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Objective(s): Natural coumarin called osthole is regarded as a medicinal herb with widespread 
applications in Traditional Chinese Medicine. It has various pharmacological properties, including 
antioxidant, anti-inflammatory, and anti-apoptotic effects. In some neurodegenerative diseases, 
osthole also shows neuroprotective properties. In this study, we explored how osthole protects human 
neuroblastoma SH-SY5Y cells from the cytotoxicity of 6-hydroxydopamine (6-OHDA). 
Materials and Methods: Using the MTT assay and DCFH-DA methods, respectively, the viability 
of the cells and the quantity of intracellular reactive oxygen species (ROS) were evaluated. Signal 
Transducers and Activators of Transcription (STAT), Janus Kinase (JAK), extracellular signal-regulated 
kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and caspase-3 activation levels were examined 
using western blotting.
Results: In SH-SY5Y cells, the results showed that a 24-hour exposure to 6-OHDA (200 µM) lowered 
cell viability but markedly elevated ROS, p-JAK/JAK, p-STAT/STAT, p-ERK/ERK, p-JNK/JNK ratio, and 
caspase-3 levels. Interestingly, osthole (100 µM) pretreatment of cells for 24 hr prevented 6-OHDA-
induced cytotoxicity by undoing all effects of 6-OHDA. 
Conclusion: In summary, our data showed that osthole protects SH-SY5Y cells against 6-OHDA-
induced cytotoxicity by inhibiting ROS generation and reducing the activity of the JAK/STAT, MAPK, 
and apoptotic pathways.
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Introduction
Currently, Parkinson’s disease (PD) is considered the most 

common and chronic age-related neurodegenerative disorder 
with an effect on almost 2% of people worldwide and a 
prevalence of 5% over the age of 85 (1). In PD, the progressive 
neurological condition occurs because dopaminergic neurons 
selectively degenerate in the dorsal part of the substantia 
nigra and lead to abnormal motor control due to decreased 
levels of dopamine in the striatum (2). Different mechanisms, 
including oxidative stress, mitochondrial dysfunction, 
neuroinflammation, and apoptosis of dopaminergic neurons, 
are involved in the pathogenesis of PD (3), although the 
principle mechanism of initiation of PD has stayed unclear.

Several models have been used to create a 
pathophysiological process very similar to PD. Among the 
different neurotoxic models of PD, the 6-hydroxydopamine 
(6-OHDA) is widely applied for different models of PD 
research (4). 6-OHDA is a crucial exogenous neurotoxin 
formed by dopamine oxidation and it is beneficial for the 
neurodegeneration studies like PD because of the induction 
of dopaminergic neuronal degradation (5). 6-OHDA 
causes dopaminergic neurotoxicity by accumulation 
in nigral neurons (3). One of the main mechanisms of 
6-OHDA toxicity can involve the reactive oxygen species 
generation (ROS) during its autoxidation process. Once 
inside the cell, it rapidly oxidizes and generates ROS, which 

impairs mitochondrial function and ultimately causes 
neuroinflammation and damage to dopaminergic neurons 
(6, 7).

Oxidative stress is an important reason for cellular toxicity 
in the central nervous system and promotes inflammation 
and apoptosis in neurodegenerative disorders like PD (8). 
Hence, understanding the cellular mechanisms that increase 
neuronal resistance to oxidative stress may prepare new 
avenues for PD treatment. Different molecular signaling 
such as JAK2/STAT3 and MAPK pathways are involved in 
the inflammation and apoptosis pathway regulation in PD 
(9, 10).

The Janus Kinase/Signal Transducers and Activators of 
Transcription (JAK/STAT) is a regulatory pathway, which 
activated by numerous cytokines, interferons, and growth 
factors (11), is involved in cell survival, proliferation, 
angiogenesis, inflammation, and apoptosis (12, 13). Aberrant 
activation of JAK/STAT is apparent in neuroinflammation 
and neurodegenerative diseases like Multiple Sclerosis, 
Alzheimer’s, and PD (10). 

