I**JB**MS

The effects of *Dendrobium* species on the metabolic syndrome: A review

Zahra Oskouei¹, Mahboobeh Ghasemzadeh Rahbardar², Hossein Hosseinzadeh^{1, 2*}

¹ Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran ² Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

Article type: Review

Article history: Received: Jun 9, 2022 Accepted: Feb 1, 2023

ARTICLE INFO

Keywords: Dendrobium Diabetes Dyslipidemia Hypertension Metabolic syndrome

ABSTRACT

Metabolic syndrome (MetS) is known as a global health challenge with different types of health conditions such as hypertension, hyperglycemia, the increasing prevalence of obesity, and hyperlipidemia. Despite much recent scientific progress, the use of traditional herbal medicines with fewer side effects is increasing worldwide. *Dendrobium*, the second-largest orchid genus, has been used as a natural source of drugs for the treatment of MetS. The beneficial effects of *Dendrobium*, including anti-hypertension, anti-hyperglycemia, anti-obesity, and anti-hyperlipidemic against MetS have been shown in the scientific evidence. The anti-oxidant and lipid-lowering effects of *Dendrobium* modulate hyperlipidemia via reducing lipid accumulation and maintaining lipid metabolism. Restoring pancreatic beta cells and regulating the insulin signaling pathway are involved in its antidiabetic properties. The hypotensive effects contribute to increasing nitric oxide (NO) generation and inhibiting extracellular signal-regulated kinase (ERK) signaling. More research projects, especially clinical trials, are needed to investigate the safety, efficacy, and pharmacokinetics of *Dendrobium* in patients. This review article provides, for the first time, comprehensive information about the efficacy of different species of *Dendrobium*. The described species can be a source of medicines for the treatment of MetS, which are reported in various evidence.

▶ Please cite this article as:

Oskouei Z, Ghasemzadeh Rahbardar M, Hosseinzadeh H. The effects of *Dendrobium* species on the metabolic syndrome: A review. Iran J Basic Med Sci 2023; 26: 738-752. doi: https://dx.doi.org/10.22038/JJBMS.2023.65997.14512

Introduction

Nowadays, metabolic syndrome (MetS) affects more than a billion people worldwide (1) and in both developed and developing countries, some factors, including industrial lifestyle, unhealthy diet, and high levels of stress have resulted in a higher prevalence of MetS (2). MetS is a serious problem defined as a group of disorders including hypertension (3), obesity, hyperlipidemia (4), insulin resistance, glucose intolerance (5), fatty liver (6), low levels of high-density lipoprotein (HDL), and high blood amounts of triglycerides (TG) (7), which increases the prevalence of type 2 diabetes mellitus (T2DM) and cardiovascular risk factors (8). On the other hand, due to inadequate efficiency complications for this proceeding disorder, researchers have focused attention on the use of medicinal plants. Some of these plants and their active constituents are effective in the treatment of MetS, including Nigella sativa (9), Camellia sinensis (10), Silybum marianum (11), Persea americana (12), Crocus sativus L. (13), Garcinia mangostana (14), *Capsicum annuum* (15), *Vitis vinifera* (16), *Berberis vulgaris* (17), rutin (18), and Solanum melongena (19).

Orchidaceae is a diverse family of flowering plants with about 27,800 species (20). Among several orchid species, *Dendrobium* is identified as the most popular and largest orchid genera (21). The genus *Dendrobium* contains almost 1400 species, which are found in Australia, the Pacific Islands, and Asia (22). Also, there are morphological differences among various species of *Dendrobium*. In some species, flowers appear in pairs or threes on a peduncle along the entire length of the pseudobulbs, with caduceuslike leaves. In some groups, small flowers arise from leaf axils, while the flowers are paired up or alternately closely set to form pendants or erect thyrses in another species (23). Moreover, the Dendrobium genus, approximately 74 species of which have been distributed in China's tropical and subtropical regions, has been used as a herbal medicine in the treatment of symptoms of diseases such as increasing the production of body fluids, nourishing the stomach, reducing throat inflammation, and improving eyesight for thousands of years (24, 25). Previous research projects have shown that Dendrobium contains components such as alkaloids, flavonoids, bibenzyls, terpenes, phenanthrenes, steroids, lignans, and polysaccharides that have important pharmacological properties (26, 27). According to studies (28, 29), the most relevant phytochemical elements of Dendrobium species in metabolic syndrome include polysaccharides, alkaloids, and polyphenols. The bioactive constituents of Dendrobium include gigantol, moscatilin, dendrofalconerol A, dendrochrysanene, cripidatin, confusarin, denbinobin, and chrysotobibenzyl are shown in Figure 1. According to previous evidence, Dendrobium showed various pharmacological properties, including antiinflammatory (30, 31), anti-fungal (32), antimicrobial (33), anti-oxidant (34-36), antidiabetic (37, 38), hepatoprotective (39, 40), anti-hyperglycemic (29, 41, 42), anti-insulin resistance (43, 44), anti-hypertensive (45, 46), and anticancer (47, 48) (Table 1). Also, the effect of D. officinale on MetS has been determined in Figure 2. Regarding the data in hand,

^{*}Corresponding author: Hossein Hosseinzadeh. Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-51-38819042; Fax: +98-51-38823251; Email: hosseinzadehh@mums.ac.ir

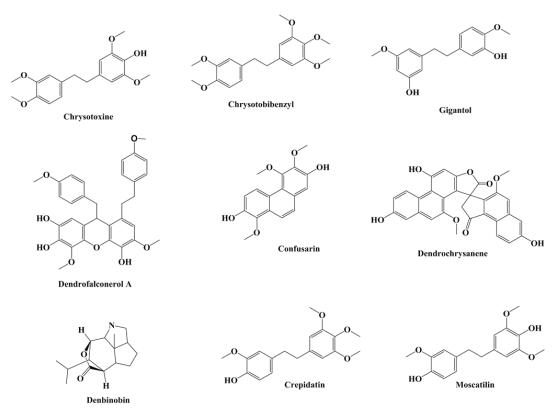


Figure 1. The bioactive constituents of Dendrobium include gigantol, moscatilin, dendrofalconerol A, dendrochrysanene and denbonobin

this review aims to highlight the beneficial and potential properties of *Dendrobium* on MetS and its complications.

Methods

The information was collected by searching PubMed, the Web of Science, Google Scholar, and Scopus. These data have been gathered in the English language, with no time limitation. All types of related books, articles, and abstracts were included. The search keywords included "anti-hyperglycemic", "antihypertensive", "antidiabetic", "atherosclerosis", "obesity", "blood pressure", "blood glucose",

Table 1. Different species of Dendrobium and their bioactivities

"*Dendrobium*", "diabetes", "dyslipidemia", "high cholesterol", "hypercholesterolemia", "hyperglycemic", "hyperlipidemia", "body mass index", "waist circumference", "hypertension", hypertriglyceridemia", "hypoglycemic", "hypotensive", "insulin", "insulin-resistance", "metabolic syndrome", "triglyceride", "atherogenic" and "weight loss".

Effect of Dendrobium on diabetes

Diabetes mellitus, as a significant global health threat, is a cluster of MetS identified with hyperglycemia and destruction of cellular resistance to both insulin and

D. nobileAlkaloidsNeuronal protective, anti-diabetes, anti-hyperlipidemia(70D. nobileAlkaloidsNeuronal protective, anti-diabetes, anti-hyperlipidemia(70D. huoshanense.PolysaccharideAnti-inflammatory activity(11D. aurantiacum.Bisbenzyl (gigantol)Inhibition of cataractogenesis, Anti-oxidant activity(11D. loddigesiiBibenzyls (moscatilin)Anti-angiogenic activity Anti-platelet aggregation activity(12D. trigonopusBibenzyl trigonopols AAntiplatelet aggregation activity(12D. chrysanthumPhenanthrenes (dendrochrysanene)Anti-inflammatory activity, Anti-oxidant(12	Species name	Components	Bioactivity	
D. huoshanense.PolysaccharideAnti-inflammatory activity(11D. aurantiacum.Bisbenzyl (gigantol)Inhibition of cataractogenesis, Anti-oxidant activity(11D. loddigesiiBibenzyls (moscatilin)Anti-angiogenic activity Anti-platelet aggregation activity(12D. trigonopusBibenzyl trigonopols AAntiplatelet aggregation activity(12D. chrysanthumPhenanthrenes (dendrochrysanene)Anti-inflammatory activity, Anti-oxidant(12D. falconerBisbenzyl (Dendrofalconerol A)Anti-cancer(12D. densiflorumDendroflorin (Fluorenones)Anti-platelet aggregation activity(12D. denneanumPhenanthreneAnti-inflammatory activity(12D. denneanumPhenanthreneAnti-cancer(12D. densiflorumDendroflorin (Fluorenones)Anti-platelet aggregation activity(12D. brymerianumBisbenzyl (gigantol, moscatilin)Cytotoxic, Antimigratory(12	D. officinale	Polysaccharides	Anti-oxidant, anti-diabetic activities	(37)
D. aurantiacum.Bisbenzyl (gigantol)Inhibition of cataractogenesis, Anti-oxidant activity(11D. loddigesiiBibenzyls (moscatilin)Anti-angiogenic activity Anti-platelet aggregation activity(12D. trigonopusBibenzyl trigonopols AAntiplatelet aggregation activity(12D. chrysanthumPhenanthrenes (dendrochrysanene)Anti-inflammatory activity, Anti-oxidant(12D. falconerBisbenzyl (Dendrofalconerol A)Anti-cancer(12D. densiflorumDendroflorin (Fluorenones)Anti-platelet aggregation activity(12D. denneanumPhenanthreneAnti-platelet aggregation activity(12D. denneanumPhenanthrene(12D. denneanumPhenanthrene(12D. denneanumPhenanthrene(12D. denneanumPhenanthrene(12D. denneanumPhenanthrene(12D. denneanumPhenanthrene(12D. brymerianumBisbenzyl (gigantol, moscatilin)Cytotoxic, Antimigratory(12	D. nobile	Alkaloids	Neuronal protective, anti-diabetes, anti-hyperlipidemia	(76)
D. loddigesiiBibenzyls (moscatilin)Anti-angiogenic activity Anti-platelet aggregation activity(12D. trigonopusBibenzyl trigonopols AAntiplatelet aggregation activity(12D. chrysanthumPhenanthrenes (dendrochrysanene)Anti-inflammatory activity, Anti-oxidant(12D. falconerBisbenzyl (Dendrofalconerol A)Anti-cancer(12D. densiflorumDendroflorin (Fluorenones)Anti-platelet aggregation activity(12D. denneanumPhenanthreneAnti-platelet aggregation activity(12D. denneanumPhenanthreneAnti-inflammatory activity(12D. denneanumPhenanthreneAnti-inflammatory activity(12D. brymerianumBisbenzyl (gigantol, moscatilin)Cytotoxic, Antimigratory(12	D. huoshanense.	Polysaccharide	Anti-inflammatory activity	(112)
D. trigonopusBibenzyl trigonopols AAntiplatelet aggregation activity(12D. chrysanthumPhenanthrenes (dendrochrysanene)Anti-inflammatory activity, Anti-oxidant(12D. falconerBisbenzyl (Dendrofalconerol A)Anti-cancer(12D. densiflorumDendroflorin (Fluorenones)Anti-platelet aggregation activity(12D. denneanumPhenanthreneAnti-inflammatory activity(12D. brymerianumBisbenzyl (gigantol, moscatilin)Cytotoxic, Antimigratory(12	D. aurantiacum.	Bisbenzyl (gigantol)	Inhibition of cataractogenesis, Anti-oxidant activity	(119)
D. chrysanthumPhenanthrenes (dendrochrysanene)Anti-inflammatory activity, Anti-oxidant(12D. falconerBisbenzyl (Dendrofalconerol A)Anti-cancer(12D. densiflorumDendroflorin (Fluorenones)Anti-platelet aggregation activity(12D. denneanumPhenanthreneAnti-inflammatory activity(30D. brymerianumBisbenzyl (gigantol, moscatilin)Cytotoxic, Antimigratory(12	D. loddigesii	Bibenzyls (moscatilin)	Anti-angiogenic activity Anti-platelet aggregation activity	(120)
D. falconerBisbenzyl (Dendrofalconerol A)Anti-cancer(12D. densiflorumDendroflorin (Fluorenones)Anti-platelet aggregation activity(12D. denneanumPhenanthreneAnti-inflammatory activity(30D. brymerianumBisbenzyl (gigantol, moscatilin)Cytotoxic, Antimigratory(12	D. trigonopus	Bibenzyl trigonopols A	Antiplatelet aggregation activity	
D. densiflorumDendroflorin (Fluorenones)Anti-platelet aggregation activity(12D. denneanumPhenanthreneAnti-inflammatory activity(30D. brymerianumBisbenzyl (gigantol, moscatilin)Cytotoxic, Antimigratory(12	D. chrysanthum	Phenanthrenes (dendrochrysanene)	Antiplatelet aggregation activity Anti-inflammatory activity, Anti-oxidant	
D. denneanumPhenanthreneAnti-inflammatory activity(30D. brymerianumBisbenzyl (gigantol, moscatilin)Cytotoxic, Antimigratory(12	D. falconer	Bisbenzyl (Dendrofalconerol A)	Anti-cancer	(123)
D. brymerianum Bisbenzyl (gigantol, moscatilin) Cytotoxic, Antimigratory (12	D. densiflorum	Dendroflorin (Fluorenones)	Anti-platelet aggregation activity	
	D. denneanum	Phenanthrene	Anti-inflammatory activity	
D. denneanum Polysaccharide Anti-oxidant activity (12	D. brymerianum	Bisbenzyl (gigantol, moscatilin)	Cytotoxic, Antimigratory	
	D. denneanum	Polysaccharide	Anti-oxidant activity	

