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Objective(s): Lithium and quetiapine are administered simultaneously as a treatment for bipolar 
disorder. The concurrent use of these two drugs has been observed to affect the neurobiological 
mechanisms underlying learning and memory. To clarify the precise mechanisms involved, we 
evaluated the possible role of the dorsal hippocampal CA1 NMDA receptors in the interactive effects 
of lithium and quetiapine in memory consolidation. 
Materials and Methods: The dorsal hippocampal CA1 regions of adult male Wistar rats were 
bilaterally cannulated, and a single-trial step-through inhibitory avoidance apparatus was used to 
assess memory consolidation. 
Results: Post-training administration of certain doses of lithium (20, 30, and 40 mg/kg, IP) diminished 
memory consolidation. Post-training administration of higher doses of quetiapine (5, 10, and 20 mg/
kg, IP) augmented memory consolidation. Post-training administration of certain doses of quetiapine 
(2.5, 5, 10, and 20 mg/kg) dose-dependently restored lithium-induced memory impairment. Post-
training microinjection of ineffective doses of the NMDA (10-5 and 10-4 µg/rat, intra-CA1) plus an 
ineffective dose of quetiapine (2.5 mg/kg) restored the lithium-induced memory impairment. Post-
training microinjection of ineffective doses of the noncompetitive NMDA receptor antagonist, MK-
801 (0.0625 and 0.0125 μg/rat, intra-CA1), diminished the quetiapine-induced (10 mg/kg) memory 
improvement in lithium-induced memory impairment.
Conclusion: These findings suggest a functional interaction between lithium and quetiapine through 
hippocampal CA1 NMDA receptor mechanisms in memory consolidation.
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Introduction
Bipolar disorder (BPD) is a chronic, debilitating, and 

recurrent disorder that can seriously affect the day-to-day 
tasks of patients (1, 2). Cognitive dysfunction such as short- 
and long-term memory deficits are continuously reported 
across BPD periods (3). On the other hand, drug-related 
cognitive deficits such as memory dysfunction are a major 
problem in psychotic patients treated with antipsychotic 
drugs (4). 

Lithium is a mood stabilizer recognized as the first line 
of treatment for BPD, and strong evidence has shown its 
effectiveness in preventing relapse and re-hospitalization 
and reducing suicidality. (5-7). Multiple clinical studies 
have indicated that being treated with lithium negatively 
affects several cognitive functions, learning, and memory 
processes in the average population and bipolar patients 
(8-10). Furthermore, experiments investigating the role 
of lithium in learning and memory processes have found 
that administration of lithium impairs memory in various 
hippocampus-dependent memory tasks (11, 12). It has 
been demonstrated that lithium can modulate the function 

of N-methyl-D-aspartic acid (NMDA) as a partial agonist 
of glutamate ionotropic receptors and also regulate signal 
transduction pathways in many brain regions, such as the 
hippocampus (11-13). 

Quetiapine is an atypical antipsychotic drug and is 
clinically used to treat certain mental-mood states such 
as schizophrenia, BPD, and abrupt episodes of mania or 
depression associated with BPD (14-16).

It has been reported that quetiapine and other atypical 
antipsychotic drugs induce neuronal plasticity and synaptic 
remodeling in multiple brain regions such as the striatum, 
prefrontal cortex, and hippocampus (17). Furthermore, 
it has been indicated that quetiapine positively impacts 
cognitive functions such as spatial memory, verbal working 
memory, reasoning, problem-solving, and verbal fluency 
(18, 19). It has been revealed that systemic administration 
of quetiapine increases the extracellular levels of multiple 
neurotransmitters such as norepinephrine, dopamine, and 
glutamate in some brain regions (20, 21). It has been well 
established that the dorsal hippocampal CA1 region is 
essential to forming memories about experienced single-
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trial inhibitory avoidance tasks (11, 22-25). Furthermore, a 
growing body of evidence has indicated that CA1 NMDA 
receptor-dependent plasticity is essential for memory 
formation (11, 26, 27). 