The mitogen-activated protein kinase (MAPK), a serine/
threonine protein kinases superfamily, is responsible to 
regulate various intracellular signaling in Eukaryotes 
including cell differentiation and proliferation, apoptosis or 
survival, inflammation, and innate immunity (14). C-Jun 
N-terminal kinase (JNK), extracellular signal-regulated 
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kinases (ERK), and p38 kinase, as the main groups of 
MAPK, are particularly important in PD (9) and considered 
apoptosis factors which activate through oxidative stress 
(15). JNK and p38 have a substantial task in neuronal 
damage, and ERK over-activation is known to contribute 
to dyskinesia in PD striatum (16, 17). The oxidative stress 
in PC12 cells created by 6-OHDA leads to enhanced JNK 
phosphorylation and increases cell apoptosis (18, 19).

Osthole (7-Methoxy-8-(3-methylbut-2-enyl)-2-chromenone)
is a coumarin derivative of a natural plant, firstly obtained 
from Cnidium Monnieri (20). It is found in various medicinal 
plants like the mature fruit of C. monnieri with an osthole high 
content, which is used in Traditional Chinese Medicine (21). 
In several experimental studies, the pharmacological effects 
of osthole including anticancer (22), anticonvulsant (23), 
hepatoprotective (24), cardiovascular protective (25), and 
neuroprotective (26) have been reported. Moreover, osthole 
has a potential anti-oxidant effect as well (27, 28). Osthole 
exerts physiological effects through regulation of various 
signaling pathways including JAK/STAT and MAP kinase 
which in turn modulate cell cycle regulators, transcriptional 
factors, and proliferation (28, 29).

Osthole indicated neuroprotection opposite to many 
neurodegeneration experimental models. For instance, 
osthole relieved the symptoms of Alzheimer’s disease by 
attenuating inflammation and oxidative stress (30, 31). 
Moreover, osthole reduced oxidative stress and suppressed 
inflammation and apoptosis in various models of PD (26, 
32). Besides, previous studies have found that osthole has a 
protective effect on different tissues through the regulation 
of MAPK and JAK/STAT3 signaling pathways (27, 33).

According to previous studies, oxidative stress, as well as 
apoptosis, are two main mechanisms of neurotoxicity created 
by 6-OHDA. Therefore, this research aimed to investigate 
the effect of osthole on neurotoxicity by 6-OHDA in the SH-
SY5Y cell line by focusing on the activity of apoptosis, and 
JAK/STAT and MAPK pathways.

Materials and Methods
Materials

Osthole was obtained from Golexir Pars (Iran). 
6-OHDA, MTT reagent, the fluorescent probe DCFH-DA, 
and penicillin-streptomycin (PS) were bought from Sigma 
(Germany). DMEM/F12 medium was purchased from Bio-
Idea (Iran) and FBS from Gibco (USA). In this study, all 
used antibodies were obtained from Cell Signaling (USA).

Cell culture and treatment
The human neuroblastoma SH-SY5Y cell line was 

procured from the Pasteur Institute (Iran). The culture 
medium DMEM-F12 with 10% FBS along with penicillin and 
streptomycin were applied to culture cells and maintained 
in a 37 °C incubator with 95% humidity containing 5% CO2 
concentration and passaged at 80% confluence.