Figure 2. Schematic mechanistic description of Dendrobium officinale effects on metabolic syndrome

insulin secretion (49). Insulin resistance is characterized by a reduction of the appropriate response to insulin stimulation, glycogen synthesis, and lipid oxidation. Insulin resistance also has a critical impact on the pathogenesis of MetS, including T2DM and obesity (50, 51). Diabetes is a leading cause of macro-vascular and microvascular complications and dramatically increases the risk for nephropathy, retinopathy neuropathy, and cardiovascular diseases (CVDs) (52, 53). Hyperglycemia is closely related to the excess generation of reactive oxygen species (ROS) and oxidative stress which can up-regulate the levels of inflammatory factors including tumor necrosis factoralpha (TNF- α), interleukin-6 (IL-6) and reduces the level of interleukin 10 (IL-10). Moreover, TNF-a induces insulin resistance and hyperlipidemia by activating nuclear factorκB (NFκB) (54). Different molecular mechanisms such as a-glucosidase activity associated with hyperglycemia have been identified. Inhibition of this enzyme can significantly delay carbohydrate absorption and decrease the postprandial elevation of blood glucose levels after meals (55). Cyclic adenosine monophosphate protein kinase A (cAMP/PKA) can regulate glucose homeostasis in several processes, including glucose uptake, glucagon and insulin secretion, gluconeogenesis, glycogenesis, and glycogen degradation (56). The roles of peroxisome proliferator-activated receptor-a (PPAR-a) in mediating diabetes-related molecular events and increasing insulin secretion via regulating fat and β -oxidation of adipocytes in islet β cells have been explored (57). Also, the glucagon-like peptide-1 (GLP-1) secreted by intestinal L cells participates in promoting insulin release and inhibiting glucagon secretion (58).

In some studies, the antidiabetic properties of different species of *Dendrobium*, including *D. officinale*, *D. huoshanense*, *D. loddigesii*, *D. officinale*, *D. candidum*, *D. formosum* Roxb. ex Lind, *D. mixture*, *D. gibsonii*, *D.*

moniliforme, and *D. nobile* Lindl. have been reported and will be discussed in the following.

In vitro studies

In a study, the mechanism of hypoglycemic effects of D. tortile Lindl. was determined in vitro by its α -glucosidase inhibitory activity. In this study, the ethyl acetate extract from the whole D. tortile Lindl. resulted in the isolation of compounds such as dendrofalconerol A, which at the concentration of 200 µg/ml, similar to acarbose (antidiabetic medicine) showed strong α -glucosidase inhibition (59). Inhibitory impacts on α -amylase and α -glucosidase enzyme activities have been shown in another study. D. officinale constituents exhibited an antidiabetic effect by inhibition of radical scavenging response, α -glucosidase, and α -amylase. Among various compounds that were identified from the crude extract of stem of D. officinale, 3,4-dihydroxy-4, 5-dimethoxybibenzyl reported as an a-glucosidase, an a-amylase inhibitor and radical scavenging agent for the first time (60). In another study, the hypoglycemic effect of a shihunine-rich extract of a D. loddigesii was investigated on 3T3-L1 cells. In this research, insulin resistance was induced in 3T3-L1 adipocytes by dexamethasone which resulted in decreased glucose uptake. D. loddigesii (1.02, 2.03, 4.06, 8.12, and 16.25 µg/ml) treatment significantly raised glucose uptake while reducing the raised level of insulin resistance in 3T3-L1 cells (61). D. devonianum and its constitutes including A flavonol glycoside (5-hydroxy-3-methoxyflavone-7-O-(β-D-apiosyl-(1-6) -βD-glucoside), as well as gigantol showed hypoglycemic effects via inhibiting of the α -glucosidase enzyme with the inhibition rate of 43.4% and 36.7%, respectively (62). In an in vitro model, the various concentrations of polysaccharides from D. officinale (100, 200, and 400 µg/ml) ameliorated glucose metabolism by regulating the phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT) signaling pathway which shows

an important impact on glycogen synthesis and glucose metabolism in IR HepG2 cells. Besides, the expression of p-PI3K, PI3K, p-Akt, Akt, p-IRS1, p-IR-β, IR-β, and IRS1 in IR HepG2 cells was reduced compared to the control group. By treatment of polysaccharides from *D. officinale* for 24 h, the expression of these proteins significantly increased (63). Two polysaccharides from the stems of D. officinale were isolated, and their hypoglycemic activity was evaluated in the murine enteroendocrine cell line (STC-1). In this study, the polysaccharides from D. officinale at various concentrations (0, 0.2, 2, 20, 200, and 2000 µg/ml) showed a significant hypoglycemic effect by inducing glucagon-like peptide-1 (GLP-1) secretion in STC-1 cells (64). In a study, a methanol extract from the whole plant of D. formosum Roxb. ex Lindl. resulted in the isolation and identification of various compounds, such as moscatilin which at the concentration of 100 µg/ml concerning glucose-uptake stimulation effects, showed greater activity than insulin on L6 myotubes. Also, the glucose uptake stimulation effect was shown at a non-toxic concentration of lusianthridin (1 µg/ml) on L6 myotubes cells. Moreover, methoxy-7hydroxy-9,10-dihydro-1,4-phenanthrenequinone (50 µg/m) reduced hyperglycemia via inhibiting both pancreatic lipase and α -glucosidase enzymes (65). Inhibitory effects on a-glucosidase enzyme activities have been observed in another study. In this experiment new compound, dendrogibsol, which was isolated from the whole plant of D. gibsonii exhibited potent a-glucosidase inhibitory activity at the dose of 100 μ g/ml as compared with the positive control acarbose (66). To evaluate the antidiabetic and anti-oxidant effects of polysaccharides from D. chrysotoxum Lindl., an in vitro study was performed on mouse splenocytes and Jurkat cells (MCF-7). In this experiment, polysaccharides were isolated from the stem of D. chrysotoxum Lindl. and showed potent anti-oxidant and hypoglycemic effects in Jurkat cells. Since the anti-oxidant potential of polysaccharides plays an effective role in preventing the development of diabetes, the beneficial effect of D. chrysotoxum Lindl. polysaccharides in treating diabetic patients may be related to their antioxidant property (29). In another study, the polysaccharides from D. officinale exhibited hypoglycemic activity by inhibiting hepatic gluconeogenesis, glycogen degradation, and ameliorating the liver glucose metabolism in diabetic mice (67).

In vivo studies

To assess the hypoglycemic effects of the polysaccharide GXG, which was extracted from the stems of *D. huoshanense*, the T2DM mouse model was established. In this study, intragastric administration of the polysaccharide GXG (50 mg/kg/day and 200 mg/kg/day for 5 weeks) showed hypoglycemic effects via regulating glucose homeostasis in T2DM mice. On the other hand, *D. huoshanense* polysaccharide GXG could normalize hyperglycemia and increase the number of β -cells by reducing β -cells apoptosis in the pancreatic islets. Furthermore, it was suggested that GXG may protect against T2DM via regulating the insulin signaling pathway and multiple steps of the PI3K/AKT action in streptozotocin (STZ) and a high-fat diet (HFD) treated mice (25).

In another experiment, the antidiabetic activity of the rich-polyphenol extract of *D. loddigesii* (25, 50, and 100 mg/kg, gavage, 8 weeks) was evaluated in diabetic db/db

mice. These results showed that *D. loddigesii* (100 mg/kg) demonstrated a decreasing impact on blood sugar levels and insulin resistance in diabetic mice. Also, D. loddigesii and its phenols components showed anti-inflammatory properties via reducing the levels of IL-6 and TNF-a proteins and anti-oxidant effects by elevating the levels of biochemical enzymes such as catalase (CAT), superoxide dismutase (SOD), as well as glutathione (GSH) (68). The antidiabetic effects of polysaccharides from D. officinale stem (20, 40, 80, and 160 mg/kg for 4 weeks) on T2DM rats have been verified in another study. Blood glucose, the serum level of insulin, and glycated serum protein decreased. Polysaccharides from D. officinale may activate the anti-oxidant response, which is important for alleviating liver metabolic syndrome and lipid peroxidation (37). Liu et al. investigated the antidiabetic effects of polysaccharides from D. officinale and observed that an intraperitoneal administration of the ethanolic extract of the stem (100, 200, and 400 mg/kg, 4 weeks) to STZ-HFD-induced diabetic mice ameliorated hyperglycemia and hepatic glucose metabolism through regulating the liver-glycogen structure and glucagonmediated signaling pathways. D. officinale showed an increase in liver glycogen synthesis, suppressed hepatic gluconeogenesis, and decreased breakdown of glycogen. The results suggested that the regulatory mechanism of these effects may be regulating hepatic glycogen metabolism via the cyclic adenosine monophosphate protein kinase A (cAMP-PKA) signaling pathway in HFD/STZ-induced T2DM mice (67).

The hypoglycemic properties of water-soluble D. officinale from the dry stem (75, 150, and 300 mg/kg, 12 weeks, IP) were investigated in diabetic mice. D. officinale showed a decrease in the amount of serum fasting insulin (FINS) in mice with diabetic cardiomyopathy. It also increased the expression of PPAR-a and decreased the expression of transforming growth factor- β 1 (TGF- β 1). This finding suggested that D. officinale ameliorated HFD/STZinduced diabetic cardiomyopathy. A significant decrease in phosphorylation of JNK, an increase in phosphorylation of insulin receptor substrate 1 (p-IRS1), and E-cadherin, known as the epithelial cadherin, by D. officinale were observed. Moreover, it was suggested that the possible mechanism for D. officinale extract function may be in connection with the activation of the PPAR-a/c-Jun N-terminal kinase (JNK) pathway (69). Inflammation and insulin resistance are mediated by the inhibition of serine phosphorylation of IRS-1 by JNK (70). Chang et al. investigated the functional antidiabetic role of D. candidum (0.2, 0.4, and 0.8 g/kg, two weeks, IP) on kidneys in diabetic rats. In this study, D. candidum played a reno-protective role against diabetic conditions by inhibiting the expression of biological factors including connective tissue growth factor (CTGF), glucose transporter-1 (GLUT-1), and vascular endothelial growth factor (VEGF). Also, D. candidum demonstrated important antidiabetic effects under diabetic problems via decreasing the levels of clinical prognosis factors for kidney function such as urea, serum creatinine, and urea nitrogen in blood (71).

