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Objective(s): Sepsis poses a significant threat to human life, rendering it a burdensome medical 
disease. Despite significant advancements, the current state of medical science still lacks a viable and 
efficacious cure. Costunolide (COST) is a multifaceted sesquiterpene lactone that exhibits a range 
of actions, including anti-inflammatory and antioxidant properties. We investigated the potential 
impacts of COST on a rat sepsis model caused by cecal ligation and puncture (CLP).
Materials and Methods: We created an experimental rat model with the following groups: SHAM, CLP, 
CLP+low dose COST, and CLP+high dose COST. Blood, kidney, and lung samples were collected. 
Inflammatory mediators such as interleukin-1beta (IL-1β), IL-6, tumor necrosis factor-alpha (TNF- α), 
and nuclear factor kappa-B (NF-κB) were investigated. In addition, we assessed oxidative stress by 
measuring 8-Hydroxydeoxyguanosine (8-OHdG) immunopositivity, MDA levels, glutathione (GSH), 
and superoxide dismutase (SOD) activity. Histopathological and immunohistochemical examinations 
backed up our findings.
Results: Compared to the CLP group, the COST group showed a reduction in inflammatory and 
oxidative stress indicators. The expression of inflammatory mediators was suppressed by COST, and 
histological examinations revealed improvements in kidney and lung tissues in the treatment groups.
Conclusion: Our study highlights the preventive effects of COST against CLP-induced sepsis-related 
injury. Considering its beneficial effects against many diseases, COST is worthy as to be evaluated 
against sepsis.
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Introduction
Sepsis is a life-threatening inflammatory reaction caused 

by infections (1). It is the uncontrolled host response 
through inflammatory and immune processes against 
microbial invasions (2). Sepsis is a complicated condition 
with acute organ malfunction and a high mortality risk 
(3). It is a significant factor in enhancing mortality among 
hospitalized patients (4) with critical diagnoses (5). There are 
approximately 50 million sepsis cases and 11 million sepsis-
related deaths in the world annually (6). Furthermore, severe 
COVID-19 cases have developed septic shock accompanied 
by inflammatory storms and many deaths due to sepsis 
(7). In addition, sepsis leads to multiple organ dysfunction 
worsening the course and contributing to mortality (8). The 
kidneys and lungs are two of the organs that are commonly 
damaged by sepsis (9). 

High reactive oxygen species (ROS) levels generally 
damage the human body (10). ROS act as a second 
messenger and affect unfavorably signal cascades (11). 
ROS overproduction results in cytokine release, leukocyte 

infiltration, and lipid peroxidation which can cause 
oxidative stress and organ damage (12). Sepsis induces 
oxidative stress (13). The formation of ROS is enhanced by 
proinflammatory cytokines, such as interleukin-6 (IL-6) 
and tumor necrosis factor-alpha (TNF-α), contributing to 
organ harm associated with sepsis (14). The overabundance 
of cytokines recruits  macrophages and neutrophils to the 
site of infection, where they subsequently release cytotoxic 
ROS, intensifying the immunological response (15). Several 
parameters contribute to evaluating oxidative stress. 
8-Hydroxydeoxyguanosine (8-OHdG) is a biomarker that 
is commonly used to assess oxidative DNA damage (16). 
Malondialdehyde (MDA) is used for the assessment of lipid 
peroxidation (17). Glutathione (GSH) inhibits oxidative 
stress, as a part of the anti-oxidative system (18). In addition, 
superoxide dismutase (SOD) is a vital antioxidant enzyme 
against ROS activity (19).

Sepsis is characterized by an inflammatory response 
triggered by infections, leading to the release of 
proinflammatory cytokines such as interleukin-1beta (IL-
1β), IL-6, and TNF-α (20). TNF-α, IL-6, and IL-1β play 
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a pivotal role in the onset of the systemic inflammatory 
response (21). Nuclear factor kappa-B (NF-κB) regulates 
immunological modulation and  other inflammatory 
response-related functions (22). The NF-κB transcription 
factor orchestrates the synthesis of many molecules, such 
as IL-1β, IL-6, and TNF-α, playing a significant role in the 
initiation and progression of the inflammatory response 
(23). Sepsis triggers multiple organ dysfunction through the 
inflammatory mechanisms (24). The exacerbation of sepsis, 
resulting in consequences such as multiple organ failure, 
is attributed to the detrimental effects of inflammatory 
cytokines, including IL-6 and TNF-α (25). 