Cell viability assay
SH-SY5Y cells were seeded in a microplate with 96 wells 

(104 cells/well). Cell viability was evaluated by 6-OHDA 
exposure (24 hr), using an MTT assay to determine the 
IC50 value. Moreover, the effect of osthole in different 
concentrations on cell viability was determined after 48 
hr exposure. For this purpose, cells were treated with 
6-OHDA in different concentrations (50–200 μM) and 
different concentrations (25–500 μM) of osthole for 24 hr 
and 48 hr, respectively. Afterward, the efficacy of osthole 

on cytotoxicity by 6-OHDA in SH-SY5Y cells was tested. 
Briefly, cells (104 cells/well) were exposed to a different 
concentration of osthole (25–500 μM) for 24 hr and then 
incubated with 6-OHDA (200 μM; IC50). After 24 hr, the 
MTT solution at the final concentration of 0.5 mg/ml was 
poured on each well of the 96-well culture plate, and then 
the plate was put into a 37 °C incubator for 3 hr. After the 
removal of the upper culture medium, the insoluble purple 
formazan crystal was dissolved in 150 μl of dimethylsulfoxide 
(DMSO) which created a color solution, with maximum 
absorbance at 545 nm measurable by a microplate reader 
(Start Fax-2100, UK).

Measurement of intracellular ROS generation
To determine the amount of ROS in SH-SY5Y cells, we 

used the DCFH-DA (2′,7′-dichlorofluorescein diacetate) 
method based on the Li et al. study with some modification 
(34). DCFH-DA reagent is a fluorimetric probe, which can 
enter the cell and deacetylate to DCFH with intracellular 
esterases. In the vicinity of ROS, DCFH can convert to DCF 
with high fluorescence. For this test, 104 SH-SY5Y cells/
well were seeded in 96-well microplates and incubated with 
osthole (25–500 μM) for 24 hr before treatment by 6-OHDA 
(200 μM). Twenty four hours later, the upper mediate 
was removed and 10 μM DCFH-DA was poured into the 
cultured cells for 30 min in a 37 °C incubator. After cells 
were washed with PBS, ROS generation was evaluated by 
the fluorescence intensity of DCF (excitation and emission 
wavelengths at 485 and 538 nm, respectively).

Western blot analysis
To investigate whether osthole had a protective effect 

against 6-OHDA, the expressions of proteins including 
caspase-3, JAK2, p-JAK2, STAT3, p-STAT3, ERK, p-ERK, 
JNK, and p-JNK were identified by western blot. For this 
purpose, About 106 SH-SY5Y cells were exposed to 6-OHDA 
(200 μM) 24 hr after osthole (100 μM). The cells were 
collected, and after washing with cold PBS, cells were lysed 
in a lysis buffer according to the instructions previously 
published (35). Protein concentration was ascertained 
by applying the Bradford assay. Then western blot test 
was performed regarding the protocol of our previous 
study (36). In a nutshell, 10 µl of samples were loaded and 
electrophoresed on SDS polyacrylamide gel. Proteins were 
transferred to PVDF membranes, which were blocked by 5% 
skimmed milk or BSA (Bovine Serum Albumin) for non-
phosphorylated or phosphorylated proteins, respectively, at 
room temperature (2 hr). In the next step, the membranes 
were exposed to rabbit monoclonal antibodies against 
caspase-3 (#9665), JAK2 (#3230), p-JAK2 (#3776), STAT3 
(#12640), p-STAT3 (#9145), ERK (#4695), p-ERK (#9106), 
JNK (#9252), p-JNK (#9255), and mouse monoclonal 
antibody against β-actin (#3700), as primary antibodies, 
and IgG labeled with horseradish peroxidase (anti-rabbit 
or anti-mouse), as secondary antibodies. To visualize 
protein bands, enhanced chemiluminescence was used 
and the bands’ optical densities were measured by Gel doc 
(Alliance 4.7, UK). The densitometric analysis of bands was 
calculated by UVtec software (UK) and normalized to the 
related β-actin.

Statistics analysis
Prism 7.0 software (GraphPad Software, La Jolla, CA, 

United States) was used to analyze all data. The results 
were displayed as means ± SD. Statistical comparisons were 
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evaluated by one-way analysis of variance test (ANOVA) 
followed by the Tukey–Kramer post hoc test. All experiments 
were repeated in triplicate, and P-value <0.05 was considered 
the significant level. 

