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 Objective(s): Neuroinflammation in Parkinson disease (PD) is associated with glial cells activation 

and production of different inflammatory cytokines. In this study, we investigated the effect of 
chronic administration of 8-OH-DPAT on 6-OHDA-induced catalepsy and levels of inflammatory 
cytokines in cerebrospinal fluid (CSF).  
Materials and Methods: Catalepsy was induced by unilateral infusion of 6-OHDA (8 μg/2 μl/rat) into 

the central region of the sabstantia nigra pars compacta (SNc) being assessed by the bar-test, 5, 60, 
120 and 180 min after intraperitoneal (IP) administration of 8-OH-DPAT (5-HT1A receptor agonist; 
0.25, 0.5 and 1mg/kg, IP for 10 days). CSF samples were collected on the tenth day of 8-OH-DPAT 
administration and analyzed by ELISA method to measure levels of TNF-α, IL-1β and IL-6. 
Results: Chronic injection of 8-OH-DPAT decreased catalepsy in a dose dependent manner when 
compared with the control group. The most anti-cataleptic effect was observed at the dose of 1 
mg/kg of 8-OH-DPAT. Levels of TNF-α in CSF increased three weeks after 6-OHDA injection while 
there was a significant decrease in TNF-α level of parkinsonian animals treated with 8-OH-DPAT (1 
mg/kg, IP for 10 days). IL-1β and IL-6 decreased and increased in parkinsonian rats and in 8-OH-
DPAT-treated parkinsonian rats, respectively.  
Conclusion: Our study indicated that chronic administration of 8-OH-DPAT improves catalepsy in 6-
OHDA-induced animal model of PD and restores central concentration of inflammatory cytokines to 
the basal levels. 5-HT1A receptor agonists can be suggested as potential adjuvant therapy in PD by 
modulation of cerebral inflammatory cytokines.  

 

Article history: 
Received: Sep 9, 2012 
Accepted: Jan 29, 2013 
 

 

 

Keywords:  
8-OH-DPAT 
Catalepsy 
Chronic 
Cytokines 
Rat  
 

 
 
 
 
 

►Please cite this paper as: 
Sharifi H, Mohajjel Nayebi A, Farajnia S. 8-OH-DPAT (5-HT1A agonist) Attenuates 6-Hydroxydopamine-induced catalepsy and 
Modulates Inflammatory Cytokines in Rats. Iran J Basic Med Sci; 2013; 16: 1270-1275. 

 

 

Introduction 
Parkinson disease (PD) is the second most 

common and progressive neurodegenerative disease 
caused mainly by loss of dopaminergic neurons in 
the substantia nigra pars compacta (SNc). The major 
movement symptoms are rigidity, akinesia, tremor 
and postural abnormalities as well as cognitive 
disturbances (1).  

The role of neuroinfl ammation in degeneration 
of nigrostriatal neurons is of interest to many 
investigators (2, 3). The first evidence for the rol e of 
inflammation in PD came from an observation by 
McGeer and colleagues on activated microglia and T 
cells in the post-mortem SNc of a patient suffering 
from PD (4). Epidemiological studies have shown 
that the incidence of idiopathic PD is lower in 
chronic users of anti-inflammatory drugs (5, 6). 
Neuroinflammation is regulated by many signal 
molecules including cytokines. They are multifuncti-

 
onal proteins and in the CNS, pl ay a role in the 
normal development of the brain as well as in neuro-
immuno-pathological processes following injury and 
neurodegeneration (7). Several studies have 
reported significant increase of pro -inflammatory 
cytokines such as IFN-γ, IL-1β and TNF-α, being 
expressed by glial cells in the nigrostratial regions of 
patients with PD (4, 8-10). In general, pro-
inflammatory cytokines such as TNF -α has 
neurotoxic effects, while IL-6 and IL-1β, classical pro-
inflammatory cytokines, have a dual effect. For 
instance, low concentrations of IL -6 protect neuronal 
cells from death, while larger concentrations are 
neurotoxic (11, 12).   

