neuronal 
cell death in the hippocampal CA1 region 

Next, we evaluated whether treatment with Mastoparan-M 
could protect the hippocampal CA1 region against GCI-
induced delayed neuronal cell death on day 3 or day 7. The 
drug administration schedule and behavioral assessment 
timeline are schematically illustrated in Figure 2A. The 
neurons of the sham group retained their structural and 
functional integrity, and the labeled neurons were organized 
closely (Figure 3A-B). Compared with the sham group, 
massive neuronal death in the hippocampal CA1 region led 
to neuronal depletion of layers and disorganization of the 

remaining neurons in vehicle-treatment rats by H&E and 
Nissl staining on day 3 (Figure 3A-B) and day 7 (Figure 4A-
B). Furthermore, the hippocampal CA1 region and counts 
of the observed neurons were described in detail (Figure 
4C). The quantitative morphological analysis demonstrated 
a significant decrease in the proportion of neurons in the 
vehicle group compared to the sham group (P<0.01). In 
addition, administration of Mastoparan-M decreased 
the severity of the pathomorphological changes in the 
hippocampal CA1 region on day 3 (Figure 3C-D) and on 
day 7 (Figure 4D-E). 

 

  

Figure 3. The effects of Mastoparan-M on the survival of neurons on day 3 after GCI/R. (A-B) Representative images of HE or Nissl staining in the 
hippocampus. (C-D) Quantification of the number of surviving neurons by HE and Nissl staining. Scale bars: 50 µm; magnification: ×4 or ×40. Values are 
expressed as mean ± SD, n=6-8 for each group, *P<0.05, **P<0.01 vs. the vehicle group

Figure 4. The effect of Mastoparan-M on the survival of neurons on day 7 after GCI. (A) Representative images of H&E staining in the hippocampus. (B) 
Representative images of Nissl staining in the hippocampus. (C) The hippocampal CA1 region was described in detail. (D-E) Quantification of the number 
of surviving neurons by H&E and Nissl staining. Scale bars represent 50 µm; magnification is ×4 or ×40. Values are expressed as mean ± SD; n=8–11 for each 
group; *P<0.05 or **P<0.01 vs. the vehicle group
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Mastoparan-M blocked oxidative stress and restored 
energy metabolism in the hippocampal CA1 region 

In order to assess whether Mastoparan-M treatment 
could diminish oxidative stress induced by GCI/R in rats, 
we evaluated the markers of lipid peroxidation, including 
SOD, MDA, and LPO. SOD activity was found to be 
increased in vehicle-treated rats after GCI/R, in comparison 
to the sham-operated animals, and was further increased 
by Mastoparan-M treatment (0.05 mg/kg, P<0.01; 0.1 mg/
kg, P<0.05) (Figure 5A). Accordingly, high levels of LPO 
and MDA were observed in vehicle-treated rats after GCI/R 
compared to the sham group (LPO, P<0.01; MDA, P<0.05) 
(Figure 5B-C). Mastoparan-M significantly decreased LPO 
levels (0.1 and 0.2 mg/kg, P<0.01) and MDA (0.05 mg/kg, 
P<0.001; 0.1 mg/kg, P<0.01), compared to the vehicle group 
(Figure 5B-C).

NO, total nitric oxide synthase (TNOS), and endothelial 
nitric oxide synthase (eNOS) activities in the brain of the 
rats in the vehicle group were not significantly higher 
compared to the sham group (Figure 5D-F). Compared to 
the vehicle group, the Mastoparan-M group might not be 
implicated in the prevention of endothelial dysfunction after 
GCI/R. We found that the Mastoparan-M group (0.2 mg/kg, 
P<0.5) exhibited increased LDH content compared to the 
vehicle group (Figure 5G). In addition, there was an evident 
decrease in LD levels in the Mastoparan-M group (0.05, 0.1 
mg/kg, P<0.05) (Figure 5H) compared to the vehicle group.

Mastoparan-M inhibited the release of pro-inflammatory 
cytokines in the hippocampal CA1 region 

The IL-1β concentration of the hippocampal CA1 region 
was found to significantly increase on day 3 or day 7 after 
GCI/R (P<0.001 and 0.05, respectively; Figure 6A), and 
decrease significantly by Mastoparan-M (0.05, 0.1, and 0.2 
mg/kg) or EDA treatment at day three (P<0.0001) (Figure 
6A). TNF-α concentrations were elevated on day 3 or day 7 
after GCI/R in the vehicle group, decreasing significantly by 
Mastoparan-M treatment on day 7 (0.2 mg/kg, P<0.01), but 

not on day 3 (Figure 6B). Treatment with Mastoparan-M 
on day 3 or day 7 led to a significant decrease in IL-6 levels 
compared to the vehicle animals. In particular, IL-6 levels 
were significantly lower in the Mastoparan M-treated 
group (0.05, 0.1, and 0.2 mg/kg) on day 3 compared to 
the Mastoparan M-treated group (0.1 and 0.2 mg/kg) on 
day 7 after GCI/R (Figure 6C). Compared with the sham 
group, IL-8 levels significantly increased on day 3 (P<0.01) 
and day 7 (P<0.05) after GCI/R, decreasing after treatment 
with Mastoparan-M on day 3 (0.05 and 0.1 mg/kg, P<0.05) 
and day 7 (0.1 mg/kg, P<0.05), respectively (Figure 6D). 
Compared with the sham group, IL-10 levels significantly 