Results
Effect of 6-OHDA on cell viability in SH-SY5Y cells

The cell cytotoxicity of the 6-OHDA was measured by 
MTT assay to determine the IC50 of 6-OHDA. As shown 
in Figure 1A, 6-OHDA in 24 hr treatment decreased the 
viability of cells in comparison to the control group. IC50 of 
6-OHDA after 24 hr exposure was 200 ± 17.5 μM.

Effect of osthole on cell viability in SH-SY5Y cells
The SH-SY5Y cells were exposed to osthole at different 

concentrations (25–500 μM) for 48 hr. Osthole in none of 
the concentrations had any significant effect on cell viability 

compared with the untreated group (Figure 1B).

Effect of osthole on 6-OHDA-induced cytotoxicity in SH-
SY5Y cells

The results in Figure 1C indicated the decline in cell 
viability due to 6-OHDA (200 μM) exposure for 24 hr 
as compared to untreated cells (P<0.0001), while the 
pretreatment with 100 μM osthole for 24 hr markedly 
enhanced cell viability (P<0.05). In addition, no significant 
effect on cell viability was observed in pretreatment by other 
concentrations of osthole (Figure 1C).

Effect of osthole on ROS production by 6-OHDA in SH-
SY5Y cells

6-OHDA treatment significantly enhanced the 
intracellular ROS in SH-SY5Y cells (P<0.01). Interestingly, 
the 24 hr exposure of cells with osthole (25–500 μM) before 
exposure to 6-OHDA markedly inhibited ROS production. 
These results showed a protective effect of osthole against 
cytotoxicity induced by 6-OHDA (Figure 2).

Effect of osthole and 6-OHDA on JAK2/STAT3 proteins 
level in SH-SY5Y cells

The results showed that 6-OHDA exposure for 24 hr 
significantly increased the p-JAK2/JAK2 ratio in SH-SY5Y 

Figure 1. Effect of 6-OHDA (50–300 μM for 24 hr A), osthole (25–500 μM 
for 48 hr; B), and the effect of osthole (Ost) on 6-OHDA-induced cytotoxicity 
for 24 hr pretreatment (C) on SH-SY5Y cell viability by the MTT assay
Data are expressed as means ± SD. Data were analyzed by one-way ANOVA following 
the Tukey-Kramer post-test for multiple comparisons. *P<0.05, **P<0.01, ***P<0.001, 
and ****P<0.0001 vs control group, #P<0.05 vs 6-OHDA treated group
Ost: Osthole, 6OHDA: 6-ydroxydopamine
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Figure 2. Effect of osthole (Ost) for 24 hr pretreatment on 6-OHDA-
induced ROS production in SH-SY5Y cells by using the DCFH-DA reagent
Data are expressed as means ± SD. Data were analyzed by one-way ANOVA following 
the Tukey-Kramer post-test for multiple comparisons. **P<0.01 vs control group, 
##P<0.01 and ####P<0.0001 vs 6-OHDA group
Ost: Osthole, 6OHDA: 6-ydroxydopamine

Figure 3. Effect of osthole (Ost) for 24 hr pretreatment and 6-OHDA for 24 hr on protein level of JAK2, phospho(P)-JAK2, STAT3, and phospho(P)-STAT3 
in SH-SY5Y cells
The blots (A and C) and the bars (B and D) exhibit the densitometry analysis of western blots for p-JAK2/JAK2 and p-STAT3/STAT3 ratio. Equal loading of proteins is illustrated by 
β-actin bands. Data are expressed as means ± SD. Data were analyzed by one-way ANOVA following the Tukey-Kramer post-test for multiple comparisons. *P<0.05 and **P<0.01 
vs control group, #P<0.05 vs 6-OHDA group
Ost: Osthole, 6OHDA: 6-ydroxydopamine
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cells (P<0.01). In return, the pretreatment of the cells by 
osthole for 24 hr reduced the p-JAK2/JAK2 ratio in SH-SY5Y 
cells compared to the 6-OHDA group (P<0.05). Although 
the protein levels of p-STAT3 and STAT3 were separately 
reduced after 24 hr treatment with 6-OHDA in SH-SY5Y 
cells compared with control, the p-STAT3/STAT3 ratio 
enhanced in comparison to the untreated group (P<0.05) 
(Figure 3C and D). Moreover, the results demonstrated that 

24 hr pretreatment of cells by osthole could decrease the 
p-STAT3/STAT3 ratio against the 6-OHDA group (P<0.05) 
(Figure 3C and D).