Previous studies have shown that serotonergic 
system is involved in PD (13-15). Serotonergic 
projections originating from the dorsal raphe nuclei 
innervate all parts of the basal ganglia and play a role  
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in the regulation of movements executed by the basal 
ganglia (14). In this context, role of 5-HT1A receptors 
in motor impairments of PD is the center for 
attention (13, 16). Activation of these receptors 
could decrease serotonin release and subsequently 
improve motor function in 6-OHDA-lesioned rats 
(17, 18). Studies have shown that s timulation of the 
5-HT1A receptor attenuates anoxia-induced apoptosis 
in the neuronal HN2-5 (Hippocampal neuron-
derived cell line) cells (19). It seems that cytokines 
act as messengers between the immune system and 
the brain, exerting their effect on sero tonergic 
system through several processes such as 
degradation of their precursor, tryptophan (20). The 
role of pro-inflammatory cytokines in the 
pathogenesis of PD has been shown in several 
studies (12, 21, 22), although the effect of chronic 
administration of 5-HT1A receptor agonists on 6-
OHDA-induced catalepsy and the rol e of cytokines 
such as TNF-α, IL-1β and IL-6 has not been clearly 
studied yet. Thus, in this study we attempted to 
investigate the effect of chronic administration of 8-
OH-DPAT on 6-OHDA-induced catalepsy and possible 
involvement of TNF-α, IL-1β and IL-6.  
 

Materials and Methods 
Chemicals  

All chemicals were obtained from Sigma 
Chemical Co. (USA), except for ELISA kits, which 
were purchased from eBioscience Co. (Austria). All 
solutions were prepared freshly on the 
experimentation day. 8-OH-DPAT (a 5-HT1A receptor 
agonist) and 6-OHDA were dissolved in physiological 
saline (0.9% NaCl) and 0.9% saline containing 0.2% 
(w/v) ascorbic acid, respectively. 6-OHDA was 
injected into the central region of the substantia 
nigra pars compacta (SNc) in a total volume of 2 μl 
/rat with a constant injection rate of 0.2 μl /min.  
 
Animals  

The experiments were carried out on male 
Wistar rats weighing 270-300 g. Animals were 
housed in standard polypropylene cages, four per 
cage, under a 12:12 hr light/dark schedule at an 
ambient temperature of 25 ± 2°C and were allowed 
food and water ad libitum. Animals were acclimated 
to the testing conditions for 2 days before the 
behavioral experiment was conducted. All 
procedures were carried out under the ethical 
guidelines of the Tabriz University of Medical 
Sciences. Twenty-four rats were divided into three 
groups: normal, sham-operated (receiving 2 μl 
vehicle) and 6-OHDA (8 μg/2 μl/rat)-injected. 

 
6-OHDA-induced SNc lesion  

Animals were anesthetized with an IP injection 
of ketamine (50 mg/kg) and xylazine (5 mg/kg). 
After being deeply anesthetized (loss of corneal and 
toe pad reflexes), rats were mounted in a Stoelting 

stereotaxic frame in the flat skull position. The scalp 
was shaved, swabbed with povidone-iodine 10%, 
and a central incision made to expose the skull. 6-
OHDA was injected thorough a guide cannula (23 
gauge stainless steel) implanted in the SNc. The 
coordinates for this site were based on the rat brain 
atlas (23) as follows: anteroposterior (AP): –5.0 mm 
from the bregma; mediolateral (ML): –2.1 mm from 
the midline and dorsoventral (DV): –7.7 from the 
skull.  

Desipramine (25 mg/kg, IP) was injected 30 min 
before the intra-SNc injection of 6-OHDA to avoid 
destruction of noradrenergic neurons. Thereafter, 6-
OHDA (8 μg per rat in 2 μl saline with 0.2% ascorbic 
acid) was infused with an infusion pump at a 
constant flow rate of 0.2 μl/min into the l eft SNc. At 
the end of the infusion, the injection tube was kept 
implanted for an additional 2 min and then was 
slowly retracted.  Sham -operated animals were 
submitted to the same procedure but 2 μl vehicle 
(0.9% saline containing 0.2% (w/v) ascorbic acid) 
instead of 6-OHDA was infused into the SNc.  

 
Catalepsy test 

Catalepsy was measured using a standard bar 
test 21 days after 6-OHDA and 10 days after IP 
injection of 8-OH-DPAT. In this method, forepaws of 
rats were pl aced over a 9-cm-high standard wooden 
bar, and the duration of retention of rats in this 
imposed posture was considered as the bar test 
elapsed time. The end point of catalepsy was 
considered when both front paws were removed 
from the bar or when the animal moved its head in 
an exploratory manner. The cut-off time of the test 
was 600 sec. The test was carried out 5, 60, 120 and 
180 min after drug administration on the 10th day. 
All observations were made between 9 am and 4 pm. 
After a three-week recovery period, only the rats 
being markedly immobilized in the bar test were 
subjected to further experimentation (parkinsonian 
rats). Afterwards, the parkinsonian rats were 
randomly divided into equal groups and received IP 
injections of 8-OHD-PAT (0.25, 0.5 and1 mg/kg, IP) 
once daily (9 a.m.) for 10 days.  