 

  
Figure 5. Mastoparan-M reduces oxidative stress after GCI/R in rats. (A) The effect of Mastoparan-M on SOD activity. (B-C) Lipidperoxidation after GCI/R 
was demonstrated by levels of LPO and MDA in the hippocampal CA1 region. (D-F) NO, NOS, and eNOS activity were detected after GCI/R. (G-H) ATP 
synthase and LD were determined to examine the effect of Mastoparan-M treatment on energy metabolism after reperfusion injury. Data is represented by 
mean ± SD; n=7–10; *P<0.05 and **P<0.01

 

  Figure 6. Mastoparan-M regulated inflammatory mediators, including 
the release of pro-inflammatory and anti-inflammatory mediators on day 
3 or day 7 after GCI. (A-D) Mastoparan-M reduced the release of pro-
inflammatory mediators, including TNF-α, IL-1β, IL-6, and IL-8. (E) Wasp 
venom increased the release of anti-inflammatory IL-10. The results are 
expressed as mean ± SD; n = 6–13; *P<0.05, **P<0.01 vs. the vehicle group
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decreased in the vehicle-treated rats on day 3 or day 7. In 
contrast, Mastoparan-M (0.05 mg/kg) increased the release 
of IL-10 (P<0.05, Figure 6E). 

Mastoparan-M suppressed the apoptotic pathway in the 
hippocampal CA1 region following GCI/R

GCI/R evoked a significant increase in the activities of 
caspase-3, Bcl-2, and c-fos, compared to the sham group 
(Figure 7A and 7B-D). Importantly, compared to the vehicle-
treated rats, increased activities were dramatically inhibited 
in the Mastoparan-M-treated rats, including caspase-3 (0.2 
and 0.6 mg/kg, P<0.05), Bcl-2, and c-fos (0.05, 0.1, and 0.2 
mg/kg, P<0.01) (Figure 7B-D). 

Discussion
Previous studies have demonstrated that bee venom 

treatment, which normalized some of the neuro-
inflammatory and apoptotic markers and restored brain 
neurochemistry, is a promising neuroprotective therapy for 
PD (10, 33-35). However, compared to bee venom, there is 
a lack of pharmacological investigations for the use of wasp 
venom as a treatment. Our previous data showed that the 
main components of wasp venom are 5-hydroxytryptamine, 
vespakinin-M, Mastoparan-M, and vespid chemotactic 
peptide M, respectively. Recent research on the peptide 
has focused on the cell-permeable peptide, particularly 
Mastoparans (18), which serve as vehicles for delivering 
different molecules and particles into the brain and neurons, 
and have been studied in combination with compounds 
that act on the CNS (36). Increasing evidence has shown 
that vespakinin-M has effective anti-inflammatory 
properties and inhibits the activation of microglia by 
down-regulating TNF-α and IL-1β (21). Thus, over the 
last decade, natural, modified, or chimeric Mastoparans or 
vespakinin-M have been utilized as a potential treatment 
for several neurological conditions (37). Mastoparan-M is 

an amphipathic tetradecapeptide (Ile-Asn-Leu-Lys-Ala-
Ile-Ala-Ala-Leu-Ala-Lys-Lys-Leu-Leu-NH2) toxin and a 
vespid venom Mastoparan counterpart isolated from Vespa 
magnifica (Smith) in China.

Herein, we firstly confirmed that Mastoparan-M 
extracted from wasp venom could have active components 
to inhibit apoptosis in vivo and in vitro. GCI/R leads to 
delayed neuronal damage in certain vulnerable regions 
of the brain, such as the hippocampal CA1 region, in 
both patients and experimental animals (38, 39). After 
an ischemic insult, transient mitochondrial swelling with 
the disintegration of cristae, cytoplasmic vacuolation, 
disaggregation of polyribosomes, a reduction in the rough 
endoplasmic reticulum, and loss of Golgi apparatus cisterns 
and vesicles were immediately observed within the CA1 
neurons (40, 41). Then, in approximately 5-10 min, there 
was a massive proliferation of membranous cytoplasmic 
organelles, followed by an overt cellular disintegration, as 
seen in the CA1 neurons by the end of day 4 (42). EDA is a 
new potent free radical scavenger that is clinically utilized 
to reduce neuronal damage in ischemic stroke. We reported 
that Mastoparan-M, in doses of 0.05, 0.1, or 0.2 mg/kg, 
reduces neurological deficits after GCI/R and attenuates 
neuronal damage in the hippocampus with reperfusion on 
day 3 and day 7. Our results are consistent with numerous 
studies showing the neuroprotective effects of bee venom or 
wasp venom and its positive impact on functional outcomes 
after ischemia in rodents (43). Bee venom (2-5 mg/kg) could 
exert anti-inflammatory and antinociceptive effects on the 
inflammatory reactions for multiple sclerosis in rats (44). 
Melittin (0.1 mg/kg, twice a week) could treat amyotrophic 
lateral sclerosis (45). We selected the dose (0.05, 0.1, or 0.2 
mg/kg) and frequency (twice a week) of Mastoparan-M 
administration according to the neuroprotective effect of 
melittin in rats. 

