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Living Donor Liver Transplantation (LDLT) is a promising approach to treating end-stage liver diseases, 
however, some post-operatory complications such as pneumonia, bacteremia, urinary tract infections, 
and hepatic dysfunction have been reported. In murine models using partial hepatectomy (PHx), a 
model that emulates LDLT, it has been determined that the synthesis of hepatic cell proliferation factors 
that are associated with noradrenaline synthesis are produced in locus coeruleus (LC). In addition, 
studies have shown that PHx decreases GABA and 5-HT2A receptors, promotes loss of dendritic 
spines, and favors microgliosis in rat hippocampus. The GABA and serotonin-altered circuits suggest 
that catecholaminergic neurons such as dopamine and noradrenaline neurons, which are highly 
susceptible to cellular stress, can also be damaged. To understand post-transplant affections and to 
perform well-controlled studies it is necessary to know the potential causes that explain as a liver 
surgical procedure can produce brain damage. In this paper, we review several cellular processes 
that could induce gliosis in LC after rat PHx.

Article history:
Received: Feb 20, 2023
Accepted: Aug 15, 2023

Keywords: 
Animal model
Brain
Cell damage
Immflamation
Liver
Stress
Surgery
Transplantation

►Please cite this article as:  
Barrientos-Bonilla AA, Pensado-Guevara PB, Nadella R, Sánchez-García AC, Zavala-Flores LM, Hernandez-Baltazar D. Gliosis induction 
on locus coeruleus in a living liver donor experimental model: A brief review. Iran J Basic Med Sci 2024; 27: 12-15. doi: https://dx.doi.
org/10.22038/IJBMS.2023.70847.15389

Introduction
Liver transplantation is a treatment for end-stage liver 

diseases (1, 2), however, most of the organs (or their 
portions) coe from postmortem donors. The number of 
patients exceeds the number of livers available for donation. 
To resolve this problem, the use of liver transplantation 
from Living Donor Liver Transplantation (LDLT) has 
gained great relevance (3-5). LDLT consists of the removal 
and reinsertion of a fraction of the liver (16-30%) from a 
living, healthy, and compatible donor to a sick patient 
(6, 7). However, according to the Clavien-Dindo scale, 
postoperative complications such as keloids, hernias, 
bilomas, hemorrhages, pneumonia, gram-negative-related 
bacteremia, urinary tract infections, hepatic dysfunction, 
impaired regeneration, and severe ischemia/reperfusion 
injury (IRI) in the graft, result in small-for-size syndrome 
(SFSS), thrombocytopenia, and others reported in 10–30% 
of all cases around the world (8-10). 

At the preclinical level, the partial hepatectomy (PHx), an 
animal model designed by Higgins and Anderson in 1931 
(11), emulates LDLT. PHx allows cutting at a maximum of 95 
percent of liver parenchyma (12, 13). Studies using 30%- or 
70%-PHx murine models lead to identifying proliferation, 
cell cycle regulation, and cell death pathways (14-16). 
Highlighting that to reach an efficient liver regeneration 
transcription factor (e.g. Nrf2, Mir33, Keap1), activation of 

proteins, for example, cleavage caspase-3, epidermal growth 
factor (EGF), transforming growth factor (TGF), tumor 
necrosis factor-alpha (TNF-α), humoral response factors 
such as interleukin 6 (IL-6), and other biomolecules such 
as insulin, bile acids, and noradrenaline (NA), also named 
norepinephrine (NE), are tightly involved (13, 17-19). 

NA is produced on the locus coeruleus (LC) which 
leads to the production of growth factors that regulate 
the proliferation of hepatocytes (20, 21). Brain-liver 
communication is carried out through the hepatic plexus 
(Figure 1), Due to this PHx favors neuronal dysfunction due 
to anterograde nerve retraction (22, 23), which could produce 
hepatic encephalopathy or neurological abnormalities. PHx 
induces decreased expression of gamma-aminobutyric acid 
(GABA) and serotonin (5-HT2A) receptors; furthermore, 
PHx  favors dendritic spine loss and microgliosis/astrocytosis 
in rat hippocampus (24-26).

Susceptibility of noradrenergic neurons
Stress-based susceptibility of NA neurons could favor 

degeneration. The clues that can explain this phenomenon 
are discussed in the next lines.

First, LC is a bilateral nucleus, is the most important 
noradrenergic source, and is involved in the regulation of 
learning, pain modulation, and among others, memory 
consolidation and retrieval. The morphotype-based subsets 
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arranged in the dorsal-ventral region of the LC extend 
afferents to CA1 from the hippocampus and cerebellum. It 
has been determined that damage induced by stereotaxic 
manipulation in the CA1 produces hyperactivity and 
motor incoordination. Elevated levels of iNOS, IL-1β, 
and prostaglandin E2 are identified when cerebellum lose 
connectivity with LC, which are associated with atypical 
motor behavior in rats (21, 24, 27-29).