Effect of osthole and 6-OHDA on the MAP kinase pathway 
proteins activity (JNK and ERK) in SH-SY5Y cells

The results demonstrated that after cell treatment with 
6-OHDA, the p-JNK/JNK ratio elevated (P<0.0001), 
whereas 24 hr pretreatment with osthole attenuated the 
p-JNK/JNK ratio (P<0.0001). Furthermore, 24 hr exposure 
of 6-OHDA at a concentration of 200 μM strikingly induced 
the p-ERK/ERK ratio in SH-SY5Y cells in comparison to 
control cells (P<0.0001), while pretreatment of cells by 
osthole (100 μM) reduced the p-ERK/ERK ratio compared 
to the 6-OHDA group (P<0.01) (Figure 4C and D).

Effect of osthole and 6-OHDA on the expression of 
caspase-3 in SH-SY5Y cells

As indicated in Figure 5, the caspase-3 level (pro and 
cleaved) enhanced in SH-SY5Y cells when exposed to 
6-OHDA compared to the untreated group (P<0.05 and 
P<0.01, respectively), while pretreatment of osthole at a 100 
μM concentration reduced the pro and cleaved caspase-3 
compared to the 6-OHDA treated cells (P<0.05).

Discussion
This research investigated the osthole protective effects on 

cytotoxicity in SH-SY5Y cells treated by 6-OHDA through 
JAK/STAT, MAPK, and apoptosis signaling pathway. Our 
results exhibited that 6-OHDA exposure induced oxidative 
stress and apoptosis through the increased intracellular ROS 
and caspase-3 levels and the phosphorylated form of JAK2, 
STAT3, JNK, and ERK proteins in SH-SY5Y cells. In contrast, 
the pretreatment of the cells with osthole reversed all changes 
caused by 6-OHDA in SH-SY5Y cells. It seems that osthole 
protects SH-SY5Y cells against 6-OHDA cytotoxicity.