From data obtained in a study, *D. mixture* (12 g/kg, 8 weeks, gavage) significantly decreased the fasting blood glucose (FBG) and improved diabetic nephropathy via reducing the expression transforming growth factor- β 1 (TGF- β 1)/Smads signal transduction pathway in db/db

mice (72). The hypoglycemic effects of D. officinale Kimura et Migo in treating diabetic nephropathy were evaluated in another study. According to these results, D. officinale (5 and 10 ml/kg, intragastric, for 4 weeks) demonstrated therapeutic potential effects via reducing the activation of FBG, FINS, insulin-resistant, and toll-like receptors (TLRs) in diabetic rats induced by STZ (43). The anti-diabetic activity of an aqueous extract from D. officinale Kimura & Migo was investigated in an experiment. In this study, highdose water extract of D. officinale (700 mg/kg, 2 weeks, IP) demonstrated a considerable reduction in random blood glucose levels, while no significant difference was found in the low-dose water extract (350 mg/kg, 2 weeks, IP) group. However, this plant increased the FINS serum in all doses (73). In diabetic rats, exposure to D. mixture at the dose of (17.2 g/kg/day, 12 weeks, IP) caused a reduction in FBG, aspartate transaminase (AST) glycosylated serum protein (GSP), and alanine transaminase (ALT). A positive correlation between increased levels of ALT and decreased insulin sensitivity in the liver can be used to predict the development of T2DM. In this study, D. mixture decreased the expression of proteins such as glucose 6 phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK), and signaling molecule Forkhead box O (FoxO1) by increasing the activity of PI3K/ Akt, thereby regulated gluconeogenesis and glucose metabolism under diabetic condition (74). Another study revealed the beneficial hypoglycemic effects of polysaccharides from D. moniliforme (100 and 200 mg/kg, ig) on experimental diabetic mice. D. moniliforme extract significantly decreased the serum glucose level and elevated glucose tolerance in adrenalin and alloxan-induced diabetic mice (75).

The hypoglycemic properties of the extracts from D. nobile Lindl. (10-80 mg/kg, 8 days, PO) were investigated in hyperglycemic mice induced by adrenalin. Polysaccharides and alkaloids in *D. nobile* Lindl. extract induced a reduction in the level of blood sugar in experimental mice (76). study by Zhang et al. indicated that oral administration of D. fimbriatum extracts at the doses of 100 and 200 mg/kg (orally, 2 to 5 weeks) significantly ameliorated diabetes symptoms via inhibiting the inflammatory factors such as cytokines IL- 1β and TNF- α and preventing islet cell apoptosis in diabetic rats. This article proposed that regulatory mechanisms of this effect may regulate diabetes and its complications by preventing β -cells apoptosis and decreasing liver lipid accumulation (77). In another study, D. chrysotoxum Lindl. ameliorated diabetic retinopathy and retinal inflammation by inhibiting the NF- κ B signaling pathway. In this study, D. chrysotoxum Lindl. (30 and 300 mg/kg, orally, 4 weeks) could decrease retinal mRNA expressions of intercellular adhesion molecule-1 (ICAM-1) and the serum levels of inflammatory markers such as TNF- α , IL-6, and IL-1 β by inhibiting NF- κ B activation in diabetic rats. NF- κ B family regulates inflammatory responses through the activity of cytokines such as IL-1 β and TNF- α . *D. chrysotoxum* Lindl. also reversed the expression of tight junction proteins (including occludin and claudin-1) and alleviated the increased p65, inhibitor of nuclear factor kappa B (IkB), and IkB kinase (IKK) in diabetic rats. Therefore, D. chrysotoxum Lindl. ameliorated an inflammation of the retina by inhibiting the NF-kB signaling pathway in STZ-induced diabetic rats (78). The anti-diabetic effect of polysaccharides from D. chrysotoxum Lindl. (200 and 500 mg/kg, orally, for

1 week) on alloxan-induced diabetic mice was evaluated. This compound decreased the level of blood glucose in all of the doses. Also, *D. chrysotoxum* Lindl. showed anti-oxidant activity by inhibiting hydroxyl radicals (OH)-mediated deoxyribose degradation and superoxide anions (O2^{• -}) against glucose oxidase mediated cytotoxicity in Jurkat cells. Thus, these results suggest that *D. chrysotoxum* may exert hypoglycemic effects through anti-oxidant activity (29).

In another study, administration of polysaccharides from *D. huoshanense* (50, 100, and 200 mg/kg, IP) decreased blood sugar levels in diabetic cataract rats. These compounds improved cataract diabetes by inhibiting the oxidation pathway, which down-regulated inducible nitric oxide synthase (iNOS) gene expression and advanced glycation end products (AGEs) formation (79).

An *in vivo* study demonstrated the differences in hypoglycemic effects among various *Dendrobium* species on the metabolic syndrome. In these results, the oral administration (50, 100, and 200 mg/kg) of polysaccharides from *D. officinale*, *D. nobile*, and *D. huoshanense* indicated significant anti-diabetic effects. *D. officinale*, *D. nobile*, and *D. huoshanense* but not *D. chrysotoxum* showed anti-diabetic activity in the decreasing order of *D. huoshanense* > *D. nobile* > *D. officinale* > *D. chrysotoxum* (80).

According to the above-mentioned results, the various species of *Dendrobium* at different doses (high doses and low doses) and times of exposure significantly decreased blood sugar levels through various mechanisms in diabetic study models. It seems inhibition of the NF- κ B signaling pathway, decreasing hydroxyl radicals, and increasing anti-oxidant activity are some of the most important mechanisms to manage the antidiabetic effects of these plants (Table 2).

Effect of Dendrobium on serum lipid profile

Hyperlipidemia normally refers to high levels of cholesterol, TG, and changes in lipoprotein patterns within the human body (81). Hyperlipidemia is also described as a lipoprotein metabolism disorder that leads to atherosclerosis, coronary artery disease and metabolic syndrome. Additionally, hyperlipidemia is known as an established risk factor for CVD disorder which is the leading cause of mortality worldwide (82). Among various mechanisms in lipid metabolism, PPAR-a has a crucial impact on lipid metabolic processes and accelerates β -oxidation of adipocytes in islet β cells (83). The JNK signaling pathway is also known to contribute to regulating the PPAR-α -FGF21 hormone (84). Fatty acid β -oxidation is another pathway for lipid metabolism that occurs in both mitochondria by carnitine palmitoyltransferase 1 (Cpt1) and peroxisomes by Acyl-CoA Oxidase 1 (Acox1) (85). Among the various herbal medicine compounds, Dendrobium species have been shown to have potent anti-dyslipidemia effects in different experimental models, which are discussed in the next sections.

In vitro studies

In a study, the stems of *D. loddigesii* (2.03, 4.06, 8.12, and 16.25 μ g/ml) significantly decreased the intracellular accumulation of fat droplets and TG as well as promoted the 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2 deoxyglucose (2-NBDG) uptake of 3T3-L1 cells. *D. loddigesii* also revealed its lipid-lowering effect by increasing in p-AMPK and GLUT-4 levels in the adipose tissue and

Table 2. Anti-diabetic effects of different species of Dendrobium

Species of Dendrobium	Active constituents/type of extract	Dosage mg/kg/day) /Study model	Results	Mechanisms	Ref
		In vivos	studies		
D. huoshanense	Polysaccharides	50 mg/kg/day and 200 mg/kg/day, 5 weeks/On to STZ-HFD induced diabetic mice	Normalize hyperglycemia	Increase the number of β-cells/ Regulate the insulin signaling pathway/ phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT)	(25)
D. loddigesii	Polyphenols	25, 50, 100 mg/kg, gavage, 8 weeks/On diabetic db/db mice	↓Blood glucose ↓Insulin resistance ↑ SOD, CAT, GSH	Anti-oxidant property	(68)
D. officinale	Polysaccharides	20, 40, 80, and 160 mg/kg, 8 weeks/On T2DM rats	↓Blood glucose	Anti-oxidant	(37)
D. officinale	Polysaccharides	100, 200, and 400 mg/kg, 4 weeks/ On STZ-HFD induced diabetic mice	Ameliorate hyperglycemia and hepatic glucose metabolism Regulate liver-glycogen structure and glucagon-mediated signaling pathways Increase hepatic glycogen synthesis Suppressed hepatic glyconeogenesis and glycogen degradation	Cyclic adenosine monophosphate protein kinase A (cAMP-PKA) signaling pathway	(67)
D. officinale	-	75, 150, 300 mg/kg, IP12 weeks/ On HFD/STZ- induced diabetic cardiomyopathy mice	Decrease in phosphorylation of JNK increase in p-IRS1and E-cadherin,	Activation of the PPAR-α/ c-Jun N- terminal kinase (JNK) pathway	(69)
D. candidum	-	0.2, 0.4, and 0.8 g/kg/ On kidneys in diabetic rats	Normalize hyperglycemia ↓Serum creatinine, ↓blood urea nitrogen↓urea	Inhibition the expression of connective CTGF, VEGF and GLUT-1.	(71)
D. mixture	Not mentioned	(12 g/kg for 8 weeks)/In db/db mice	Anti-diabetic effects ↓FBG	Reduce the expression transforming growth factor-β1 (TGF-β1)/Smads signal transduction pathway	(72)
D. officinale Kimura et Migo	Dried stems	5 and 10 ml/kg, for 4 weeks/ in diabetic rats induced by STZ	↓FBG ↑FINS ↓insulin-resistant	Toll-like receptors (TLRs)/ promote insulin secretion of pancreatic islet beta cells	(43)
D. officinale Kimura & Migo	Aqueous extract	700 mg/kg for 2 weeks	Anti-diabetic effects	Blood glucose level	(73)
D. moniliforme	Polysaccharides	100 and 200 mg/kg/ In adrenalin and alloxan-	↓Blood glucose ↓Glucose tolerance	_	(75)
D. fimbriatum	Extract	induced diabetic mice 100 and 200 mg/kg, , 2 to 5 weeks/ In diabetic rats	Ameliorate diabetes symptoms	Prevented β -cells apoptosis and decrease liver lipid accumulation	(67)
D. mixture	Polysaccharides	17.2 g/kg/day,12 Weeks/ In diabetic rats	↓FBG ↓GSP ↓ALT ↓AST Decrease G6Pase, PEPCK and FoxO1	Activation of PI3K/ Akt	(74)
D. chrysotoxum Lindl	Extract	30 and 300 mg/kg, , 4 weeks/ In STZ-induced diabetic rats	Ameliorate diabetic retinopathy and retinal inflammation in diabetic condition	Inhibition the NF-κB signaling pathway.	(78)
D. chrysotoxum	polysaccharide	200 and 500 mg/kg, orally for 1 week/ on alloxan- induced diabetic	Hypoglycemic activity	Reduction significantly in blood glucose levels	(29)
		In vitro	studies		
D. tortile Lindl	Dendrofalconerol A	200 µg/ml	Hypoglycemic effects	α -glucosidase inhibitory activity	(59)
D. officinale	3,4-dihydroxy-4',5- dimethoxybibenzyl		Hypoglycemic effects	Inhibition of α -amylase, α -glucosidase, radical scavenging response.	(60)
D. loddigesii	Shihunine-rich extract	1.02, 2.03, 4.06, 8.12, and 16.25 $\mu g/ml)/3T3\text{-}L1$ cells	Anti-diabetic effect	Increased glucose uptake Reduce the raised level of insulin resistance in 3T3-L1 cells	(58
D. officinale	Polysaccharides	100, 200 and 400 μg/ml/ HepG2 cells	Ameliorate glucose metabolism	Regulate the PI3K/AKT signaling pathway	(63)
D. officinale	Polysaccharides	0, 0.2, 2, 20, 200, and 2000 μg/ml/ STC-1 cells	Hypoglycemic activity	Induce GLP-1 secretion in STC-1 cells	(64)
D. formosum Roxb. ex Lindl	Moscatilin Lusianthridin Methoxy-7-hydroxy-9,10- dihydro-1,4- phenanthrenequinone	100 μg/ml/ L6 myotubes cells 1 μg/ml/ L6 myotubes cells 50μg/ml	Reduce hyperglycemia	Inhibition of both α-glucosidase and pancreatic lipase enzymes	(65)
D. gibsonii	Dendrogibsol	100 µg/ml	Hypoglycemic activity	α glucosidase inhibitory activity	(66)
D. chrysotoxum Lindl	Polysaccharides	Mouse splenocytes and jurkat cells	Anti-oxidant and hypoglycemic effects	Anti-oxidant	(29)