Costunolide (COST, C15H20O2, Figure 1), a sesquiterpene 
lactone, is widely available in several plant families and 
is used in traditional East Asian medicine for treating 
infectious and inflammatory diseases (26). COST 
demonstrates antioxidant, anti-inflammatory, and 
antibiotic activities (27). Besides, it has additional effects 
like anticancer properties (28). As we mentioned, COST has 
been examined in various conditions, but not in sepsis. 

We hypothesized that the features we mentioned above 
made COST an appropriate candidate to examine the 
potential effects on cecal ligation and puncture (CLP)-
induced sepsis model in rats. There are several sepsis models 
in the literature (29). We preferred the CLP-induced sepsis 
model because it is quite similar to sepsis in humans (30) 
in terms of the resemblance to perforated appendicitis or 
perforated diverticulitis (31). 

To support our hypothesis, we assessed vital inflammatory 
markers, such as TNF-α, IL-6, NF-κB, and IL-1β. Besides 
we examined 8-OHdG as an oxidative DNA damage 
marker.  We wanted to support the results with SOD, MDA, 
and GSH parameters. In addition, we investigated tissue 
samples with histological examination to compare with 
the other findings. In this way, we hoped to improve the 
sepsis-induced multiple organ injury treatment in terms of 
morbidity and mortality.  

Materials and Methods
Ethical Approval

Atatürk University Local Ethics Council of Animal 
Experiments confirmed the study (Registration Number: 
75296309-050.01.04-E.2000143516, Approved Protocol 
Number: 11/06/2020-95). The experiment was performed 
at Atatürk University Medical Experimental Application 
and Research Center (MEARC). We carried out the present 

study in compliance with the existing protocols of the 
ethics committee and the Helsinki Declaration of the World 
Medical Association recommendations on animal studies. 

 
Experimental animals

MEARC provided 40 female Wistar Albino rats (12–16 
weeks old, weighing 200–250 g) and a surgical room for 
the experimental procedure. The animals were housed in 
MEARC with a 12 hr light/dark cycle, 50–55% humidity 
at 22–25 °C, and granted food and water access ad libitum. 
They were allowed to get used to the environment for ten 
days before the study.

Chemicals
We procured a 10% povidone-iodine solution (Batticon; 

Adeka) for disinfection, and xylazine hydrochloride 
(Rompun®, Bayer, Istanbul) and ketamine (Ketalar®, Pfizer, 
Istanbul) for anesthesia. We purchased COST (purity ≥95%, 
CAS: 553-21-9) from TCI America (USA) and stored it 
(-20 °C, sealed storage, away from moisture and light) 
until the experimental procedure. COST was dissolved 
in 5% dimethyl sulfoxide (DMSO) and 10% Tween-20 in 
phosphate buffer solution (PBS) before administration. The 
application doses (5 mg/kg and 10 mg/kg) were based on 
and modified from previous animal studies (32, 33).   

CLP model
Figure 2 summarizes the preoperative preparation and 

the CLP model process. First, the rats were immobilized in 
the supine position. 15 mg/kg intraperitoneal (IP) xylazine 
hydrochloride and 100 mg/kg IP ketamine were administered 
for anesthesia (34). The abdominal regions were shaved and 
disinfected with 10% povidone-iodine solution. Four study 
groups were designed randomly (Figure 3).

Group I (SHAM, n=10): A longitudinal incision at 2–2.5 

Figure 1. 3D chemical structure of COST (Created with Avogadro version 
1.2.0., http://avogadro.cc/)
 COST: Costunolide

Figure 2. Summary of the CLP model process (created with BioRender.
com)
CLP: Cecal ligation and puncture 
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cm along the ventral line below the xiphoid was performed. 
The abdominal cavities of the animals were opened and 
closed back. The vehicle (5% DMSO and 10% Tween-20 in 
PBS) was IP administered as 10 mg/kg. 