Oxidative stress, apoptosis as well as inflammation lead 
to the loss of dopaminergic neurons which are important 
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Figure 4. Effect of osthole (Ost) for 24 hr pretreatment and 6-OHDA for 24 hr on the protein level of JNK, phospho(P)-JNK, ERK, and phospho(P)-ERK 
in SH-SY5Y cells
The blots (A and C) and the bars (B and D) exhibit the densitometry analysis of western blots for p-JNK/JNK and p-ERK/ERK ratio. Equal loading of proteins is illustrated by 
β-actin bands. Data are expressed as means ± SD. Data were analyzed by one-way ANOVA following the Tukey-Kramer post-test for multiple comparisons. ****P<0.0001 vs 
control group, ##P<0.01 and ####P<0.0001 vs 6-OHDA group
Ost: Osthole, 6OHDA: 6-ydroxydopamine
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Figure 5. Effect of osthole (Ost) for 24 hr pretreatment and 6-OHDA for 
24 hr on the protein level of caspase-3 pro and cleaved in SH-SY5Y cells
The blots (A) and the bars (B) exhibit the densitometry analysis of western blots 
for the level of caspase-3 pro and cleaved. Equal loading of proteins is illustrated by 
β-actin bands. Data are expressed as means ± SD. Data were analyzed by one-way 
ANOVA following the Tukey-Kramer post-test for multiple comparisons. *P<0.05 
and **P<0.01 vs control group, #P<0.05 vs 6-OHDA group
Ost: Osthole, 6OHDA: 6-ydroxydopamine
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pathologies for PD (32). Numerous studies demonstrated 
that the apoptosis pathway is activated following 6-OHDA-
induced ROS generation. For instance, Ramazani et al. 
indicated decreased cell viability, increased ROS, and 
apoptosis in PC12 cells treated with 6-OHDA (37). 
Moreover, 6-OHDA caused mitochondrial dysfunctions and 
enhanced the cleavage of caspase-9 and -3 in the SH-SY5Y 
cell line (38). Besides, G-CSF could inhibit the activated 
caspase-3 by 6-OHDA in dopaminergic neurons (39). On 
the other hand, osthole diminished oxidative stress and 
inflammatory cytokines in the PD mice model induced 
by MPTP as well as attenuating LPS-induced microglia 
cytotoxicity in PC12 and BV-2 cells (32). In this regard, 
reduced intracellular ROS, caspase-3 activity, and Bax/Bcl2 
ratio induced by MPP+ through pretreatment with osthole 
on PC12 cells has been demonstrated (26). In the current 
study, exposure of cells to 6-OHDA (200 μM) increased 
intracellular ROS production and elevated caspase-3 
cleaved in SH-SY5Y cells. The protective role of osthole 
(100 μM) against 6-OHDA occurred through attenuating 
intracellular ROS level and diminished caspase-3 activity, 
suggesting the anti-oxidant and anti-apoptotic effect of 
osthole.

Several studies have illustrated that the novel 
inflammatory signals namely Janus Kinase/Signal 
Transducers and Activators of Transcription (JAK/
STAT), can be activated by LPS, TNF-α, IFN-γ, and IL-6 
in the brain (40) and contribute to the pathogenesis of 
neuroinflammatory diseases (10). For instance, the level of 
JAK and STAT phosphorylation was rapidly enhanced in 
BV-2 microglial cells in response to LPS stimulation (41, 
42). The α-synuclein accumulation in the brain activated 
microglial and produced inflammatory cytokines or 
chemokines through the activation of the JAK/STAT 
pathway in different models of PD (13). Hence, the 
administration of JAK1/JAK2 inhibitor, AZD1480, inhibited 
the activation of JAK, STAT3, and STAT1 in macrophages 
and microglia cells and suppressed the degeneration of 
dopaminergic neurons (13). Besides, the neurotoxin MPP+ 
treatment enhanced the STAT1 expression level as well 
as STAT1 phosphorylation and following apoptosis in 
cerebellar granule neuron cells (43). Moreover, pyridone 6 
as a JAK inhibitor reduced the interferon β neurotoxicity 
in SH-SY5Y cells through decreased STAT1 and STAT3 
phosphorylation as well as apoptotic cell death (44).

Based on the role of the JAK/STAT pathway in brain 
damage, it is identified that several natural substances 
such as curcumin and osthole could exhibit protective 
effects by suppressing JAK/STAT pathways (33, 41, 45). The 
inflammatory cytokines secretion via LPS-stimulated BV2 
cells was decreased because of osthole treatment through 
Nrf2 and HO1 up-regulation and NFκB signaling pathway 
inhibition (45). In traumatic brain injury in SH-SY5Y cells, 
osthole displayed anti-inflammatory and neuroprotective 
effects due to suppressed apoptosis and NF-κB pathways 
(46). Osthole also inhibited the proliferation and invasion of 
gallbladder cancer cells by decreasing the phosphorylation 
of JAK and STAT3 (33). In addition, 6-OHDA showed a 
neurotoxicity effect on SH-SY5Y cells by changing the level 
of STAT3 phosphorylation (47). In this research, results 
showed the increment of JAK2/STAT3 phosphorylation in 
SH-SY5Y cells by 6-OHDA treatment, suggesting the role 
of the JAK2/STAT3 pathway in the PD model. Pretreatment 

of cells with osthole markedly prevented JAK2 and STAT3 
phosphorylation levels in SH-SY5Y cells exposed to 
6-OHDA, suggesting osthole has a neuroprotective effect 
in SH-SY5Y cells by suppressing the JAK2/STAT3 signaling 
pathway.