STZ: Streptozotocin; HFD: high-fat diet; SOD: superoxide dismutase; CAT: catalase; GSH: glutathione peroxidase; TC: total cholesterol; TG: triglyceride; HDL C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; FBG: fasting blood glucose; GSP: glycated serum proteins; ALT: alanine aminotransaminase; AST: aspartate aminotransferase; G6Pase: glucose 6-phosphatase; CTGF: connective tissue growth factor; VEGF: vascular endothelial growth factor; GLUT-1: Glucose transporter1; PEPCK: phosphoenolpyruvate carboxykinase 1; forkhead box O1; NF- κ B: nuclear factor- κ B; GLP-1: Glucagon-like peptide-1; 2hBG: 2 hr postprandial blood glucose

a rise in expression levels of p-AMPK and PPAR- γ in the liver tissue. Thus, it showed the hypolipidemic effects by up-regulating the expression of proteins such as PPAR, p-MAPK, and GLUT4 (61).

The inhibitory effect of a polysaccharide compound (DHP1A) obtained from *D. huoshanense* (0.5, 0.1, 1.5, and 2.0 mg/ml) on the FeCl₂-induced lipid peroxidation in mice's liver was examined *in vitro*. According to these data, a variety of mechanisms, such as an increase in the levels of free radical scavenging including glutathione peroxidase (GPx), CAT, SOD, as well as GSH are involved in the reduced activity of dyslipidemia and MDA content. The anti-oxidant response of DHP1A was more remarkable than that of dextran under the same conditions; this may be due to its unique structural features. Also, it showed an inhibitory effect on the FeCl₂-induced lipid peroxidation. Therefore, anti-lipid peroxidation essentially played a role in the anti-oxidant mechanisms of DHP1A (86).

In vivo studies

The anti-hyperlipidemia effects of water-soluble extracts of *D. officinale* (75, 150, and 300 mg/kg, 12 weeks, IP) have been studied in diabetic and HFD rats. In this study, *D. officinale* increased fatty acid metabolism, significantly decreased LDL-C, TC, FINS, and TG, and increased HDL-C levels in the serum. The possible mechanism of these effects may be associated with the expression activation of PPAR- α and a decrease in the expression of p-JNK proteins (69).

In another experiment, ultrafine *D. officinale* powder (0.6 g/kg per day, 3 weeks, PO) regulated fatty acid metabolism to improve the accumulation of lipids in a mouse model of progressive nonalcoholic fatty liver disease (NAFLD) on the high-sucrose, high-fat (HSHF) diet. The positive correlation between fatty acid metabolism disorders and the development of NAFLD in liver injury has been confirmed. According to the results, *D. officinale* powder ameliorated liver lipid metabolism in NAFLD mice by reducing the levels of hepatic lipids, including TC, TG, triacylglycerol (TAGs), AST, ALT, and free fatty acid (FFA). Reduction in fatty acids synthesis, uptake, and desaturation, and promotion of FA β -oxidation were also observed after treatment with *D. officinale* powder (87).

The results of a study on hyperlipidemic rats suggested that an aqueous extract from *D. officinal* showed an antihyperlipidemic effect at doses of 0.25, 0.5, or 1 g/kg by reducing the serum levels of ALT, AST, LDL-C, TG, and TC, as well as a significant elevation in the serum concentrations of HDL-C. Moreover, *D. officinal* inhibited the formation and development of high lipid profiles and enhanced antioxidant capacity in hyperlipidemic rats (88).

Various studies have shown that hypercholesterolemia (HCD) is a variable risk factor that forms atherosclerosis plaques by increasing levels of lipid profiles. In an experiment, *D. huoshanense* polysaccharide inhibited plaque formation by decreasing lipid accumulation in the blood vessels of the AS zebrafish. Moreover, it showed a significant decrease in the levels of ROS, TC, TG, and malondialdehyde (MDA) in zebrafish (89).

In another study, the hepatoprotective effect of different extracts (water extract, alcohol-soluble extract, alcohol-insoluble extract, and crude extract) of *D. huoshanense* was investigated on sub-acute alcohol-induced hepatic failure in mice. After administration of *D huoshanense* for 30 days,

serum concentrations of AST, ALT, alkaline phosphatase (ALP), LDL-C, TC, and TG significantly decreased, and the activation of enzymes such as SOD, alcohol dehydrogenase (ADH), acetaldehyde dehydrogenase (ALDH) and glutathione (GSH-Px) in the liver increased. In this study, freeze-dried *D. huoshanense*, its water extract, and its alcohol-insoluble extract showed better protective effects than that of the alcohol-soluble extract against alcohol-induced liver damage and steatosis, but these effects were lower than those of crude polysaccharides (90).

In a study, *D. nobile* Lindl. alkaloids (10–80 mg/kg, 8 days, PO) reduced hyperlipidemia by activating Acox1 and Cpt1a genes in mice fed with HFD. Furthermore, *D. nobile* Lindl. alkaloids improved metabolic liver diseases in animals via upregulating adipose triglyceride lipase (ATGL/Pnpla2), which was mediated by the activation of PPAR- α . Decreasing the expression of sterol regulatory element-binding protein 1 (Srebp1), as a mechanism of lipid-lowering, was another beneficial effect of *D. nobile* Lindl. alkaloids in the metabolic syndrome (76).

The other experiments carried out to investigate the effect of the rich-polyphenol extract of *D. loddigesii* on lipid serum in diabetic mice confirmed the above-mentioned activities. In this study, *D. loddigesii* (25, 50, and 100 mg/kg, 8 weeks, gavage) showed a significant reduction in the levels of LDL-C, TC, and TG while increasing HDL-C blood serum levels (68).

The results of a study on *D. mixture* (17.2 g/kg/day, 12 weeks, IP) in HFD and highsugar diet rats demonstrated a significant reduction in serum ALT, AST, and GSP levels. Moreover, a reduction in lipid profiles such as LDL-C, TC, and very-low-density lipoprotein cholesterol (VLDL-C) was noted, while the serum level of HDL-C increased (74).

The hypolipidemic effects of *D. candidum* Wall. ex Lindl. (200 or 400 mg/kg, 6 weeks, i.g.) were evaluated on mice with HFD. *D. candidum* decreased lipid accumulation and maintained lipid metabolism and glucose homeostasis. Accordingly, *D. candidum* significantly inhibited the hepatic inflammasome activation of the NLR family pyrin domain containing 3 (NLRP3) and elevated the expression of gluconeogenesis-related genes and lipid metabolism in HFD mice. The results indicated that this plant may be a useful therapeutic strategy against NAFLD damage (40).

Different spices of *Dendrobium* demonstrated a significant reduction in serum levels of lipid profiles. These findings are supported by various studies that *Dendrobium* decreased the levels of LDL-C, TC, and TG while it increased HDL-C blood serum levels. In addition, *Dendrobium* species through other mechanisms such as anti-oxidant activity, increase in expression of PPAR- α , and decrease in expression of p-JNK proteins showed hypolipidemic effects at the different doses and times of exposure (Table 3).

Effect of Dendrobium on high blood pressure

Hypertension is a very common condition that leads to an increase in the incidence of CVD, myocardial infarction, stroke, ischemia, and atherosclerosis (91-93). This phenomenon is a progressive medical condition that is prevalent in the world and causes premature mortalities (94). Blood pressure leads to increased post-cardiac load and cardiovascular dysfunction, resulting in compensatory cardiac hypertrophy (95). Although antihypertensive therapy has been used for many years to decrease the risk

Table 3. Hypolipidemic effects of different species of Dendrobium

Species of Dendrobium	Active constituents/ type of extract	Dosage mg/kg/day) /Study model	Results	Mechanisms	Ref
		In vivo	studies		
D. officinale	Polysaccharides	75, 150, 300 mg/kg, for12 weeks/ In diabetic and high fat diet rats	Increase fatty acid metabolism ↓ TC ↓ TG ↓LDL-C ↓ FINS ↑ HDL-c	Activation expression of PPAR-α and decrease in expression of p- JNK proteins	(69)
D. officinale	Polyphenols	0.6 g/kg per day for 3 weeks/ In a mouse model of progressive NAFLD with the HSHF diet	$\begin{array}{l} \mbox{Ameliorate liver lipid metabolism in} \\ \mbox{NAFLD model} \\ \mbox{Reduction in FA synthesis,} \\ \mbox{uptake, and desaturation and promote} \\ \mbox{FA β-oxidation.} \end{array}$	Reduce the levels of hepatic lipids, including TC, TG, TAGs, AST, ALT and FFA	(87)
D. officinale	Polysaccharides	0.25g/kg, 0.5g/kg, or 1g/kg/ In hyperlipidemic rats	Anti-hyperlipidemic effect ↓ lipid profile ↓ LDL-C ↓ TC ↓ TG ↓ ALT, AST ↑ HDL-c	Anti-oxidant and lipid-lowering effects	(88)
D. huoshanense	Polysaccharides	In the blood vessels at the atherosclerosis zebrafish	↓ HCD ↓ TC ↓ TG ↓ MDA ↓ ROS	Inhibition plaque formation by decreasing lipid accumulation	(90)
D huoshanense	Water extract, alcohol- soluble extract, alcohol-insoluble extract and crude extract	30 days/ On sub-acute alcohol induced liver injury in mice	↓LDL-C ↓VLDL-C ↓TG, TC ↓AST, ALT ↑HDL-c ↑ADH, ALDH ↑SOD , GSH-Px	Anti-oxidant and hypocholesterolemic activity	(90)
D. nobile Lindl. alkaloids	5 Alkaloids	10–80 mg/kg, for 8 days/ in HFD mice	Reduce hyperlipidemia	Activation of Acox1 and Cpt1a genes Up regulate The adipose tissue triglyceride lipase (ATGL/Pnpla2) Decrease the expression of Srebp1	(76)
D. loddigesi	ii rich-polyphenols	25, 50,100 mg/kg for 8 weeks/ in diabetic mice	↓ LDL-C ↓ TC ↓ TG ↑ HDL-c	Lipid-lowering effect	(68)
D. candidum Wall. ex Lindl	Active constituents	200 or 400 mg/kg , 6 week/ on HFD diet mice	Decrease in lipid accumulation, maintains lipid metabolism NLRP3 inflammasome activation	-	(40)
D. mixture	Polysaccharides	17.2 g/kg/day,12 Weeks/ on HFD and high-sugar diet rats	↓ LDL-C ↓ VLDL-C ↓ TG ↓ ALT ↑ HDL-c	Lipid-lowering effect	(74)
		In vitro	studies		
D. loddigesii l	-	03, 4.06, 8.12, and 16.25 μg/ml/3T3-L1 cells	Lipid-lowering effect Decrease the intracellular accumulation of fat droplets and TG Promote the 2-NBDG uptake	elevate the expression levels of GLUT-4 and p-AMPK in the adipose tissue Increase the expression levels of PPAR_ and p-AMPK in the liver tissue	(58)
D. huoshanense	Polysaccharides	0.5, 0.1, 1.5 and 2.0 mg/ml	Inhibition effect on the FeCl2-induced lipid peroxidation	Increase in free radical scavenging activity factors (SOD, CAT, GPx, GSH)	(86)

TC: total cholesterol; TG: triglyceride; HDL C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; FINS: fasting insulin; ALT: alanine amino transaminase; AST: aspartate aminotransferase; NAFLD: non-alcoholic fatty liver disease; TAG: Triacylglycerol; FFA: free Fatty Acids; HCD: high-cholesterol diet; ROS: reactive oxygen species; VLDL-C: very low-density lipoprotein cholesterol; ALDH: aldehyde dehydrogenase; GLUT-4: glucose transporter 4; AMPK: AMP-activated protein kinase; SOD: superoxide dismutase; GPx: glutathione peroxidase of morbidity and mortality, the side effects of these drugs, including calcium channel inhibitors and angiotensinconverting enzyme blockers tend to decrease medication adherence. Therefore, natural compounds with fewer side effects and potential anti-hypertensive therapeutic values are used to treat elevated blood pressure (96). Several studies have demonstrated the anti-hypertension effect of various species of *Dendrobium* via different mechanisms, which are discussed in the next sections.