Given that lithium and quetiapine are widely used 
in acute and maintenance treatments for BPD (28), the 
combination of these agents provides superior efficacy 
(16, 29). As CA1 NMDA receptors play a crucial role in 
memory consolidation and retrieval, synaptic plasticity, and 
memory formation, the main aims of the present study were 
to identify the effects of single-dose intraperitoneal (IP) 
administration of lithium and/or quetiapine on memory 
consolidation and the effects of intra-CA1 microinjection 
of NMDA and/or MK-801 on the impact of lithium and 
quetiapine on memory consolidation in step-through 
inhibitory avoidance tasks in rats.

Materials and Methods
Animals

Male Wistar rats (Iran University of Medical Sciences, 
Tehran, Iran), weighing 200–220 g, at the time of the 
experiments, were used. The animals were accommodated 
4 per cage in a room and were maintained under a 12-hr 
light/12-hr dark cycle (lights on at 07:00 am) and with a 
controlled temperature (22 ± 2 °C). All animals were allowed 
to adjust to the laboratory setting for at least one week before 
the experiment and were handled for 5 min/day during this 
habituation period. They had free access to water and food at 
all times except during the training and testing phases. During 
the light phase between 09:00 am and 3:00 pm, training and 
testing were conducted in a quiet environment.

All animal experiments were conducted in conformity 
with the UK Animals (Scientific Procedures) Act 1986 and 
the associated guidelines and EU Directive 2010/63/EU for 
animal experiments, and they were approved by the Ethics 
Committee of Iran University of Medical Sciences (ethics 
code: IR.IUMS.FMD.REC.1398.447).

Drugs
 The drugs used in the present investigation were 

lithium chloride (Merck, Germany), quetiapine, N-methyl-
D-aspartate (NMDA), and (5S, 10R)-(+)-5-methyl-10, 
11-dihydro-5Hibenzo [a,d] cycloheptan-5,10-imine maleate 
((+)-MK-801 maleate) (Tocris, Bristol, UK). Quetiapine 
was dissolved in sterile 0.9 % saline and a drop of glacial 
acetic acid. Lithium, NMDA, and MK-801 were dissolved 
in sterile 0.9% saline. Control groups received either saline 
or a suitable vehicle (one drop of glacial acetic acid in sterile 
0.9% saline). Quetiapine and lithium were administered 
intraperitoneally (IP), 1 ml/kg. NMDA and MK-801 were 
bilaterally microinjected into the dorsal hippocampal CA1 
regions (intra-CA1) at a volume of 1 μl/rat (0.5 μl per side). 
All drugs were prepared just prior to the experiments.

Considering that locomotor activity may affect the 
measurement of memory formation,

Due to the possibility that changes in locomotor 
activity may affect memory formation, the doses of drugs 
were selected based on previous studies (11, 22, 30), pilot 
experiments (using the open field apparatus), and some 
other studies (31-33). No significant effect has been observed 
on locomotor activity after administration of these doses.

Inhibitory avoidance apparatus
In order to evaluate memory consolidation, animals were 

trained and tested in a single-trial step-through inhibitory 
avoidance apparatus (Borj Sanat Company, Tehran, Iran) 
(11, 22). Briefly, the task consisted of an opaque Plexiglas 
box consisting of two equally sized white and black 
compartments (20 cm × 20 cm × 40 cm) separated by a 
guillotine-like door (8 cm×8 cm). The floor of the black 
compartment was constructed with stainless-steel bars 
(0.5 cm in diameter and spaced 1 cm apart). A stimulator 
isolated from the grid floor of the black compartment 
delivered intermittent electric shocks (Frequency: 50 Hz, 
electrical current: 1.5-mA, duration: 5 sec).

Behavioral procedure and data collection
Training and testing phase 

To evaluate memory consolidation, the same protocol as 
the previous study was used (11). In this one-trial learning 
task, the animals were allowed to adapt to the experiment 
room for 60 min before the training or testing sessions during 
the light phase of the cycle. In the training trial, each animal 
was gently placed in the white compartment for 10 sec, after 
which the guillotine door was opened, and then the time 
the animal waited before crossing to the black compartment 
was recorded as latency. If each animal delayed more than 
120 sec to cross to the other side it was excluded from the 
experiment. As soon as the animal entered with all four 
paws to the next (black) compartment, the door was closed 
and a foot shock (1.5-mA, 5 sec) was immediately delivered 
to the metal grid floor by an isolated stimulator (Borj Sanat 
Co., Tehran, Iran). The animal was then removed from the 
apparatus, and the drugs immediately were administered 
post-training (after training) intraperitoneally (IP) and/or 
intra-dorsal hippocampal (intra-CA1). 