Group II (CLP, n=10): A CLP model was established from 
previous studies (35, 36). We arrived in the ventral cavity 
after the abdominal incision. The cecum was located and 
externalized. We gently dissected the cecum’s mesentery to 
prevent damaging the ileocecal artery’s cecal branch. The 
severity of the CLP model is influenced not only by sepsis 
duration and needle size but also by cecum ligation length 
(37). To cause mid-grade sepsis, we did a medium ligation 
(Figure 4). The distance from the ligation to the base of the 
cecum and the distance between the distal pole and the 
ligation were essentially the same. We tied the distal cecum 
below the ileocecal valve level to avoid intestinal obstruction. 
Then, we used an 18-gauge needle to perform a single pass 
through the cecum. After removing the needle, we squeezed 
a tiny bit of fetal material to verify the holes. We inserted 

the cecum into the abdomen and used a  3.0 silk suture 
to repair the opening. We administered 50 mg/kg saline 
subcutaneously for resuscitation. After the experiment, we 
returned the rats to their cages. The animals had free access 
to food and water. About 16 hours are required to create a 
mild-grade CLP-induced sepsis model by medium ligation 
with an 18-gauge needle (38). Thus, we sacrificed the rats 
following the 16th hour through high-dose anesthesia to 
collect the renal and lung tissues and blood samples.

Group III (CLP+COST 5 mg/kg, n=10): The same 
procedures were performed with group II, but 5 mg/kg 
COST was administered IP 30 min before the CLP model.

Group IV (CLP+COST 10 mg/kg, n=10): 10 mg/kg 
COST was applied IP before the CLP model.

Biochemical analysis
Lung and renal tissue samples were ground with liquid 

nitrogen for homogenization. Next, centrifugation was 
performed for 30 min at 5000 rpm. SOD, MDA, and GSH 
levels were measured by calorimetric methods as described 
in previous studies (39-41). Serum NF-κB, TNF-α, IL-6 and 
IL-1β (Catalog No: BLS-1693Ra, BLS-1396Ra, BLS-1158Ra, 
BLS-1272Ra, respectively, Bostonchem, USA) levels 
were assessed through an ELISA reader (ELISA, BioTEK 
PowerWave XS Winooski, UK). 

Histopathological procedures
The samples including kidney and lung tissues were 

collected and fixed in 10% buffered formalin, dehydrated in 
graded alcohol solution, cleared with xylene, and embedded 
in paraffin. Hematoxylin and eosin (H&E) were used to 
stain tissue sections of 5 mm thickness. After that, the 
sections were examined using a light microscope (Olympus 
BX51, Tokyo, Japan). 

Immunohistochemical procedures
The procedure and protocol for immunohistochemical 

staining were based on our recent study (33). In brief, 
rehydrated paraffin sections were quenched with 3% H2O2 
for 10 min before being incubated with antigen retrieval 
solution. Sections were then incubated with a primary 
antibody specifically against 8-OHdG (sc-66036, 1:100, 
Santa Cruz Biotechnology) for 60 min at room temperature. 
The secondary antibody (Mouse and Rabbit Specific HRP/
DAB IHC Detection Kit - Micro-polymer, ab236466, 
Abcam) was then added and incubated for 10 min 
before being DAB stained, dehydrated after hematoxylin 
counterstaining, cleared in xylene, and mounted. 8-OHdG 
immunopositivity was scored as follows: none (0), mild (1), 
moderate (2), and intense (3).

Gene expression analysis
Lung (30 mg) and kidney (30 mg) tissues were treated 

using RNA stabilization reagent. The tissues were then frozen 
with liquid nitrogen and homogenized with Tissue Lyser II. 
Total RNA was extracted according to the manufacturer’s 
instructions. The RNA samples were reverse-transcribed 
into complementary DNA using  a high-capacity cDNA 
reverse transcription kit. The Epoch Spectrophotometer 
System and Take3 Plate were used to determine and quantify 
cDNA concentrations (42). Materials used for the processes 
are represented in Table 1. 