In vitro studies

In an *in vitro* model, the aqueous extract of *D. candidum* (2 mg/ml) improved cardiac hypertrophy by regulating the extracellular signal-regulated kinase (ERK) signaling pathway in the rat cardiac myocyte H9c2 cells incubated with isoproterenol. According to the results, *D. candidum* lowered the up-regulated mRNA expression levels of brain natriuretic peptide (BNP) and ANP induced by isoproterenol by inhibition of the ERK pathway (97).

In vivo studies

The beneficial effects of the *Dendrobium* compound in preventing blood pressure were investigated using hypertensive rats. This agent was mixed with diet and fed to the rats for 4 weeks. Results showed that the *D. candidum* compound (1.65, 3.30, and 5.00 g/kg) significantly reduced the blood pressure and exhibited anti-hypertensive activity by activating PI3K/AKT/endothelial nitric oxide synthase (eNOS) signaling pathways and increasing the levels of serum nitric oxide (NO) generation. Besides, this plant significantly prevented hypertension and vascular dysfunction in hypertensive rats by inhibiting the secretion of ICAM-1 and the levels of serum endothelin-1 (ET-1) (98).

The antihypertensive effect of *D. officinale* flos was evaluated on hypertensive rats caused by high-fat and glucose compound alcohol. In this study, *D. officinale* flos

Table 4. Hypotensive effects of different species of Dendrobium

(3, 1 g/kg for 6 weeks) normalized systolic blood pressure, mean arterial pressure, and improved vascular diastolic dysfunction. Also, this plant reduced the plasma content of ET-1, thromboxane B_2 (TXB₂), and thickening of the thoracic aorta, while the levels of prostacyclin (PGI₂), NO, and the activities of vascular endothelial cells increased (99).

In a study, *D. officinale* granules improved hypertension in hypertensive rats induced by long-term alcohol. This agent was fed to the rats for 32 weeks and not only decreased hypertension (mean blood pressure and systolic and diastolic hypertension) but also showed notable improvement in the lipid profile besides liver and kidney injuries (100).

In an experiment, the aqueous extracts of D. candidum (0.13 and 0.78 g/kg, orally, for 4 weeks) alleviated cardiac hypertrophy and improved heart function in isoproterenolinduced cardiac hypertrophy models through inhibition of the ERK signaling pathway. It is worth noting that D. candidum prevented cardiac hypertrophy by reducing the left ventricular systolic pressure (LVSP), heart-to-body weight ratio (HW/BW), left ventricular/tibia length (LV/ TL), and atrial natriuretic peptide (ANP) (97). In a study, D. officinale Kimura et Migo (5 and 10 ml/kg, intragastric< for 4 weeks) significantly reduced hypertension in rats with diabetic nephropathy (43). In another experiment, the antihypertensive effects of D. officinale in another experiment were investigated. In this study, D. officinale showed protective effects against high blood pressure by triggering the enteric-origin short-chain fatty acid-G-protein-coupled receptors (SCFA-GPCR43/41) pathway in metabolically hypertensive rats (101).

Therefore, these results suggest that different species of *Dendrobium* such as *D. candidum* and *D. officinale* through inhibition of the ERK signaling, reduction in plasma content of ET-1, TXB₂, and thickening of the thoracic aorta, increase the levels of PGI₂, NO and the activities of vascular endothelial cell demonstrated hypotension effects in experimental models (Table 4).

Species of	Active constituents/ type	0 0 0 1	Results	Mechanisms	Ref
Dendrobium	of extract	/Study model In vivo			
compound Dendrobium	-	1.65, 3.30, 5.00 g·kg.4 weeks/ on hypertensive SD rats fed with high- sugar, high-fat diet and alcohol	Anti-hypertensive activity Reduce hypertension and vascular dysfunction in a hypertensive model	Activation of PI3K/AKT/eNOS signaling pathways ↑NO generation inhibition ICAM-1 and ET-1	(98)
D. officinale	-			Reduction in plasma content of ET-1, $TXB_2 \text{ and thickening of the thoracic} \\ aorta \\ increase the levels PGI_2, NO and the activities of vascular endothelial cells$	(45)
D. officinale	-	32 weeks/ hypertensive rats induced by long-term-alcohol	Improve hypertension	Decrease blood pressure (systolic blood pressure, diastolic blood pressure and mean blood pressure	(100)
D. officinale granule	-Ethanol extract		alleviate hypertension and metabolic disorders in metabolic hypertension	Decrease systolic blood pressure and lipid profile	(99)
D. candidum	-	0.13 and 0.78 g/kg, 4 weeks/ isoproterenol-induced cardiac hypertrophy model	Alleviate heart function and cardiac hypertrophy Reduce LVSP HW/BW, LV/TL and ANP	Inhibition of the ERK signaling	(97)
		In vitro	studies		
D. candidum	-	2 mg/ml/ rat cardiac myocyte H9c2 cells	Improves cardiac hypertrophy Reduce the up-regulated mRNA levels ANP	Inhibition of the ERK signaling	(97)

NO: nitric oxide; ICAM-1: intercellular adhesion molecule1; ET-1: endothelin 1; TXB₂: thromboxane B₂; PGI₂: prostacyclin; ERK: extracellularsignal-regulated kinase; LVSP: left ventricular systolic pressure; HW/BW: heart to-body weight ratio; LV/TL: left ventricular/tibia length; ANP: atrial natriuretic peptide

Effect of Dendrobium on obesity

Obesity is a critical global issue, and its prevalence is increasing in both developed and developing countries (102). It is considered the fifth leading risk factor for mortality according to the World Health Organization (WHO) and greatly increases the risk of chronic diseases including diabetes, CVD, cancer, neurodegenerative diseases, rheumatoid arthritis, and osteoarthritis (103, 104). Obesity is a state of pathological increase in the amount of adipose tissue, which is closely associated with an imbalance between food intake and energy expenditure (105). Disorders in the secretion of adipokines, specific cytokines of adipocytes in the obese state, result in changes in lipid and carbohydrate metabolism and may lead to insulin resistance and diabetes (103). PPAR-y has been reported to play an important role in the regulation of lipid metabolism in adipocytes through fatty acid trapping (106). Obesityrelated diseases may be effectively treated by preventing or treating insulin resistance and abnormal lipid metabolism. Few studies have investigated the use of natural products to treat obesity, such as Dendrobium, which has demonstrated promising anti-obesity properties in several reports.

In vitro studies

The inhibitory effect of the *D. officinale* polysaccharide (200 μ g/ml for 48h) was assessed on palmitic acid-induced insulin resistance in 3T3-L1 adipocytes, C2CL2 myocytes, and hepatocytes. The results showed that *D. officinale* treatment significantly promoted the insulin-stimulated glucose uptake of 3T3-L1 adipocytes and C2C12 myocytes, while the glucose output of hepatocytes decreased. Therefore, it is likely that *D. officinale* is an agent with potential therapeutic or preventive effects against insulin resistance. According to these results, *D. officinale* improved the expression of PPAR- γ in myocytes, adipocytes, and hepatocytes (107).

In vivo studies

The protective effect of *D. moniliforme* extract (200 mg/kg, orally, for 9 weeks) on obesity-induced renal damage in HFD mice was investigated. In this study, *D. moniliforme* showed a lipid-lowering effect in HFD-induced obesity in mice. Furthermore, after *D. moniliforme* extract administration, the increased body weight, free fatty acid, TC, LDL-c, and TG levels, and the renal lipid accumulations of HFD-fed mice were also significantly reduced (108).

The bodyweight lowering and hypolipidemic effects of *D.* officinale (150 mg/kg) on obesity-induced HFD mice were investigated for 12 weeks. The results revealed a significant reduction in hepatic lipid accumulation through decreasing serum lipid levels (TG, TC, and LDL-C) and increasing HDL-C content. Furthermore, *D. officinale* improved the risk of obesity-associated abnormal lipid metabolism and insulin resistance by enhancing the expression of PPAR- γ , which acts as a potent therapeutic agent for obesity-associated lipid metabolism disorder and insulin resistance (107).

The effect of *D. officinale* at a dose of 2.37 g/kg induced by an HFD in mice was investigated for 40 consecutive days. In this study, oral administration of *D. officinale* resulted in a reduction in carbohydrate energy, amino acid metabolism of intestinal mucosal flora, food intake, and body weight gain. Moreover, this extract showed better lipid-lowering properties in female mice than in male mice (109).

To evaluate the anti-obesity and hypolipidemic effects of tin caulis *Dendrobium* polysaccharide, HFD rats were administered a dose of 500 mg/kg of this plant orally for 8 weeks. In this experiment, *Dendrobium* polysaccharide showed a significant improvement in fat tissue hypertrophy and excessive fatty deposition in the liver and also decreased food consumption and body weight (110).

The hypolipidemic and bodyweight loss effects of a rich-polyphenols extract of *D. loddigesii* on diabetic mice were investigated. The present study demonstrated that *D. loddigesii* (100 mg/kg, for 8 weeks) significantly decreased body weight, blood glucose, and fatty liver in the mice. On the other hand, *D. loddigesii* exhibited a significant reduction in serum lipids (TG, TC, and LDL-C), while the status of anti-oxidant and HDL-C activity increased (68).

These results are provided in response to the question of whether *Dendrobium* has protective effects on obesity via decreasing LDL-C, TC, FINS, and TG, and growing the HDL-C levels in the serum. Also, *Dendrobium* shows its anti-obesity effects by improving fat tissue hypertrophy and excessive fatty deposition in the liver. Thus, this plant is effective at decreasing symptoms of bodyweight and lipidlowering, and it can be said with confidence (Table 5).

Clinical studies

Although several studies are investigating the protective effects of different species of *Dendrobium*, only a few clinical studies have been conducted.

In a clinical study, 120 T2 DM patients received Dendrobium compound (2 g/day) for 90 days. In this study, Dendrobium demonstrated a potent antidiabetic effect on patients via decreasing the levels of fasting FBG, 2 hr postprandial blood glucose (2h BG), and insulin resistance (111). Additionally, the safety and effectiveness of D. huoshanense were determined with laboratory and clinical tests. Oral administration of the polysaccharide from D. huoshanense (2000-4000mg, 4 weeks) could significantly decrease cytokine levels associated with atopic dermatitis and show beneficial effects on symptoms. No serious adverse effects happened during all 4 weeks of treatment (112). Moreover, the oral effects of D. candidum extract (0.5 g/5 ml three times daily) were evaluated in female patients. According to the results, the mentioned dose was safe and promoted the expression of aquaporin-5 (AQP-5) in the labial glands of patients with Sjögren's syndrome (113). In 2009, clinical research was designed to evaluate the safety of Runmushu Oral Liquid (RMS) in postmenopausal patients with xerophthalmia. In this study, RMS could show a therapeutic effect and alleviated significantly the eye symptoms in postmenopausal women xerophthalmia groups (114). Additionally, there is ongoing interventional research on the clinical effects of D. nobile Lindl., focusing on metabolic syndrome. In the mentioned study, the effective and safe dose range of D. nobile Lindl. was predicted at 12 g per day (twice a day, 6 g each time) (115).