To evaluate memory consolidation, a retention test was 
performed twenty-four hours after training. Each animal 
was placed in the white compartment and after 10 sec the 
guillotine door was opened. The step-through latency for 
entering into the black (shock) compartment was measured 
as a measure of memory consolidation. It should be noted 
that during test sessions, no electric shock was delivered to 
the animals. 

The test session ended when the animal entered the black 
compartment or stayed in the white compartment for 300 
sec. An upper cut-off time of 300 sec was set. All experiments 
were carried out between 9:00 AM and 3:00 PM.

Surgical and cannula guide implantation
 The rats were anesthetized using intraperitoneal injections 

of ketamine hydrochloride (50 mg/kg) plus xylazine (4 mg/
kg) and then located in a stereotaxic device (11). Following 
skin cutting and cleaning of the skull, two 22-gauge 
stainless-steel guide cannulas were implanted (bilaterally) 1 
mm above the intended site of infusion, according to the 
atlas of Paxinos and Watson (34). Stereotaxic coordinates 
for the CA1 regions of the dorsal hippocampus were −3.3 
mm posterior to bregma, −2 mm lateral to the sagittal 
suture, and −2 ventral to the dorsal surface of the skull 
(depending on body weight). An electric drill with a 1 mm 
bit was used to drill a small hole in the anterolateral skull to 
the target insertion site, and two screws (1 mm diameter) 
were inserted into the skull to serve as anchors for the dental 
cement. After making sure the skull was completely dry, 
liquid dental cement was applied completely around the 
screw and cannula to secure both in place. Stainless steel 
stylets (27-gauge) were incorporated into the guide cannula 



Iran J Basic Med Sci, 2023, Vol. 26, No. 9

Jafari-Sabet et al. Quetiapine and lithium: Dorsal hippocampal CA1 NMDARs 

1092

to hinder clogging. All animals were permitted to recover 
from surgery and anesthesia for one week.

Intra-CA1 injection procedures
Specimen preparation was conducted as in our previous 

report (11) as follows:   
For intra-CA1 infusion of the drugs, the animals were 

mildly harnessed by hand, and the stylets were picked up 
from the guide cannula and replaced by 27-gauge injection 
needles (1 mm under the tip of the guide cannula). Each 
microinjection unit was attached to a 1-µl Hamilton syringe 
using polyethylene tubing. The left and right CA1 were 
infused with 0.5 μl solution on each side (1 μl/rat) over a 60-
sec period. Injection needles were left in site for an additional 
60 sec to make sure of drug infusion and afterward, the 
stylets were reinserted into the guide cannulas.

Experimental design
Eight male Wistar rats were used in each experimental 

group. In experiments where the animals received one or 
two injections, the control groups also received one or two 
saline or vehicle injections (Figure 1).

Experiment 1 
This experiment investigated the effects of post-training 

IP injection of different doses of lithium on memory 
consolidation. Five groups of animals were used. The 
control group received saline (1 ml/kg, IP) immediately after 
training (post-training). Another four groups of animals 
received post-training administration of lithium (10, 20, 30, 
and 40 mg/kg, IP).

Experiment 2 
This experiment investigated the effects of post-training 

IP injection of different doses of quetiapine on memory 
consolidation. Seven groups of animals were used. The 
control groups received saline and/or the vehicle (1 ml/kg, 
IP) immediately after training (post-training). Another five 
groups of animals received post-training administration of 
quetiapine (1.25, 2.5, 5, 10, and 20 mg/kg, IP).

   
Experiment 3 

   This experiment investigated the effects of post-training 
IP injection of certain doses of quetiapine on lithium-
induced impairment of memory consolidation.

Seven groups of animals were used. The control group 
received post-training administration of saline (1 ml/kg, 
IP). Another six groups of animals received post-training 
administration of saline and/or different doses of quetiapine 

(1.25, 2.5, 5, 10, and 20 mg/kg, IP) plus lithium (40 mg/kg, 
IP) with 5-min intervals.

Experiment 4
This experiment investigated the effects of post-training 

intra-CA1 microinjection of specific doses of NMDA 
(an NMDA receptor agonist) on memory improvement 
induced by quetiapine on the lithium-induced memory 
consolidation impairment. 