The Step One Plus Real-Time  PCR System technology 
(Applied Biosystems) was used to analyze the expression of 

Figure 4. Establishment of the mid-grade sepsis through a medium 
ligation. Equal ligation distances between the base of the cecum and the 
ileocecal valve level (created with BioRender.com)

Figure 3. Design of the experimental study groups (created with BioRender.
com)
CLP: Cecal ligation and puncture, COST: Costunolide, IP: Intraperitoneal, DMSO: 
Dimethyl sulfoxide, PBS: Phosphate buffer solution
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TNF-α, IL1-β, IL-6, and NF-κB. Endogenous controls were 
carried out through beta-actin. All quantifications of gene 
expression procedures were carried out for each group in 
triplicate determinations in a 96-well optical PCR plate. The 
2−ΔΔCt method (43) represented all data  as fold changes in 
expression compared to the SHAM group.

Statistical analysis
We used SPSS 20.0 software (IBM Corp, Armonk, NY, 

USA) for statistical analysis. The results were shown as 
mean and standard deviation. To compare the groups, one-
way ANOVA and Duncan’s multiple comparison tests were 
utilized. Statistical significance was defined as a P-value of 
0.05. In the Duncan test, means with the same letter in the 
same column are not statistically different. 

For the immunohistochemical examination, data are 
presented as mean ± standard error (SE). GraphPad Prism 
8.0.1 software was used in the statistical analysis. Kruskal 
Wallis followed by the Mann-Whitney U test was performed 
to compare the differences among groups. P<0.05 was 
regarded as statistically significant.

Results
COST alleviates oxidative stress in septic lung and kidney 
tissues

In the kidney tissue (Figure 5), COST significantly 
reduced the MDA levels and elevated the SOD and GSH 
activity, compared to the CLP group (P<0.05). High-dose 
COST administration (10 mg/kg) was more efficient than 
the low dose (5 mg/kg) statistically (P<0.05) for MDA and 
GSH values. It was also higher, but not meaningful for SOD 
activity (P>0.05).

In the lung tissue (Figure 6), MDA levels decreased 
and GSH and SOD activity elevated in the COST groups 
compared to the CLP group (P<0.05). High dose COST 
group performed a better anti-oxidant activity than the low-

dose COST group in terms of MDA, GSH, and SOD levels 
(P<0.05). 
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Table 1. Gene express analysis materials for the Step One Plus Real-Time PCR system

Figure 5. Kidney GSH, SOD, and MDA levels of the experimental groups 
in the cecal ligation and puncture rat model
Statistically, P<0.05 value was considered significant. Different letters (a, b, c, and d) 
indicate the statistical differences. There are no statistically significant differences 
between groups that share a common letter
COST: Costunolide, CLP: Cecal ligation and puncture, MDA: Malondialdehyde, 
SOD: Superoxide dismutase, GSH: Glutathione
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COST performs anti-inflammatory activity through 
attenuating proinflammatory cytokine production

Figure 7 represents the serum cytokine levels of the 
experimental groups. COST lowered the TNF-α, IL1-β, 
IL-6, and NF-κB levels significantly compared to the CLP 
group (P<0.05). When the COST groups were compared to 
each other, high dose COST administration left standing the 
low dose (P<0.05). 

Besides, the lung and kidney tissue cytokine expression 
levels were in accordance with the ELISA results. COST 
diminished TNF-α, IL1-β, IL-6, and NF-κB expression 
in both kidney and lung tissue samples (P<0.05, Figures 
8 and 9, respectively). The high-dose COST group was 
more effective than the low-dose group for alleviating both 
kidney and lung cytokine expression, while the difference 
did not make sense for only NF-κB expression in the lung 
tissue (P>0.05).

 
Effects of COST on histopathology of the kidney and lung 
tissues after the CLP procedure

Figure 10 demonstrates the kidney tissue 
histopathological findings. As seen in Figure 10a, the 
glomerulus structure was typical architecture, and the 
tubules were firmly packed in the SHAM group. In the CLP 
group, signs of widened Bowman’s capsule were observed 
(Figure 10b). Additionally, mononuclear cell infiltration in 
interstitial areas and focal tubular ballooning degeneration 
were signs of tubular injury. Furthermore, the CLP+COST 
5mg/kg group showed moderately enlarged Bowman’s capsule, 
cytoplasmic vacuolations, and inflammatory cellular infiltrates 

Figure 6. Lung GSH, SOD, and MDA levels of the experimental groups in 
the cecal ligation and puncture rat model
Statistically, P<0.05 was considered significant. Different letters (a, b, c, and d) indicate 
the statistical differences. There are no statistically significant differences between 
groups that share a common letter
COST: Costunolide, CLP: Cecal ligation and puncture, MDA: Malondialdehyde, 
SOD: Superoxide dismutase, GSH: Glutathione