Safety

In a study to evaluate the minimal lethal dose (LD_{10}), the aqueous extract of *D. moniliforme* was administered orally (0, 2500, and 5000 mg/kg) in Sprague-Dawley (SD) rats. According to the previous findings, no adverse effects were observed after oral administration of *D. moniliforme* (5,000

Species of Dendrobium	Active constituents	Dosage mg/kg/day) /Study model	Results	Mechanisms	Ref
		In viv	vo studies		
D. moniliforme	Methanolic extract	mice	Lipid-lowering effect in HFD-induced obesity Decrease body weight ↓TC ↓ LDL -c, TG Decrease free fatty acid level and renal lipid accumulations	lipid-lowering effect	(108)
D. officinale	Polysaccharide	150 mg/kg, 12 weeks/ on obesity- induced HFD mice	Decrease in liver lipid accumulation Improve obesity-associated abnormal lipid metabolism and insulin resistance	↓TC ↓LDL -c, TG ↑HDL Up-regulate the expression of PPAR-γ	(107)
D. officinale	Not mentioned	2.37 g·kg-1, 40 days/High fat diet rats	Reduction in the carbohydrate energy, amino acid metabolism of intestinal mucosal flora, food intake and the bodyweight gain lipid lowering effect	-	(109)
D.tin caulis	Polysaccharide	500 mg/kg,8 weeks/ High fat diet mice	Decrease in food consumption and body weight	Improve in fat tissue hypertrophy and excessive fatty deposition in the liver	(76)
D. loddigesii	polyphenols	100 mg/kg , 8 weeks/Male obese diabetic mice	Decrease body weight, improve the fatty liver ↓TC ↓ LDL -c, TG ↑HDL-C, anti-oxidant status	-	(68)
		In vit	ro studies		
D. Officinale	Polysaccharide	200 μg/ml for 48h/3T3-L1 adipocytes, C2CL2 myocytes, and hepatocytes	Promote the insulin-stimulated glucose uptake of 3T3-L1 adipocytes and C2C12 myocytes, while the glucose output of hepatocytes decreased	Up-regulate the expression of PPAR-γ in adipocytes, myocytes, and hepatocytes	(107)

HFD: high fat diet; TC: total cholesterol; TG: triglyceride; HDL C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; TC: total cholesterol; TG: triglyceride; NO: nitric oxide; PGI2: prostacyclin

mg/kg or less) in rats. An estimated LD₁₀ is over 5,000 mg/ kg/body weight (116). In another study, the genetic and oral toxicity of the aqueous extracts of *D. taiseed* Tosnobile (800, 1600, and 2400 mg/kg, 90 days) were investigated in SD rats. No clinical signs of mortality or toxicity were associated with *D. taiseed* Tosnobile administration at any doses during a 90-day sub-chronic investigation in animals (117). Different species of *Dendrobium* have been formulated as eye drops, tablets, and capsules. *D. aurantiacum* is reported to be safe, and no observable signs of toxicity were associated with *D. aurantiacum* eye drops in mice. Also, no irritation or irritability reactions have been reported after single-dose or multiple-dose administration of this plant in rabbits' and guinea pigs' eyes or skin (118).

We comprehensively reviewed the protective effects of various species of *Dendrobium*, which are characterized by hypotensive, hypolipidemic, hypoglycemic, and antiobesity effects in different experimental models. On the other hand, the protective effect of dendrofalconerol A, polyphenols, 3,4-dihydroxy-4',5-dimethoxybibenzyl, moscatilin, lusianthridin, and dendrogibsol extracted from *Dendrobium* species was reviewed in detail.

This study was limited by the absence of human studies for many suggested effects of *Dendrobium* species.

Conclusion

In this review, our team summarized different in vitro,

in vivo, and clinical studies to find out the role of different species of Dendrobium and their active constituents on MetS which is known as a global health challenge. According to the experimental studies reported in the literature, the different species of Dendrobium can be good candidates for managing MetS complications, including diabetes, hypertension, dyslipidemia, and obesity. These plants regulate dyslipidemia by reducing the levels of LDL-C, TG, and TC and elevating the levels of HDL-C in the blood by various mechanisms, such as anti-oxidant activity, and up-regulating the expression of PPAR-y and p-AMPK in the liver tissue. Dendrobium also decreases hypertension via activating PI3K/AKT/eNOS signaling pathways, NO generation, and inhibition of ICAM-1 and ET-1. Furthermore, the hypoglycemic effects of species of Dendrobium can be mediated by various mechanisms, such as increasing the number of β -cells, regulating the insulin signaling pathway, and PI3K/AKT action. Despite the promising findings of several in vitro and in vivo studies, the lack of human studies about the safety and efficacy of Dendrobium is obvious. Hence, further clinical research projects are needed to confirm the effectiveness and safety of these plants as candidates for the treatment of MetS in humans.

Acknowledgment

The authors are thankful to Mashhad University of Medical Sciences (MUMS), Mashhad, Iran.

Authors' Contributions

HH Study conception, design and supervision of the research; MGR Critical revision of the paper, supervision of the research; ZO Preparation of original draft. All authors have agreed to the contents and approved the final version for publication

Funding

This review received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

1. Rodriguez-Correa E, Gonzalez-Perez I, Clavel-Perez PI, Contreras-Vargas Y, Carvajal K. Biochemical and nutritional overview of diet-induced metabolic syndrome models in rats: What is the best choice? Nutr Diabetes 2020; 10: 24.

2. Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep 2018; 20: 12.

3. Katsimardou A, Imprialos K, Stavropoulos K, Sachinidis A, Doumas M, Athyros V. Hypertension in metabolic syndrome: Novel insights. Curr Hypertens Rev 2020; 16: 12-18.

4. Charlton M. Obesity, hyperlipidemia, and metabolic syndrome. Liver Transplant 2009; 15: 83-89.

5. Mansyur MA, Bakri S, Patellongi IJ, Rahman IA. The association between metabolic syndrome components, low-grade systemic inflammation and insulin resistance in non-diabetic Indonesian adolescent male. Clin Nutr ESPEN 2020; 35: 69-74.

6. Bullon-Vela V, Abete I, Tur JA, Pinto X, Corbella E, Martinez-Gonzalez MA, *et al.* Influence of lifestyle factors and staple foods from the mediterranean diet on non-alcoholic fatty liver disease among older individuals with metabolic syndrome features. Nutrition 2020; 71: 110620.

7. Kawamoto R, Tabara Y, Kohara K, Miki T, Kusunoki T, Takayama S, *et al.* Relationships between lipid profiles and metabolic syndrome, insulin resistance and serum high molecular adiponectin in Japanese community-dwelling adults. Lipids Health Dis 2011; 10: 79.

8. Wagner K-H, Schwingshackl L, Draxler A, Franzke B. Impact of dietary and lifestyle interventions in elderly or people diagnosed with diabetes, metabolic disorders, cardiovascular disease, cancer and micronutrient deficiency on micronuclei frequency–a systematic review and meta-analysis. Mutat Res 2021; 787: 108-367.

9.Razavi BM, Hosseinzadeh H. A review of the effects of *Nigella sativa* L. and its constituent, thymoquinone, in metabolic syndrome. J Endocrinol Invest 2014; 37:1031-1040.

10.Razavi BM, Lookian F, Hosseinzadeh H. Protective effects of green tea on olanzapine-induced-metabolic syndrome in rats. Biomed Pharmacother 2017; 92: 726-731.

11. Tajmohammadi A, Razavi BM, Hosseinzadeh H. *Silybum marianum* (milk thistle) and its main constituent, silymarin, as a potential therapeutic plant in metabolic syndrome: A review. Phytother Res 2018; 32: 1933-1949.

12. Tabeshpour J, Razavi BM, Hosseinzadeh H. Effects of avocado (*Persea americana*) on metabolic syndrome: A comprehensive systematic review. Phytother Res 2017; 31: 819-837.

13. Razavi BM, Hosseinzadeh H. Saffron: a promising natural medicine in the treatment of metabolic syndrome. J Sci Food Agric 2017; 97: 1679-1685.

14. Tousian Shandiz H, Razavi BM, Hosseinzadeh H. Review of *Garcinia mangostana* and its xanthones in metabolic syndrome and related complications. Phytother Res 2017; 31: 1173-1182.

15. Sanati S, Razavi BM, Hosseinzadeh H. A review of the effects of *Capsicum annuum* L. and its constituent, capsaicin, in metabolic syndrome. Iran J Basic Med Sci 2018; 21: 439-448.

16. Akaberi M, Hosseinzadeh H. Grapes (*Vitis vinifera*) as a potential candidate for the therapy of the metabolic syndrome. Phytother Res 2016; 30: 540-556.

17. Tabeshpour J, Imenshahidi M, Hosseinzadeh H. A review of the effects of *Berberis vulgaris* and its major component, berberine, in metabolic syndrome. Iran J Basic Med Sci 2017; 20: 557-568.

18. Hosseinzadeh H, Nassiri-Asl M. Review of the protective effects of rutin on the metabolic function as an important dietary flavonoid. J Endocrinol Invest 2014; 37: 783-788.

19. Yarmohammadi F, Ghasemzadeh Rahbardar M, Hosseinzadeh H. Effect of eggplant (*Solanum melongena*) on the metabolic syndrome: A review. Iran J Basic Med Sci 2021; 24: 420-427.

20. Cardoso JC, Zanello CA, Chen JT. An oerview of *Orchid protocorm*-like bodies: Mass propagation, biotechnology, molecular aspects, and breeding. Int J Mol Sci 2020; 21: 985.

21. Cakova V, Bonte F, Lobstein A. Dendrobium: sources of active ingredients to treat age-related pathologies. Aging Dis 2017; 8: 827-849.

22. Xiaohua J, Singchi C, Yibo L. Taxonomic revision of *Dendrobium moniliforme* complex (Orchidaceae). Sci Hortic 2009; 120: 143-145.

23. De L, Rao A, Rajeeva P, Srivastava M. Morphological characterization in Dendrobium species. Int J Biosci 2015; 4: 1198-1215.

24. Zuo J, Zu M, Liu L, Song X, Yuan Y. Composition and diversity of bacterial communities in the rhizosphere of the Chinese medicinal herb Dendrobium. BMC Plant Biol 2021; 21: 127.

25. Wang HY, Li QM, Yu NJ, Chen WD, Zha XQ, Wu DL, *et al. Dendrobium huoshanense* polysaccharide regulates hepatic glucose homeostasis and pancreatic beta-cell function in type 2 diabetic mice. Carbohydr Polym 2019; 211: 39-48.

26. Li TM, Deng MZ. Effect of dendrobium mixture on hypoglycemic and the apoptosis of islet in rats with type 2 diabetic mellitus. Zhongyaocai 2012; 35: 765-769.

27.Xu J, Han Q-B, Li S-L, Chen X-J, Wang X-N, Zhao Z-Z, *et al.* Chemistry, bioactivity and quality control of Dendrobium, a commonly used tonic herb in traditional Chinese medicine. Phytochem Rev 2013; 12: 341-367.

28. Ng TB, Liu J, Wong JH, Ye X, Wing Sze SC, Tong Y, *et al.* Review of research on Dendrobium, a prized folk medicine. Appl Microbiol Biotechnol 2012; 93: 1795-1803.

29. Zhao Y, Son YO, Kim SS, Jang YS, Lee JC. Anti-oxidant and anti-hyperglycemic activity of polysaccharide isolated from *Dendrobium chrysotoxum* Lindl. Int J Biochem Mol Biol 2007; 40: 670-677.