Second, NA is not the only neurotransmitter produced 
on the LC. One subset of LC neurons co-releases galanin 
(Gal) in the dorsal and central regions, and another subset 
co-releases Neuropeptide Y (NPY) in the dorsal portion. In 
addition, the presence of receptors for the neurotransmitter 
acetylcholine (nicotinic receptors, nAChRs: α3, α6, β3, and 
β4), GABA, orexin/hypocretin, and opioid peptides has 
also been identified. The fact that the same morphotypes-
based subset co-releases two different neurotransmitters 
can compromise, in pathological conditions, their 
mitochondrial homeostasis, which could be a disadvantage 
in preventing oxidative/nitrosative imbalance (27, 30). 

Third, LC noradrenergic neurons can be stressed 
easily due to their low anti-oxidant ability. Epigenetic 
or morphological changes can be performed. Genomic 
disturbances include altered expression of genes required 
for the synthesis and release of NA, as well as genetic 
transcription errors focused on protein kinases that activate 
transcription factors or atypical expression of growth 
factors such as brain-derived neurotrophic factor (BDNF). 
Regarding morphology, the distress can generate aberrant 
neuronal arborization and loss of dendritic spines (31-33).

Fourth, NA participates as an inducer of the synthesis of 
growth factors during liver regeneration. This route requires 
a complementary source of NA. The alternative source of NA 
is the chromaffin cells of the adrenal medulla, where NA is 
synthesized from tyrosine, a process that is regulated by the 
hypothalamus and cerebral cortex. The loss of connectivity 
between the brain and the liver can potentiate the activation 
of systemic inflammation (34-36).

However, joining susceptibility neuronal plus PHx 
physical effects leads analyze other factors involved in the 
presence of gliosis in LC.

Neuronal damage linked to PHx
Morphometric changes in neurons after PHx have been 

described. Le et al. (24) reported a decrease in dendritic 
spines in neurons of the CA1 region and dentate gyrus 
from the hippocampus at 1 and 3 days post-PHx. Zhang’s 
group (37) identified pyknotic nuclei, nuclear membrane 
shrinkage, widened perinuclear space, and decreased 
synaptic surface area in hippocampal neurons, according 
to Shilpa´s laboratory which reported neuronal apoptosis 
after ablation of two-70%-PHx (25). To explain this fact it is 
necessary to revise the hot points of the physical impact of 
the hepatectomy procedure (Figure 2).

Amino acid metabolism alteration
Studies have shown that the availability of tyrosine 

modulates the synthesis of NA by phenylalanine hydroxylase 
enzyme complex. The lack of tyrosine and consequently NA 
due to PHx could induce distress (38, 39).

Post-operative infection
Lipopolysaccharide (LPS)-related endotoxemia can 

produce damage to the central nervous system. For example, 
the infection with Lactobacillus rhamnosus alters the GABA 
receptor expression on the cingulate cortex, hippocampus, 
amygdala, and LC (39-41). 

Redox balance
At the liver level it has been demonstrated that the anti-

oxidant capacity remains stable during liver resection but 
decreases during the post-surgical period in humans, which 
can induce post-operative complications such as infections, 
keloids, or delayed liver regeneration (42-44). 

Clinical relevance 
Neuronal dysfunction can be given in the first instance 

by a loss of phenotype, atrophy, and cell death mainly by 
apoptosis (24-26, 37). The relationship between LC and 
the development of neurodegenerative diseases has been 
studied, finding that structural and functional alterations 
are related to pathologies such as Alzheimer’s, Parkinson’s, 

 

  Figure 1. Schematic view of brain-liver axis 
The vagus nerve originates from the posterior lateral sulcus of the medulla oblongata, the right and left portions of this nerve make a connection with the hepatic plexus, which is 
attached to the hepatic artery to integrate into the hepatic parenchyma.  Artwork was performed in Biorender.
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and Dementia (27). In Alzheimer’s Disease, high expression 
of the Tau protein has been observed in LC (45-46), as well 
as a neural decrease of 15 to 55%, and abnormal NA content 
in the LC affecting memory, perception, and visuospatial 
ability (47); while in Parkinson’s disease and dementia there 
is a neuronal decrease of LC (27) followed by microgliosis 
and disruption in the biosynthesis of NA (48).

Conclusion
The data support the hypothesis that a transient 

neuroinflammatory process on LC is activated during liver 
regeneration, but information regarding the neuroprotective 
or cytotoxic effect of glial activation on this brain nucleus is 
of great interest to the researchers. 
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