Figure 7. TNF-α, IL1-β, IL-6, and NF-κB levels of the experimental groups 
in the cecal ligation and puncture rat model
Statistically, P<0.05 value was considered significant. Different letters (a, b, c, 
and d) indicate the statistical differences. There are no statistically significant 
differences between groups that share a common letter. IL-1β Interleukin-1beta IL-6: 
interleukin-6, TNF-α: Tumor necrosis factor-alpha, NF-κB: Nuclear factor kappa-B 

Figure 8. Relative mRNA expression levels of IL1-β, IL-6, TNF-α, and 
NFκB of the kidney tissues in the cecal ligation and puncture rat model
The expression of mRNAs was detected using quantitative Real-Time PCR analysis. 
β-actin was used as the reference gene. Statistically, P<0.05 value was considered 
significant. Different letters (a, b, c, and d) indicate the statistical differences. There 
are no statistically significant differences between groups that share a common letter
IL-1β: Interleukin-1beta, IL-6: interleukin-6, TNF-α: Tumor necrosis factor-alpha, 
NF-κB: Nuclear factor kappa-B 
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(Figure 10c). The CLP+COST 10 mg group had almost normal 
renal glomeruli appearance, moderate tubular cytoplasmic 
vacuolation, and inflammatory cellular infiltrates (Figure 10d).

Histopathological findings of the lung tissue are shown 
in Figure 11. The alveoli structure in the SHAM group was 
regular (Figure 11a). Edema and inflammatory infiltration 
(alveolar macrophages and lymphocytes) thickened the 
alveolar membranes in the CLP group (Figure 11b). After the 
administration of 5 mg/kg COST, moderate inflammatory 
infiltrates were seen in alveolar membranes (Figure 11c). 
CLP+10 mg COST group showed nearly normal alveoli 
structure and mild inflammatory infiltrates in alveolar 
membranes (Figure 11d).

COST ameliorates CLP-Induced 8-OHdG 
immunopositivity

As shown in Figures 12a and 13a, the lung and kidney 
sections represented no immunopositivity for 8-OHdG in 
the SHAM group (Table 2, P>0.05), but intense positive 
immunopositivity was detected in the CLP group (Figures 
12b and 13b; Table 1, P<0.05). CLP+ COST 5 mg showed 
moderate 8-OHdG immunopositivity (Figures 12c and 13c; 
Table 2, P<0.05). Administration of 10 mg COST attenuated 
the rise of immunopositivity in lung and kidney sections 
after CLP induction. The renal tubules and cells lining the 
alveoli showed a mild 8-OHdG immunopositivity in the 
CLP+COST 10 mg group (Figures 12d and 13d; Table 2, 
P<0.05).

Discussion
This study investigates the potential protective effects 

Figure 9. Relative mRNA expression levels of IL1-β, IL-6, TNF-α, and 
NFκB of the lung tissues in the cecal ligation and puncture rat model
The expression of mRNAs was detected using quantitative Real-Time PCR analysis. 
β-actin was used as the reference gene. Statistically, P<0.05 was considered significant. 
Different letters (a, b, c, and d) indicate the statistical differences. There are no 
statistically significant differences between groups that share a common letter
IL-1β: Interleukin-1beta IL-6: interleukin-6, TNF-α: Tumor necrosis factor-alpha, 
NF-κB: Nuclear factor kappa-B

Figure 10. Protective effect of COST against CLP-induced kidney injury 
in the cecal ligation and puncture rat model
SHAM group (a), CLP group (b), CLP+COST 5 mg/kg group (c), CLP+ 
COST 10 mg/kg group (d). Enlarged Bowman's spaces (asterisks), 
cytoplasmic vacuolations (arrowheads), and inflammatory cellular 
infiltrates (arrow). H&Ex200.
COST: Costunolide, CLP: Cecal ligation and puncture

Figure 11. Protective effect of COST against CLP-induced lung injury 
in the cecal ligation and puncture rat modelSHAM group (a), CLP group (b), 
CLP+COST 5 mg/kg group (c), CLP+COST 10 mg/kg group (d). Thickening due to 
inflammatory infiltrate (asterisk). H&Ex200.
COST: Costunolide, CLP: Cecal ligation and puncture