 

CSF sampling  
CSF samples were collected on day 10 of 8-OH-

DPAT administration. Animals were anesthetized by 
IP injections of ketamine (50 mg/kg) and xylazine (5 
mg/kg) and mounted in a Stoelting stereotaxic 
frame. The skull was kept in 45 ° position and CSF 
was aspirated using a sterile 100 µl syringe 23gauge 
needle. The CSF samples were kept at -70°C until 
being assessed by Enzyme-linked immunosorbent 
assays (ELISA) method.  

 

Analysis of TNF-α, IL-1β and IL-6 expression by 
ELISA 

 ELISA method was employed for determination 
of TNF-α, IL-1β and IL-6 in CSF samples. Assays were
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Figure 1. The results of bar test in control, sham-operated and 6-OHDA (8 μg/2 μl/rat)-lesioned rats. Each bar represents the mean ± SEM 
of bar test elapsed time (sec); n = 8 rats in each group; *** p <0.001 when compared with normal and sham-operated groups 
 

performed by a commercial ELISA kit (IBL INTERN-
ATIONAL GMBH) as per manufacturer's instructions 
and in the similar conditions for all assays. Briefly, 
the frozen CSF samples were diluted, added into the 
wells and incubated at room temperature for 120 
min on a microplate shaker. Subsequent to washing, 
diluted Streptavidin-Horseradish peroxidase-conjug-
ated antimouse TNF A, IL-1B and IL-6 were reacted 
for 60 min at room temperature (on microplate 
shaker set at 200 rpm). After washing for second 
time, the wells were developed with tetramethyl 
benzidine (TMB) for 10 min and the optical densities 
were read at 450 nm with an ELISA reader.  

 
Histology  

All animals having guide cannula were sacrificed 
at the end of the experiments. Brain dissections were 
performed in all animals to confirm the exact 
implantation of guide cannula into the SNc. Brain in 
the injecting tube in situ was fixed in 10% formalin 
for 1 week.  The location of the tip of the injecting 
tube was then verified in serial sections. Only the 
results from bar tests in animals with the tip of the 
injecting tube within the SNc area were used for 

statistical analysis. 
 
Statistical analysis  

Statistical analysis for each data set was 
calculated by SPSS software (version 16.0). Data 
were expressed as mean+SEM, and one-way ANOVA 
test was utilized to analyze in the data from 
behavioral and biochemical experiments. In the case 
of significant variation (P< 0.05), the values  were 
compared by Tukey test.  

 

Results 
6-OHDA-induced catalepsy 

6-OHDA was able to induce significant (P < 
0.001) catalepsy in comparison with both normal 
and sham-operated rats (Figure 1).  
 
Effect of 8-OH-DPAT on 6-OHDA-induced catalepsy  

Four groups of 6-OHDA-lesioned rats received 
saline or one of the three different doses of 8-OH-
DPAT (0.25, 0.5 and1 mg/kg, IP), respectively for 10 
days. The results showed that 8-OH-DPAT attenuated 
the severity of 6-OHDA-induced catal epsy (P< 0.001) 
(Figure 2).  

 
Figure 2. The results of bar test in 6-OHDA (8 μg/2 μl/rat)-lesioned rats treated with 8-OH-DPAT (0.25, 0.5, and1 mg/kg, IP for 10 days). 
Each bar represents the mean± SEM of catalepsy time (sec); n = 8 rats in each group; * p < 0.001 when compared with 6-OHDA-lesioned 
rats 

*  
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Figure 3. The CSF concentration of cytokines (IL-6, IL-1β and TNF-α) in the control, 6-OHDA-lesioned rats and 6-OHDA -lesioned rats 
treated with 8-OH-DPAT (1 mg/kg, IP for 10 days). Each bar represents the mean± SEM of cytokines concentration in the CSF (pg/ml) n = 8 
rats in each group; * P< 0.001 when compared with 6-OHDA-lesioned rats 

 
Effect of 8-OH-DPAT on inflammatory parameters  

Results showed that TNF-α was undetectable in 
normal rats while it was increased three weeks after 
6-OHDA injection and decreased following 10 days of  
IP administeration of 8-OH-DPAT to normal animals. 
Levels of the two other cytokines were decreased in 
6-OHDA-lesioned rats in comparison with normal 
group but increased 10 days after injection of 8-OH-
DPAT (Figure 3).  