Seven groups of animals were used. The control group 
received post-training microinjection of saline (1 μl/rat, 
intra-CA1). Two groups of animals received post-training 
administration of ineffective doses of NMDA (10−5 and 10−4 
μg/rat, intra-CA1).

Four groups of animals received post-training 
administration of lithium (40 mg/kg, IP) and/or lithium (40 
mg/kg, IP) plus quetiapine (2.5 mg/kg, IP) in the presence 
or absence of NMDA (10-5 and 10-4 μg/rat, intra-CA1) with 
5-min intervals.

Experiment 5
This experiment investigated the effects of post-training 

intra-CA1 microinjection of specific doses of MK-801 
(a noncompetitive NMDA receptor antagonist) on the 
memory improvement induced by quetiapine on the 
lithium-induced impairment of memory consolidation. 
Seven groups of animals were used. The control group 
received post-training microinjection of saline (1 μl/rat, 
intra-CA1). Two groups of animals received post-training 
microinjection of ineffective doses of MK-801 (0.0625 and 
0.125 μg/rat, intra-CA1).

Another four groups of animals received post-training 
administration of lithium (40 mg/kg, IP) and/or lithium (40 
mg/kg, IP) plus quetiapine (10 mg/kg, IP) in the presence or 
absence of MK- 801 (0.0625 and 0.125 μg/rat, intra-CA1) 
with 5-min intervals.

Verification of cannula placements
Specimen preparation was conducted as in our previous 

report (11) as follows:   
Once the tests were completed, the animals were euthanized 
with carbon dioxide (CO2) gas, and 1 μl/rat (0.5 μl on 
each side, intra-CA1) of 1% methylene blue solution was 
microinjected to verify the accuracy of the microinjection 
sites.

Then, the rats were decapitated, and their brains were 
separated and located in a formaldehyde solution (10%). 
After ten days, the brains were sliced by a vibroslice device in 
the transverse plane, and then the microinjection sites were 

 

 

 

 

 

  

Figure 1. A schematic diagram of drug administration in male Wistar rats



1093Iran J Basic Med Sci, 2023, Vol. 26, No. 9

Quetiapine and lithium: Dorsal hippocampal CA1 NMDARs Jafari-Sabet et al.

verified according to the atlas of Paxinos and Watson ((34). 
From the total number of 126 implanted cannulas (intra-
CA1), the data from 112 animals with correctly implanted 
cannulas were included in the statistical analyses.

Statistical analysis
For statistical analysis, one-way analysis of variance 

(ANOVA) for comparison between the effects of different 
doses of drugs with saline or vehicle was used. If the 
F-value was significant, a post hoc comparison of means was 
carried out with the Tukey test for evaluating specific group 
comparisons. In all statistical assessments, P<0.05 was used 
as the criterion for statistical significance. The data are 
announced as mean ± standard deviation (SD). Calculations 
were performed using the SPSS statistical package (SPSS 
Inc., Chicago, Illinois, USA).

Results
Histology

Figure 2 illustrates the approximate location of the 
drug microinjections in the CA1 region of the dorsal 
hippocampus. The histological results were plotted on 
representative sectors derived from the rat brain atlas by 
Paxinos and Watson (2007).

Effects of post-training IP administration of lithium on 
memory consolidation

Figure 3 illustrates the effects of post-training injection 
of different doses of lithium (10, 20, 30, and 40 mg/kg, IP) 
on memory consolidation. The presented data show that 
certain doses of lithium (20, 30, and 40 mg/kg) significantly 
diminished the step-through latency during the retention 
test (one-way ANOVA; F (4, 35) = 17.35, P<0.001). The 
most significant response was acquired with 40 mg/kg of the 

drug. Accordingly, the data demonstrate that lithium dose-
dependently decreases memory consolidation.

Effects of post-training IP administration of quetiapine on 
memory consolidation

Figure 4 illustrates the effects of post-training injection of 
different doses of quetiapine (1.25, 2.5, 5, 10, and 20 mg/kg, 
IP) on memory consolidation. The obtained data indicate 
that the lower doses of quetiapine (1.25 and 2.5 mg/kg) 
had no significant effect on memory consolidation, while 
the higher doses of the same drug (5, 10, and 20 mg/kg) 
significantly augmented the step-through latency during 
the retention test (one-way ANOVA; F (6, 49) = 7.948, 
P<0.001). The most significant response was acquired with 
10 mg/kg of the drug. Accordingly, the data suggest that 
quetiapine increases memory consolidation.