Figure 12. Representative photomicrographs of rat renal tissues immunopositive 
for 8-OHdG from the sham group showing no immunopositivity in the 
renal tubules (a), from the CLP group (b) with intense immunopositivity in 
the renal tubules (arrowhead),  from the CLP+ COST 5 mg/kg (c) treated 
group showing moderate immunopositivity for 8-OHdG in the renal tubules 
(arrowhead), and from the CLP+ COST 10 mg/kg (d) treated group showing 
mild immunopositivity for 8-OHdG in the renal tubules (arrowhead). IHCx200.
COST: Costunolide, CLP: Cecal ligation and puncture
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of COST against the sepsis model caused by CLP in rats 
by assessing oxidative stress and inflammation. The CLP-
induced sepsis model was validated through overexpression 
of TNF-α, IL1-β, IL-6, and NF-kB, thereby demonstrating 
the occurrence of a systemic inflammatory response. 
Furthermore, the generation of the identical parameters 
was corroborated by the ELISA findings. The presence of 
8-OHdG immunopositivity and the measurement of SOD, 
GSH, and MDA levels in lung and renal tissue samples 
provided evidence of oxidative stress associated with sepsis. 
The histological examination offered additional support to 
the conclusions. COST injection  effectively mitigated the 
situation and averted sepsis generated by CLP. The results 
demonstrated the preventive effects of COST.

Sepsis is a critical medical disorder that poses a 
significant risk to life, characterized by a close association 
with systemic inflammation and the occurrence of multiple 
organ failure (44). The primary cause of organ damage 
in sepsis is inflammation (45). The kidneys and lungs are 
among the organs commonly affected by sepsis (9). During 
inflammation, there is excessive production of several 
inflammatory mediators such as TNF-α, IL1-β, IL-6, and 
NF-κB, among others (46). Multiple proinflammatory genes, 
such as TNF-α, IL1-β, and IL-6, depend on the transcription 
factor NF-κB for their production (47). 

COST suppresses the NF-kB signaling pathway, implying 
that it has anti-inflammatory properties (27). Prior research 

demonstrated that COST inhibited chronic inflammation 
induced by NF-κB and Wnt/β-catenin signaling pathways 
(48). The study conducted by Mao et al. demonstrated 
that COST mitigated the detrimental effects of alcohol-
induced liver injury by modulating the LPS/TLR4/NF-
κB signaling pathway (49). The administration of COST 
resulted in decreased phosphorylation of NF-κB p65 in 
mice colon tissues induced by dextran sulfate sodium 
(DSS) (50). Inhibition of NF-κB-mediated inflammation 
by COST resulted in the alleviation of atherosclerosis 
in mice (51). COST also reduced NF-B activity in LPS-
stimulated RAW264.7 cells in a different study (52). Pitchai 
et al. observed a reduction in the overexpression of NF-
κB subunits in breast cancer cells due to treatment with 
COST (53). NF-κB activation was suppressed by COST 
administration in acute liver injury (54), pleurisy (55), 
and acute gastric ulcer (56) mouse models. Our results are 
consistent with the literature, and COST inhibited NF-κB 
production in our CLP-induced sepsis rat model. 

Sepsis induces an up-regulation in the production of 
proinflammatory cytokines, including IL1-β, IL-6, and 
TNF-α (57). The administration of COST resulted in the 
reduction of TNF-α, IL1-β, and IL-6 levels in an obesity 
cardiomyopathy mouse model (58). COST decreased the 
expression of IL1- β, IL-6, and TNF-α in a murine model 
of acute ulcerative colitis, according to another study 
(50). COST effectively mitigated the expression of hepatic 
proinflammatory cytokines, including   IL-1β, IL-6, and 
TNF-α, in mice fed the DCC diet (59). The treatment of 
COST resulted in a reduction in the level of TNF-α in a 
rat model of cerebral ischemia (60). Treatment with COST 
dramatically lowered IL-6 and TNF-α levels and improved 
lipoteichoic acid (LTA)-induced inflammatory response in 
an acute lung injury mouse model (61). Wang et al. reported 
that COST treatment decreased the expression of TNF- and 
IL1- in a murine model of acute liver injury (54). COST 
prevented TNF-α production in an experimental pleurisy 
study (55) and an ethanol-induced gastric ulcer rat model 
(56). In our previous study, we created a renal ischemia-
reperfusion rat model and first experienced COST and 
alleviated the inflammatory process by diminishing IL1-β, 
IL-6, and TNF-α levels (33). Here, we managed to decrease 
IL1-β, IL-6, and TNF-α levels with COST administration. 
Our data was in accordance with the literature, mentioning 
COST’s anti-inflammatory properties through affecting 
pro-inflammatory genes. 