30. Lin Y, Wang F, Yang LJ, Chun Z, Bao JK, Zhang GL. Antiinflammatory phenanthrene derivatives from stems of *Dendrobium denneanum*. Phytochemistry 2013; 95: 242-251.

31. Gu FL, Huang RS, He XM, Chen NF, Han BX, Deng H. *Dendrobium huoshanense* polysaccharides prevent inflammatory response of ulcerative colitis rat through inhibiting the NF-kappaB signaling pathway. Chem Biodivers 2021; 18: e2100130.

32. Sattayasai N, Sudmoon R, Nuchadomrong S, Chaveerach A, Kuehnle AR, Mudalige-Jayawickrama RG, *et al. Dendrobium findleyanum* agglutinin: production, localization, anti-fungal activity and gene characterization. Plant Cell Rep 2009; 28: 1243-1252.

33. Xing Y-M, Chen J, Cui J-L, Chen X-M, Guo S-X. Antimicrobial activity and biodiversity of endophytic fungi in *Dendrobium devonianum* and *Dendrobium thyrsiflorum* from Vietman. Curr Microbiol 2011; 62: 1218-1224.

34. Luo A, Fan Y. *In vitro* anti-oxidant of a water-soluble polysaccharide from *Dendrobium fimhriatum* Hook.var.oculatum Hook. Int J Mol Sci 2011; 12: 4068-4079.

35. Paudel MR, Joshi PR, Chand K, Sah AK, Acharya S, Pant B, *et al.* Anti-oxidant, anticancer and antimicrobial effects of *In vitro* developed protocorms of *Dendrobium longicornu*. Biotechnol Rep 2020; 28: e00527.

36. Liu H, Ye H, Sun C, Xi H, Ma J, Lai F, *et al.* Anti-oxidant activity in HepG2 cells, immunomodulatory effects in RAW 264.7 cells and absorption characteristics in Caco-2 cells of the peptide fraction

isolated from *Dendrobium aphyllum*. Int J Food Sci Technol 2018; 53: 2027-2036.

37. Yang J, Chen H, Nie Q, Huang X, Nie S. *Dendrobium officinale* polysaccharide ameliorates the liver metabolism disorders of type II diabetic rats. Int J Biol Macromol 2020; 164: 1939-1948.

38. Guo M, Li B, Wang R, Liu P, Chen Q. Occurrence of dieback disease caused by *Fusarium equiseti* on *Dendrobium officinale* in China. Crop Prot 2020; 137: 105209.

39. Tian CĈ, Zha XQ, Luo JP. A polysaccharide from *Dendrobium huoshanense* prevents hepatic inflammatory response caused by carbon tetrachloride. Biotechnol Biotechnol Equip 2015; 29: 132-138.

40. Yin XZ, Chi WM, Zhang L, Su YQ, Zhang ZY, Xue CB. Protective effects of *Dendrobium candidum* Wall ex Lindl. on high-fat diet-induced liver damage in mice. J Food Biochem 2021; 45: e13687.

41. Fang J, Lin Y, Xie H, Farag MA, Feng S, Li J, *et al. Dendrobium officinale* leaf polysaccharides ameliorated hyperglycemia and promoted gut bacterial associated SCFAs to alleviate type 2 diabetes in adult mice. Food Chem: X 2022; 13: 100207.

42. Peng D, Tian W, An M, Chen Y, Zeng W, Zhu S, *et al.* Characterization of antidiabetic effects of *Dendrobium officinale* derivatives in a mouse model of type 2 diabetes mellitus. Food Chem 2023; 399: 133974.

43. Zhao M, Han J. *Dendrobium Officinale* Kimura et Migo ameliorates insulin resistance in rats with diabetic nephropathy. Med Sci Monit Basic Res 2018; 24: 84-92.

44. Zhang S, Tu H, Zhu J, Liang A, Huo P, Shan K, *et al. Dendrobium nobile* Lindl. polysaccharides improve follicular development in PCOS rats. Int J Biol Macromol 2020; 149: 826-834.

45. Liang KL, Fang P, Shi QQ, Su J, Li B, Chen SH, *et al.* Antihypertensive effect and mechanism of *Dendrobium officinale* flos on high-blood pressure rats induced by high glucose and high fat compound alcohol. Zhongguo Zhong Yao Za Zhi 2018; 43: 147-153.

46. Li B, Wang H-Y, Huang J-H, Xu W-F, Feng X-J, Xiong Z-P, *et al.* Polysaccharide, the active component of *Dendrobium officinale*, ameliorates metabolic hypertension in rats via regulating intestinal flora-SCFAs-vascular axis. Front Pharmacol 2022; 13: 935714.

47. Chen P, Wu Q, Feng J, Yan L, Sun Y, Liu S, *et al.* Erianin, a novel dibenzyl compound in Dendrobium extract, inhibits lung cancer cell growth and migration via calcium/calmodulin-dependent ferroptosis. Signal Transduct Target Ther 2020; 5: 51.

48. Zhang K, Zhou X, Wang J, Zhou Y, Qi W, Chen H, *et al. Dendrobium officinale* polysaccharide triggers mitochondrial disorder to induce colon cancer cell death via ROS-AMPK-autophagy pathway. Carbohydr Polym 2021; 264: 118018.

49. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014; 37: 81-90.

50. Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuniga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol 2018; 17: 122.

51. Reaven GM. Role of insulin resistance in human disease (syndrome X): an expanded definition. Annu Rev Med 1993; 44: 121-131.

52. Chandy A, Pawar B, John M, Isaac R. Association between diabetic nephropathy and other diabetic microvascular and macrovascular complications. Saudi J Kidney Dis Transpl 2008; 19: 924-928.

53. Kar P, Holt RI. The effect of sulphonylureas on the microvascular and macrovascular complications of diabetes. Cardiovasc Drugs Ther 2008; 22: 207-213.

54. Vazquez-Prieto MA, Bettaieb A, Haj FG, Fraga CG, Oteiza PI. (-)-Epicatechin prevents TNFalpha-induced activation of signaling cascades involved in inflammation and insulin sensitivity in 3T3-L1 adipocytes. Arch Biochem Biophys 2012; 527: 113-118.

55. Bischoff Bayer H. Pharmacology of α -glucosidase inhibition. Eur J Clin Invest 1994; 24: 3-10.

56. Yang H, Yang L. Targeting cAMP/PKA pathway for glycemic control and type 2 diabetes therapy. J Mol Endocrinol 2016; 57:

93-108.

57. Bragt MC, Popeijus HE. Peroxisome proliferator-activated receptors and the metabolic syndrome. Physiol Behav 2008; 94: 187-197.

58. Rasalam R, Barlow J, Kennedy M, Phillips P, Wright A. GLP-1 Receptor agonists for type 2 diabetes and their role in primary care: An Australian perspective. Diabetes Ther 2019; 10: 1205-1217.

59. Limpanit R, Chuanasa T, Likhitwitayawuid K, Jongbunprasert V, Sritularak B. a-Glucosidase inhibitors from *Dendrobium tortile*. Rec Nat Prod 2016; 10: 609-616.

60.Chu C, Li T, Pedersen HA, Kongstad KT, Yan J, Staerk D. Antidiabetic constituents of *Dendrobium officinale* as determined by high-resolution profiling of radical scavenging and α -glucosidase and α -amylase inhibition combined with HPLC-PDA-HRMS-SPE-NMR analysis. Phytochem Lett 2019; 31: 47-52. 61.Li XW, Huang M, Lo K, Chen WL, He YY, Xu Y, *et al.* Anti-diabetic effect of a shihunine-rich extract of *Dendrobium loddigesii* on 3T3-L1 cells and db/db mice by up-regulating AMPK-GLUT4-PPARa. Molecules 2019; 24: 2673.

62. Sun J, Zhang F, Yang M, Zhang J, Chen L, Zhan R, *et al.* Isolation of alpha-glucosidase inhibitors including a new flavonol glycoside from *Dendrobium devonianum*. Nat Prod Res 2014; 28: 1900-1905. 63. Wang K, Wang H, Liu Y, Shui W, Wang J, Cao P, *et al. Dendrobium officinale* polysaccharide attenuates type 2 diabetes mellitus via the regulation of PI3K/Akt-mediated glycogen synthesis and glucose metabolism. J Funct Foods 2018; 40: 261-271.

64. Kuang MT, Li JY, Yang XB, Yang L, Xu JY, Yan S, *et al.* Structural characterization and hypoglycemic effect via stimulating glucagonlike peptide-1 secretion of two polysaccharides from *Dendrobium officinale*. Carbohydr Polym 2020; 241: 116326.

 65 . Inthongkaew P, Chatsumpun N, Supasuteekul C, Kitisripanya T, Putalun W, Likhitwitayawuid K, *et al.* α -glucosidase and pancreatic lipase inhibitory activities and glucose uptake stimulatory effect of phenolic compounds from *Dendrobium formosum*. Rev Bras Farmacogn 2017; 27: 480-487.

66. Thant MT, Chatsumpun N, Mekboonsonglarp W, Sritularak B, Likhitwitayawuid K. New fluorene derivatives from *Dendrobium gibsonii* and their alpha-glucosidase inhibitory activity. Molecules 2020; 25: 4931.

67. Liu Y, Yang L, Zhang Y, Liu X, Wu Z, Gilbert RG, *et al. Dendrobium officinale* polysaccharide ameliorates diabetic hepatic glucose metabolism via glucagon-mediated signaling pathways and modifying liver-glycogen structure. J Ethnopharmacol 2020; 248: 112308.

68. Li XW, Chen HP, He YY, Chen WL, Chen JW, Gao L, *et al.* Effects of rich-polyphenols extract of *Dendrobium loddigesii* on anti-diabetic, anti-inflammatory, anti-oxidant, and gut microbiota modulation in db/db mice. Molecules 2018; 23: m2-20.

69. Zeng J, Li D, Li Z, Zhang J, Zhao X. *Dendrobium officinale* attenuates myocardial fibrosis via inhibiting EMT signaling pathway in HFD/STZ-induced diabetic mice. Biol Pharm Bull 2020; 43: 864-872.

70. Altamimi TR, Gao S, Karwi QG, Fukushima A, Rawat S, Wagg CS, *et al*. Adropin regulates cardiac energy metabolism and improves cardiac function and efficiency. Metabolism 2019; 98: 37-48.

71. Chang J, Zhou Y, Cong G, Guo H, Guo Y, Lu K, *et al. Dendrobium candidum* protects against diabetic kidney lesions through regulating vascular endothelial growth factor, glucose tansporter 1, and connective tissue growth factor expression in rats. J Cell Biochem 2019; 120: 13924-13931.

72. Chen Y, Lin X, Zheng Y, Yu W, Lin F, Zhang J. *Dendrobium mixture* improved diabetic nephropathy in db/db mice by regulating TGF- β 1/smads signal transduction. Evid Based Complement Alternat Med 2021; 2021: 9931983.

73. Zheng H, Pan L, Xu P, Zhu J, Wang R, Zhu W, *et al.* An NMRbased metabolomic approach to unravel the preventive effect of water-soluble extract from *Dendrobium officinale* Kimura & Migo on streptozotocin-induced diabetes in mice. Molecules 2017; 22: 1543. 74. Lin X, Shi H, Cui Y, Wang X, Zhang J, Yu W, *et al. Dendrobium* mixture regulates hepatic gluconeogenesis in diabetic rats via the phosphoinositide-3-kinase/protein kinase B signaling pathway. Exp Ther Med 2018; 16: 204-212.

75. Yunlong C, Guoqing H, Ming Z, Huijun L. Hypoglycemic effect of the polysaccharide from *Dendrobium moniliforme* (L.) *Sw.* J Zhejiang Univ Sci B 2003; 30: 693-696.