The MAPK signaling pathway regulates cell activity 
including cell viability, apoptosis, as well as inflammation 
in the CNS (16). ERK and JNK are a part of the MAPKs 
family that activate through various stimuli like cellular 
stress and cytokines (14). Previous studies suggested that 
JNK and ERK play considerable roles in the regulation of 
cellular processes of PD (9). Transient phosphorylation of 
ERK participates in enhanced cell survival but sustained 
ERK activation leads to neuronal and PC12 cell death (48). 
In this regard, it has been reported that p-ERK1/2 and 
p-JNK protein levels obviously increased in PD mice (49). 
A recent study exhibited that oxidative stress could enhance 
ERK phosphorylation in SH-SY5Y cells (50). Moreover, the 
MPP+ model of PD causes ERK and JNK activation in SH-
SY5Y and SH-EP1 cells (51, 52). The neuroblastoma cells’ 
exposure to MPP+ augments α-synuclein, activates ERK, 
and triggers cell death (53). Besides, α-synuclein provokes 
inflammation through JNK, ERK, and p38 activation 
in microglial cells (54). Hadipour et al. indicated that 
6-OHDA increased ROS production, cell apoptosis, and 
p-JNK in PC12 cells, which were inverted by pretreatment 
with betanin (18). Additionally, over-activation of ERK 
was reported in the striatum of mice in the 6-OHDA-
induced PD model (17). 6-OHDA strikingly activated the 
MAPK pathway through enhancement of JNK, ERK, and 
p38 phosphorylation in SH-SY5Y cells (38). The ERK 
phosphorylation and dopaminergic cell death were up-
regulated through oxidative stress after rotenone and 
6-OHDA treatment, which induced PD progression in 
experimental animals (55, 56). In line with the studies 
mentioned above, our results illustrated the enhanced 
phosphorylation of JNK and ERK in SH-SY5Y cells treated 
with 6-OHDA. 

A recent study suggested that the endogenous 
molecules or the plant-derived natural compounds exhibit 
neuroprotective effects against CNS injury by regulation 
of the MAPK pathway. In this regard, the beneficial 
neuroprotective effect of inosine against the rotenone model 
of PD was shown by ameliorating oxidative stress and pro-
inflammatory cytokines along with the inhibition of ERK 
phosphorylation (56). Another experiment also showed that 
the primary astrocytes pretreatment by silibinin (a constituent 
of silymarin) effectively inhibited astroglial activation and 
decreased ERK and JNK phosphorylation before MPP+ 
treatment in an acute PD model induced by MPTP (57). 
Furthermore, the administration of C2 ceramide in LPS-
stimulated BV2 microglial cells suppressed microglial 
activation through decreased ROS production and JNK, 
ERK, and p38 phosphorylation (42). However, different 
results were reported by Chen et al. study. They showed 
that pretreatment of cells with osthole inhibited the 
enhancement of p-JNK with no effect on p-p38 but elevated 
ERK1/2 phosphorylation in neurons that were deficient in 
oxygen and glucose (27). To date, there is no earlier study, 
which investigated the osthole effectiveness in PD through 
the regulation of MAPK activity. For the first time in the 
current study, pretreatment of cells with osthole could 
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decrease JNK and ERK phosphorylation in SH-SY5Y cells 
treated with 6-OHDA.

Conclusion
In summary, osthole could be able to diminish 6-OHDA 

cytotoxicity in SH-SY5Y cells, in part, to be mediated through 
the inhibition of ROS production, decreased apoptosis, 
and reduction of JAK/STAT and MAPK activity, which are 
important mechanisms in 6-OHDA neurotoxicity (Figure 6).
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