Effects of post-training IP administration of quetiapine on 
lithium-induced impairment of memory consolidation   

Figure 5 illustrates the effects of post-training injection of 
certain doses of quetiapine on lithium-induced impairment 
of memory consolidation. The presented data displayed that 
the response induced by lithium (40 mg/kg) significantly 
was reversed by quetiapine (2.5, 5, 10, and 20 mg/kg) 
(one-way ANOVA; F (6, 49) = 10.29, P<0.001). Hence, 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Representative photomicrographs illustrating placement of 
cannula and needle tip in the CA1 region of the dorsal hippocampus
The arrow denotes the location of the needle tip and the verified section adapted from 
the atlas of Paxinos and Watson (Paxinos and Watson, 2007) is also included.
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Figure 3. Effects of post-training injection of lithium on memory 
consolidation
Five groups of animals received a post-training injection of saline (1 ml/kg, IP) and/
or lithium (10, 20, 30, and 40 mg/kg, IP). The step-through latency was measured 24 
hr after drug injection. Each point is the mean±SD for eight rats.
*P<0.05, **P<0.01, and ***P<0.001 compared with the post-training saline group.
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Figure 4. Effect of post-training injection of quetiapine on memory 
consolidation
Seven groups of animals received injections of saline (1 ml/kg, IP) or vehicle (1 ml/kg, 
IP) and/or quetiapine (1.25, 2.5, 5, 10, and 20 mg/kg, IP) immediately after training. 
The step-through latency was measured 24 hr after drug injection. Each point is the 
mean±SD for eight rats.
*P<0.05 and **P<0.01 compared with the post-training vehicle group.
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Figure 5. Effects of post-training injection of different doses of quetiapine 
on lithium-induced impairment of memory consolidation 
Seven groups of animals were injected with saline (1 ml/kg, IP) or lithium (40 mg/
kg, IP) immediately after training. Quetiapine (1.25, 2.5, 5, 10, and 20 mg/kg, IP) was 
injected 5 min after lithium injection. The step-through latency was measured 24 hr 
after drug administration. Each point is the mean±SD for eight rats.
***P<0.001 compared with the post-training saline group.
+P<0.05, ++P<0.01, and +++P<0.001 compared with the post-training lithium group.
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the data indicate that quetiapine significantly restored the 
impairment of memory consolidation induced by lithium.

Effects of post-training intra-CA1 administration of NMDA 
on the memory improvement induced by quetiapine on 
lithium-induced impairment of memory consolidation

Figure 6 (left panel) illustrates that the lower doses of 
NMDA (10−5 and 10−4 μg/rat) had no significant effect on 
memory consolidation compared with the saline control 
group (one-way

ANOVA; F (2, 21) = 2.95, P>0.05). As illustrated in the 
right panel of Figure  6, the memory improvement induced by 
quetiapine (2.5 mg/kg, IP) on lithium-induced impairment 
of memory consolidation significantly is potentiated by 
post-training intra-CA1 microinjection of ineffective doses 
of NMDA (10-5 and 10-4 μg/rat) (one-way ANOVA; F (4, 35) 
= 31.3, P<0.01), suggesting the involvement of CA1 NMDA 
signaling pathway.

Effects of post-training intra-CA1 administration of MK-
801 on the memory improvement induced by quetiapine 
on lithium-induced impairment of memory consolidation

Figure 7 (left panel) illustrates that the lower doses of MK-
801 (0.0625 and 0.125 μg/rat) had no significant effect on 
memory consolidation compared to the saline control group 
(one-way ANOVA; F (2, 21) = 2.54, P>0.05). As illustrated 
in the right panel of Figure 7, the memory improvement 
induced by quetiapine (10 mg/kg, IP) on lithium-induced 
impairment of memory consolidation significantly is 
inhibited by post-training intra-CA1 microinjection of 
ineffective doses of MK-801 (0.0625 and 0.125 μg/rat) (F 
(4, 35) = 28.75, P<0.01), suggesting the involvement of CA1 
NMDA signaling pathway.