 

Discussion 
In our previous studies (13, 24) the potential 

anticataleptic effects of 5-HT1A receptor agonists in 
6-OHDA-lesioned rats has been investigated in single 
dose administrations. Given the chronic clinical 
administrations of such drugs, we investigated the 
potential anticataleptic effects of chronic 
administration of 8-OH-DPAT in 6-OHDA-l esioned 
rats in the current study. Our results showed that 
intra-SNc injection of 6-OHDA induced catalepsy in 
animals when assessed by the bar test (13). Bar test 
is a standard test being frequently used for 
evaluation of catalepsy induced by 6-OHDA and 
neuroleptic drugs in rodents (25). According to the 
results, chronic administration of 8-OH-DPAT, an 
agonist of 5-HT1A receptors, improved catalepsy in 6-
OHDA-lesioned rats in a dose dependent manner. 
Such finding confirms the previous studies, reporting 
a promising role for 5-HT1A agonists in decreasing 
the motor disorders associated with PD (24).  

5-HT1A receptors are widely distributed 
throughout the basal ganglia. They are located on 
dorsal raphe neurons with efferents to the striatum 
and on cortical neurons that send glutamatergic 
projections into the basal ganglia (26).  In the basal 
ganglia, serotonin modulates dopamine-related 
motor activity through affecting the 5-HT1A receptor 
(27). It has been shown that 5-HT1A agonists improve 

motor impairments in parkinsonian animals via 
stimulation of somatodendritic 5-HT1A receptors and 
subsequent decrease in serotonin release from the 
nerve endings (28). Furthermore, studies have 
indicated that 5-HT1A receptor plays a role in 
neuronal survival (29, 30) and has a neuroprotective 
effect in animal models of stroke and traumatic brain 
injury (29, 31).  Such effect is exerted through 
inhibition of glutamate release that leads to a 
reduction in the putative excitotoxicity-mediated cell 
death (31).  

Herein, we assessed levels of inflammatory 
cytokines i.e TNF-α, IL-6 and IL-1β in the CSF of 
parkinsonian rats being treated with chronic 
injections of 8-OH-DPAT. According to our results, 
there was a significant increase in the amount of 
TNF-α in parkinsonian rats whereas its levels were 
resorted to normal ranges by chronic administration 
of 8-OH-DPAT. This is in accordance with other 
studies reporting that toxic effects of 6-OHDA are in 
part mediated through the activation of microglia 
and increasing levels of TNF-α in both SN and 
striatum (4, 9, 32 ). The substantia nigra (SN) has 
high density of microglia and it is hypothesized that 
DA neurons are susceptible to inflammatory damage 
as a major stimuli for neurodegenerative diseases 
(33). Activated microglia rel ease proinflammatory 
cytokines such as TNF-α that play a key role in 
modulation of inflammatory responses (34).  

The levels of IL-1β and IL-6 were decreased in 
parkinsonian rats when compared with normal (non-
parkinsonian) animals. In parkinsonian rats, which 
were treated with chronic injections of 8-OH-DPAT, 
the levels of IL-1β and IL-6 were increased to that of 
normal rats. It has been reported that there is an 
increase in CSF concentration of IL -1β and IL-6 in 
parkinsonian rats (32, 35). In addition to their pro-
inflammatory effect, these are pleiotropic cytokines, 
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which can produce neuroprotective effects in PD, 
Alzheimer disease (AD) and CNS injuries (32, 36). 
Our results showed that IL -1β and IL-6 were 
decreased in 6-OHDA-lesioned rats while in 6-OHDA-
lesioned rats, being treated with 8-OH-DPAT, the 
levels of IL-1β and IL-6 were restored to normal 
values. This is in agreement with previous studies 
which suggest a neuroprotective effect for these 
cytokines (22, 37).  

 

Conclusion  
Our data suggest that chronic administration of 

8-OH-DPAT improves catalepsy in 6-OHDA-l esioned 
rats. Moreover, we suggest that 5-HT1A receptor 
agonists can be utilized as adjuvant therapy along 
with commonly used anti-parkinsonian drugs. 
However, further clinical investigations should be 
carried out to prove this.  
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