In sepsis models, there is a drop in the levels of SOD and 
GSH while the levels of MDA increase. These changes can 
be attributed to the presence of oxidative stress (62, 63). In 
an experimental rat model, the administration of COST 
increased SOD activity in response to cerebral ischemia (60). 
The enzymatic activities of GSH and SOD were enhanced 
following treatment with COST in a rat model of diabetes 
induced by streptozotocin (STZ) (64). In a model of acute 

Figure 13. Representative photomicrographs of rat lung tissues 
immunopositive for 8-OHdG from the SHAM group (a) showing no 
expression in the cells of the alveoli, from the CLP group (b) with intense 
immunopositivity in the cells of the interalveolar areas (arrowheads), from the 
CLP+COST 5 mg/kg (c) treated group showing moderate immunopositivity 
for 8-OHdG in the cells of the alveoli (arrowhead), and from the CLP+COST 
10 mg/kg (d) treated group showing mild immunopositivity for 8-OHdG in 
the cells of the alveoli (arrowhead). IHCx200
COST: Costunolide, CLP: Cecal ligation and puncture

 

      
      

     

 

Table 2. The effect of COST treatment on 8-OHdG immunopositivity of lung and kidney tissues in CLP rat experimental groups

Data are expressed as mean ± SE (n = 10)
*significant difference with the SHAM group
#significant difference with the CLP group
+significant difference with CLP+5 mg COST group
COST: Costunolide, CLP: Cecal ligation and puncture
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gastric rat ulcer, treatment with COST resulted in increased 
SOD activity and regression of MDA levels, indicating 
enhanced antioxidant activity (56). Our previous research 
revealed that COST induced SOD and GSH activity and 
decreased MDA value by showing an antioxidant effect in 
a renal ischemia-reperfusion rat model (33). In the current 
study, we obtained compatible results with the literature and 
found out the antioxidant capacity of COST in sepsis.

8-OHdG is a recognized biomarker of oxidative DNA 
damage and exhibits elevated levels in instances of organ 
harm associated with sepsis (65). In our previous research, 
COST diminished 8-OHdG expression in lung and kidney 
tissues in an ischemia-reperfusion rat model and prevented 
oxidative DNA damage (33). COST inhibited 8-OHdG 
expression in lung and kidney tissues in our study, indicating 
the preventive effect of COST against oxidative DNA damage. 

The kidneys and lungs are susceptible to harm associated 
with sepsis (63, 66). Sepsis-induced organ damage is 
closely linked to the occurrence of systemic inflammation 
(67). Although we examined the inflammatory mediator 
expression, we also histologically investigated lung and 
kidney tissue samples, supporting our findings.

The present study demonstrated that the administration 
of COST significantly ameliorated the detrimental effects 
of CLP-induced sepsis by enhancing inflammatory indices 
and oxidative stress markers. COST exhibited both anti-
inflammatory properties against systemic inflammation and 
protective effects on the lungs and kidneys, which are two 
vital organs susceptible to septic damage. 

Conclusion
Our study showed that COST performed anti-

inflammatory and antioxidant activity by alleviating CLP-
induced sepsis injury in rats. COST mitigated systemic 
inflammation by suppressing proinflammatory cytokine 
production and attenuated oxidative stress via improving 
oxidant and antioxidant parameters. Histological examination 
supported our findings. 

The current findings highlight the potent benefits of 
COST as an appropriate candidate for sepsis and sepsis-
related organ failure therapies. Our research was the first 
experiment on the effects of COST against sepsis, and we 
suggest that the data is worth evaluating for further research. 
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