Discussion
This research aimed to assess the role of dorsal hippocampal 

(CA1) NMDA glutamate receptors in the interaction effects 
of lithium and quetiapine on memory consolidation in the 
step-through inhibitory avoidance task in male rats. 

The present data illustrate that, immediately after 
training (post-training), IP administration of higher doses 

of lithium impaired inhibitory avoidance learning memory 
consolidation. The most significant response was obtained 
with the 40 mg/kg dose.

These results are in agreement with our prior study and 
other studies, which have found that systemic and/or intra-
CA1 administration of lithium impairs memory formation 
by altering information coding and synaptic plasticity, 
resulting in the induction of amnesia in a variety of tasks 
(9, 11, 12, 35, 36). Hence, the effects of lithium on the brain 
may be particularly relevant to hippocampal-dependent 
cognitive processes.

Furthermore, our recent findings indicated that the 
phosphorylation levels of CAMKII and CREB in the 
hippocampus and the prefrontal cortex (PFC) are inhibited 
in lithium-induced memory impairment, suggesting that 
the hippocampus and the PFC CAMKII-CREB signaling 
pathway may be involved in lithium’s effect on memory 
deficits (11). These findings agree with the results of other 
studies, which reported that acute and/or chronic lithium 
treatment diminished CREB phosphorylation in the 
hippocampus and other brain regions (37, 38).

Despite such findings, some researchers have found 
that lithium had positive effects on memory consolidation 
using some behavioral tasks (39, 40), which may be due to 
variations in the amount of lithium administered, duration 
of drug exposure, site of lithium injection, and the variables 
examined in different tasks.

Our results also illustrated that post-training IP 
administration of lower doses of quetiapine (1.25 and 2.5 
mg/kg) did not affect memory consolidation, whereas 
the higher doses of the same drug (5, 10, and 20 mg/kg) 
improved memory consolidation of inhibitory avoidance 
learning. In line with such findings, it has been reported that 
quetiapine enhances memory consolidation and retrieval 
in a variety of tasks (18, 41). Quetiapine treatment at the 
lower dose (5 mg/kg) reverses contextual fear conditioning 
deficits but not spatial reversal deficits in rats treated with 
kainic acid (an agonist of kainate-class ionotropic glutamate 
receptors) (42) and improved objective recognition memory 
in neurodegenerative animal models (15, 33). 

Quetiapine was found to improve the decrease in BDNF-
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Figure 7. Effects of post-training intra-CA1 microinjection of specific 
doses of MK-801 on the memory improvement induced by quetiapine on 
lithium-induced impairment of memory consolidation
Three groups of animals received intra-CA1 microinjection of saline (1 μl/rat) or specific 
doses of MK-801 (0.0625 and 0.125 μg/rat) immediately after training. The other four 
groups of animals received post-training injections of lithium (40 mg/kg, IP) or lithium 
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(0.0625 and 0.125 μg/rat) in 5-min intervals. The step-through latency was measured 24 
hr after drug administration. Each point is the mean±SD for eight rats.
***P<0.001 compared with the post-training saline group.
+++P<0.001 compared with the post-training lithium group.
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positive cells in the basolateral amygdala and hippocampus 
of transgenic models of mice with Alzheimer’s disease (43) 
through its modulating effects on neuroprotective factors 
such as reducing demyelination and increasing BDNF (44).

Moreover, it could up-regulate the cerebral levels of B-cell 
lymphoma 2 (Bcl-2) as a neurotrophic factor in Alzheimer’s 
disease transgenic mice (13, 32).

Despite such findings, it has recently been reported that 
chronic treatment with quetiapine (25 mg/kg/day for 30 
or 90 days) leads to time-dependent impairments in novel 
object recognition (NOR) performance, enhancements 
in the pro-BDNF/BDNF ratio, and reductions in Akt and 
CREB phosphorylation in the hippocampus (45).

This discrepancy may be due to drug doses, acute and/
or chronic treatment, type of experiment, and less selective 
activity on diverse neurotransmitter receptors.

Multiple clinical studies have documented that treatment 
with quetiapine plus lithium is generally well-tolerated in 
patients with acute bipolar disorder (BPD) and has greater 
efficacy than quetiapine alone (46). Interestingly, this study 
illustrated that specific doses of quetiapine can improve 
lithium-induced memory impairment (40 mg/kg). These 
results agree with the findings of other researchers who 
reported that quetiapine treatment ameliorated reference 
memory impairment induced by phencyclidine (PCP; an 
NMDA receptor antagonist) in the radial arm maze task 
in rats (47, 48). Furthermore, it has been reported that 
quetiapine improves PCP-induced cognitive deficits in mice 
in a dose-dependent manner (49).