Inflammation is an important contributor to the 

 

 Figure 7. Changes in the expression of apoptosis-related proteins in the hippocampus of GCI rats. (A) Representative immunohistochemistry (IHC) 
for Caspase-3, Bcl-2, and c-fos expression in hippocampal CA1 region by Mastoparan-M treatment after GCI. (B-D) The number of Caspase-3-, Bcl-2-, 
and c-fos-positive cells in the hippocampal CA1 were normalized and given as cells/mm. Three micrographs with different magnifications are shown for 
experimental groups. Scale bar represents 50 μm; n = 5–6 per group. Data are presented as mean ± SD; *P<0.05; **P<0.01 vs. the vehicle group
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pathophysiology of cerebral I/R injury and exacerbates 
neuronal damage (46, 47). The most important cytokines 
related to inflammation in cerebral ischemia include 
IL-1β, TNF-α, IL-6, IL-10, and transforming growth 
factor-β (TGF-β) (48). Subsequently, we determined the 
release of inflammatory mediators in rats after GCI/R by 
Mastoparan-M treatment. Additionally, Mastoparan-M 
reduced the release of pro-inflammatory mediators, 
including TNF-α, IL-1β, IL-6, and IL-8 on day three or 
day seven after GCI. In addition, IL-10 levels increased in 
Mastoparan-M-treated rats after GCI.

Neuronal oxygen stores are depleted after the cessation 
of cerebral circulation, which is followed by anaerobic 
glycolysis, leading to the depletion of ATP and brain glucose 
(49). Herein, we showed that Mastoparan-M increased 
LDH levels and decreased (50) LD content compared 
to the vehicle group after GCI/R. Neuroinflammation is 
characterized by releasing cytotoxic factors, including 
reactive oxygen species (ROS), cytokines, nitric oxide, and 
matrix metalloproteinases. Although reperfusion restores 
cerebral blood flow, it can cause secondary brain injury by 
increasing ROS levels, which causes damage through lipid 
peroxidation, protein oxidation, and DNA fragmentation, 
all contributing to neuronal death (51). However, 
Mastoparan-M was associated with a significant decrease 
in LPO and MDA content in the hippocampal CA1 region, 
reflecting the comparability of oxidative stress therapy. 
Simultaneously, SOD activity increased in the Mastoparan-
M-treated group. SOD has antioxidant activity that reduces 
ROS, protecting cells against oxidative stress. Interestingly, 
endothelial NOS (eNOS) inhibition increases infarct 
volume and reduces IkB-α expression within the ischemic 
brain (52, 53). Therefore, we determined NO, TNOS, and 
eNOS activities in the hippocampal CA1 region. However, 
there were no significant differences between the groups.

When cerebral ischemia occurs, endogenous repair 
mechanisms, including angiogenesis, nerve regeneration, 
and synaptic remodeling in the brain, are immediately 
initiated (54, 55). Bcl-2, a trigger of ischemic neuronal 
death, activates caspase-3 using the mitochondrial pathway. 
In this line, we demonstrated that Mastoparan-M is related 
to the neuronal apoptosis pathway in the hippocampus, 
following GCI/R. Therefore, the effects of Mastoparans on 
neuronal loss in this rat model were studied.

Limitations of the study
Firstly, we did not perform a learning/memory skills test 

(a Morris water maze, a “Y” maze or other similar tests) to 
evaluate spatial learning and memory disorders. Secondly, 
EDA, a free-radical scavenger and a neuroprotective agent, 
was approved in 2001 in Japan and China to treat patients 
with acute cerebral ischemic stroke. In clinical studies, 
edaravone improved the core neurologic deficits, activities 
of daily life, and functional outcomes of stroke patients 
[51, 52]. Thus, we selected EDA as a positive drug in this 
study. Regarding the anti-inflammatory effect, the selection 
of positive medications is not ideal. Finally, although 
Mastoparan-M exhibited a neuroprotective effect in this 
study and other studies (24), systemic toxicity tests for 
Mastoparan-M, such as liver/ kidney, and especially those 
related to coagulation, platelet function, and bleeding 
should be performed in the future.

Conclusion
We demonstrated that Mastoparan-M attenuates neuronal 

loss in the hippocampal CA1 area after GCI/R in rats. These 
are associated with the prevention of neuroinflammation 
and oxidative stress and inhibition of the activation of the 
final apoptotic executioner, Caspase-3, Bcl-2, and c-fos. 
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