76.Xu YY, Xu YS, Wang Y, Wu Q, Lu YF, Liu J, *et al. Dendrobium nobile* Lindl. alkaloids regulate metabolism gene expression in livers of mice. J Pharm Pharmacol 2017; 69: 1409-1417.

77. Zhang Q, Li J, Luo M, Xie GY, Zeng W, Wu Y, *et al.* Systematic transcriptome and regulatory network analyses reveal the hypoglycemic mechanism of *Dendrobium fimbriatum*. Mol Ther Nucleic Acids 2020; 19: 1-14.

78. Yu Z, Gong C, Lu B, Yang L, Sheng Y, Ji L, *et al. Dendrobium chrysotoxum* Lindl. alleviates diabetic retinopathy by preventing retinal inflammation and tight junction protein decrease. J Diabetes Res 2015; 2015: 518317.

79. Luo J-P, Deng Y-Y, Zha X-Q. Mechanism of polysaccharides from *Dendrobium huoshanense* on streptozotocin-induced diabetic cataract. Pharm Biol 2008; 46: 243-249.

80. Pan LH, Li XF, Wang MN, Zha XQ, Yang XF, Liu ZJ, *et al.* Comparison of hypoglycemic and antioxidative effects of polysaccharides from four different Dendrobium species. Int J Biol Macromol 2014; 64: 420-427.

81. Hill MF, Bordoni B. Hyperlipidemia. [Updated 2022 Aug 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/ NBK559182/

82. Ruotolo G, Howard BV. Dyslipidemia of the metabolic syndrome. Curr Cardiol Rep 2002; 4: 494-500.

83. Ye G, Gao H, Lin Y, Ding D, Liao X, Zhang H, *et al.* Peroxisome proliferator-activated receptor A/G reprogrammes metabolism associated with lipid accumulation in macrophages. Metabolomics 2019; 15: 36.

84. Vernia S, Cavanagh-Kyros J, Garcia-Haro L, Sabio G, Barrett T, Jung DY, *et al.* The PPARalpha-FGF21 hormone axis contributes to metabolic regulation by the hepatic JNK signaling pathway. Cell Metab 2014; 20:512-525.

85. McIntosh AL, Atshaves BP, Landrock D, Landrock KK, Martin GG, Storey SM, *et al*. Liver fatty acid binding protein gene-ablation exacerbates weight gain in high-fat fed female mice. Lipids 2013; 48: 435-448.

86. Tian CC, Zha XQ, Pan LH, Luo JP. Structural characterization and anti-oxidant activity of a low-molecular polysaccharide from *Dendrobium huoshanense*. Fitoterapia 2013; 91: 247-255.

87. Lei SS, Zhang NY, Zhou FC, He X, Wang HY, Li LZ, *et al. Dendrobium officinale* regulates fatty acid metabolism to ameliorate liver lipid accumulation in NAFLD mice. Evid Based Complement Alternat Med 2021; 19: 6689727.

88. Zhao M, Han J. Dose-dependent effect of aqueous extract from *Dendrobium officinale* on blood lipids and lipid peroxidation in hyperlipidemic rats. Pak J Pharm Sci 2020; 33: 929-935.

89. Fan X, Han J, Zhu L, Chen Z, Li J, Gu Y, *et al.* Protective activities of *Dendrobium huoshanense* C. Z. Tang et S. J. Cheng Polysaccharide against high-cholesterol diet-induced atherosclerosis in zebrafish. Oxidative Med Cell Longev 2020: 8365056.

90. Meng H, Wang H, Zha X, Pan L, Luo J. Comparison of hepatoprotective effects of different extracts from *Dendrobium huoshanense* against alcohol-induced subacute liver injury in mice. J Food Sci 2015; 36: 229-234.

91.Su TC, Jeng JS, Chien KL, Sung FC, Hsu HC, Lee YT. Hypertension status is the major determinant of carotid atherosclerosis: a community-based study in Taiwan. Stroke 2001; 32: 2265-2271.

92. Johansson BB. Hypertension mechanisms causing stroke. Clin Exp Pharmacol Physiol 1999; 26: 563-565.

93. Rakugi H, Yu H, Kamitani A, Nakamura Y, Ohishi M, Kamide K, *et al.* Links between hypertension and myocardial infarction. Am Heart J 1996; 132: 213-221.

94. Oparil S, Acelajado MC, Bakris GL, Berlowitz DR, Cifkova R, Dominiczak AF, *et al.* Hypertension. Nat Rev Dis Primers 2018; 4: 18014.

95. Tham YK, Bernardo BC, Ooi JY, Weeks KL, McMullen JR. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol 2015; 89: 1401-1438.

96. Tabassum N, Ahmad F. Role of natural herbs in the treatment of hypertension. Pharmacogn Rev 2011; 5: 30-40.

97. Cao YY, Li K, Li Y, Tian XT, Ba HX, Wang A, *et al. Dendrobium candidum* aqueous extract attenuates isoproterenol-induced cardiac hypertrophy through the ERK signalling pathway. Pharm Biol 2020; 58: 176-183.

98. Yin C, Xu YY, Chen GY, Li B, He M, Shi QQ, *et al.* Efficacy of compound Dendrobium on PI3K/AKT/eNOS signaling pathway in hypertensive rats induced by "dietary disorders". Zhongguo Zhong Yao Za Zhi 2018; 43: 2345-2351.

99. Yan MQ, Su J, Yu JJ, Yang ZY, Wang T, Chen SH, *et al.* Effects and active substances of ethanol extract from *Dendrobium officinale* on metabolic hypertensive rats induced by comprehensive dietary. Zhongguo Zhong Yao Za Zhi 2019; 44: 4896-4904.

100. Lv GY, Xia CQ, Chen SH, Su J, Liu XP, Li B, *et al.* Effect of *Dendrobium officinale* granule on long-term-alcohol-induced hypertension rats. Zhongguo Zhong Yao Za Zhi 2013; 38: 3560-3565.

101. Li B, He X, Jin HY, Wang HY, Zhou FC, Zhang NY, *et al.* Beneficial effects of *Dendrobium officinale* on metabolic hypertensive rats by triggering the enteric-origin SCFA-GPCR43/41 pathway. Food Funct 2021; 12:5524-5538.

102. Fruhbeck G, Toplak H, Woodward E, Yumuk V, Maislos M, Oppert JM, *et al.* Obesity: the gateway to ill health - an EASO position statement on a rising public health, clinical and scientific challenge in Europe. Obes Facts 2013; 6: 117-120.

103. Kojta I, Chacinska M, Blachnio-Zabielska A. Obesity, bioactive lipids, and adipose tissue inflammation in insulin resistance. Nutrients 2020; 12: 1305.

104. Frasca D, Blomberg BB, Paganelli R. Aging, obesity, and inflammatory age-related diseases. Front immunol 2017; 8: 1745.

105. Jung UJ, Choi MS. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci 2014; 15: 6184-6223.

106. Leonardini A, Laviola L, Perrini S, Natalicchio A, Giorgino F. Cross-Talk between PPARgamma and insulin signaling and modulation of insulin sensitivity. PPAR Research 2009; 2009: 818945.

107. Qu J, Tan S, Xie X, Wu W, Zhu H, Li H, *et al. Dendrobium officinale* polysaccharide attenuates insulin resistance and abnormal lipid metabolism in obese mice. Front Pharmacol 2021; 12: 659626.

108. Lee W, Eom DW, Jung Y, Yamabe N, Lee S, Jeon Y, *et al. Dendrobium moniliforme* attenuates high-fat diet-induced renal damage in mice through the regulation of lipid-induced oxidative stress. Am J Chinese Med 2012; 40: 1217-1228

109. Li X, Peng X, Guo K, Tan Z. Bacterial diversity in intestinal mucosa of mice fed with *Dendrobium officinale* and high-fat diet. Biotechnol J 2021; 11: 22.

110.Xu D, Zhang H, Wang X. Effects of tin caulis dendrobium polysaccharide on the prevention of non-alcoholic fatty liver disease in rats. Rev Bras de Zootec 2017; 46: 652-656.

111.Zhang J, Zhang X, Hong J. Dendrobium compound in treating 90 cases of type 2 diabetes mellitus World J Tradit Chin Med 2011; 610: 6.

112. Wu KG, Li TH, Chen CJ, Cheng HI, Wang TY. A pilot study evaluating the clinical and immunomodulatory effects of an orally administered extract of *Dendrobium huoshanense* in children with moderate to severe recalcitrant atopic dermatitis. Int J Immunopathol Pharmacol 2011; 24: 367-375.

113. Xiao L, Ng TB, Feng YB, Yao T, Wong JH, Yao RM, et al. Dendrobium candidum extract increases the expression of

aquaporin-5 in labial glands from patients with Sjögren's syndrome. Phytomedicine 2011; 18: 194-198.

114. Wei D, Li YH, Zhou WY. Observation on therapeutic effect of runmushu oral liquid in treating xerophthalmia in postmenopausal women. Zhongguo Zhong Xi Yi Jie He Za Zhi 2009; 29: 646-649.

115. Zhang X, Wang M, Zhang C, Liu Z, Zhou S. Clinical study of *Dendrobium nobile* Lindl. intervention on patients with metabolic syndrome. Medicine (Baltimore) 2021; 100: e24574.

116. Lee MJ, Jung HK, Kim MS, Jang JH, Sim MO, Kim TM, *et al.* Acute toxicity and cytotoxicity evaluation of *Dendrobium moniliforme* aqueous extract *in vivo* and *in vitro*. Lab Anim Res 2016; 32: 144-150.

117. Yang LC, Liao JW, Wen CL, Lin WC. Subchronic and genetic safety assessment of a new medicinal Dendrobium species: *Dendrobium taiseed* Tosnobile in rats. Evid Based Complement Alternat Med 2018; 2018: 8950534.

118. Yi YQ, Yang QH, Su JF, Chen J, Qi H, Chen D, *et al.* Experimental study on preclinical quality control, urgent poison and irritation of *Dendrobium aurantiacum* eye drops, a class I new drug against diabetic cataract. Zhongguo Zhong Yao Za Zhi 2013; 38:1061-1066.

119. Fang H, Hu X, Wang M, Wan W, Yang Q, Sun X, *et al.* Antiosmotic and anti-oxidant activities of gigantol from *Dendrobium aurantiacum* var. denneanum against cataractogenesis in galactosemic rats. J Ethnopharmacol 2015; 172: 238-246.

120. Gong CY, Lu B, Yang L, Wang L, Ji LL. Bibenzyl from dendrobium inhibits angiogenesis and its underlying mechanism. Yao Xue Xue Bao 2013; 48: 337-342.

121. Hu JM, Chen JJ, Yu H, Zhao YX, Zhou J. Two novel bibenzyls from *Dendrobium trigonopus*. J Asian Nat Prod Res 2008; 10: 653-657.

122. Yang L, Qin LH, Bligh SW, Bashall A, Zhang CF, Zhang M, *et al.* A new phenanthrene with a spirolactone from *Dendrobium chrysanthum* and its anti-inflammatory activities. Bioorg Med Chem 2006; 14: 3496-3501.

123. Pengpaeng P, Sritularak B, Chanvorachote P. Dendrofalconerol A suppresses migrating cancer cells via EMT and integrin proteins. Anticancer Res 2015; 35: 201-205.

124. Fan C, Wang W, Wang Y, Qin G, Zhao W. Chemical constituents from *Dendrobium densiflorum*. Phytochemistry 2001; 57:1255-1258.

125. Klongkumnuankarn P, Busaranon K, Chanvorachote P, Sritularak B, Jongbunprasert V, Likhitwitayawuid K. Cytotoxic and antimigratory activities of phenolic compounds from *Dendrobium brymerianum*. Evid Based Complement Alternat Med 2015; 2015: 350410.

126. Luo A, Ge Z, Fan Y, Luo A, Chun Z, He X. *In vitro* and *in vivo* anti-oxidant activity of a water-soluble polysaccharide from *Dendrobium denneanum*. Molecules 2011; 16: 1579-1592.