It has been well documented that the CA1 NMDA 
receptor signaling pathways have a crucial role in synaptic 
plasticity, long-term potentiation (LTP), and memory 
formation (11, 50).

To evaluate whether the CA1 NMDA receptor signaling 
pathway plays a role in the effects of lithium and quetiapine 
on memory consolidation, this pathway was activated and/
or inhibited by the intra-CA1 administration of NMDA (an 
NMDA receptor agonist) and MK-801 (a noncompetitive 
NMDA receptor antagonist), respectively.

Our prior investigations revealed that immediate post-
training intra-CA1 microinjection of higher doses of 
NMDA ameliorates, while MK-801 diminishes memory 
consolidation using inhibitory avoidance tasks. However, 
lower doses of the drugs did not affect memory consolidation 
(22, 30, 51, 52).

Multiple experimental studies have shown that activation 
of CA1 NMDA receptors is involved in the learning and 
memory processes in a one-trial inhibitory avoidance task 
(11, 22). Furthermore, activating CA1 NMDA receptors 
by its agonists leads to activation of CREB and CaMKII 
in the CA1 regions of the dorsal hippocampus in rodents 
using a hippocampal-associated learning task. Although 
inhibiting CA1 NMDA receptors by their antagonists leads 
to inhibition of these alterations (11, 53).

In another series of experiments, our findings revealed 
that intra-CA1 microinjection of the lower doses of 
NMDA (10-5 and 10-4 µg/rat), which did not affect 
memory consolidation by itself, potentiated the memory 
amelioration induced by co-administration of lithium (40 
mg/kg) and quetiapine (2.5 mg/kg), indicating a potentiated 
effect between quetiapine and NMDA.

These results are in agreement with our prior study and 
those of other researchers who found that post-training 
intra-CA1 microinjection of the low dose of NMDA (10-4 

µg/rat) significantly lessened memory deficit induced by 
lithium in hippocampal-dependent learning and memory 
tasks in rodents (11, 12).

Our results also revealed that intra-CA1 microinjection of 
the lower doses of MK-801 (0.0625 and 0.125 µg/rat), which 
did not affect memory consolidation by itself, reversed the 
memory amelioration induced by the co-administration of 
lithium (40 mg/kg) and quetiapine (10 mg/kg), indicating 
that the CA1 NMDA receptor signaling pathway may be 
involved in the interplay among lithium and quetiapine on 
memory consolidation.

Hence, these findings suggest a functional interaction 
between quetiapine and lithium via CA1 NMDA receptor 
mechanisms in inhibitory avoidance learning memory 
consolidation.

The results are consistent with our previous study and 
other studies that found that post-training intra-CA1 
microinjection of sub-threshold dose of the competitive and 
noncompetitive NMDA receptor antagonists significantly 
increases lithium-induced memory deficits using 
hippocampal-related behavioral tasks (11, 12). In addition, 
quetiapine has been shown to regulate glutamate receptor 
activity in the hippocampus and other areas of the brain. 
The stimulatory effects of quetiapine on monoamines such 
as norepinephrine, dopamine, and serotonin have been 
reported to be mediated by NMDA/glutamate receptors 
(54). Moreover, quetiapine has been shown to reduce 
schizophrenia-like behaviors, including memory loss, and 
attenuate BDNF reduction in mice treated with MK-801 
(44, 55). Hence, it can be said that quetiapine affects NMDA 
receptor activity and modulates the effect of lithium on 
these receptors.

Conclusion
Overall, the present results indicate that the concomitant 

administration of lithium and quetiapine could have 
beneficial effects on memory formation through 
involvement of NMDA receptors in the CA1 region of the 
hippocampus. On the other hand, it seems that signaling 
pathways of CA1 NMDA receptors that modulate synaptic 
plasticity and memory formation are targets of lithium and 
quetiapine. Given that memory consolidation is a pivotal 
component of cognition, the concurrent administration of 
quetiapine with lithium in BPD therapy is helpful. However, 
further investigations are needed to elucidate the precise 
mechanisms involved.
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