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Objective(s): Andrographolide has been studied on different types of human cancer cells, but very 
few studies have been conducted on oral cancer. The study aimed to evaluate the anticancer potential 
of Andrographolide on an oral cancer cell line (KB) through in-silico network analysis and in vitro 
assays.
Materials and Methods: The in-silico analysis involved the determination of drug-likeness prediction, 
prediction of common targets between oral cancer and andrographolide, Protein-Protein Interactions 
(PPI), hub genes, top 10 associated pathways by Kyoto Encyclopaedia of Genes and Genomes (KEGG) 
pathway, gene ontology (GO), and molecular docking experiments. In vitro assays comprised MTT 
assay, apoptosis assay, cell cycle analysis, intracellular reactive oxygen species (ROS) measurement, 
mitochondrial membrane potential (MMP), anti-migration activity, and gene expressions using 
polymerase chain reaction (PCR).
Results: Fifteen common genes were obtained and were seen to be involved in cellular proliferation, 
regulation of apoptosis, migration of cells, regulation of MAPK cascade, and regulation of cell cycle. 
The most common genes involved in the top 10 pathways were MAPK1, MAPK8, MAPK14, and 
IL6 which were seen to be associated with the MAPK signaling pathway which may be the key 
pathway through which andrographolide may aid in treating oral cancer. In vitro assays showed anti-
proliferative properties, late apoptosis, and anti-migratory properties.
Conclusion: According to the results obtained, andrographolide has shown anticancer properties and 
has the potential to be used as a chemotherapeutic drug. The in-silico approach used in the present 
study can aid as a model for future research in developing efficient cancer treatments.
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Introduction
Oral cancer (OC) has the unfortunate distinction of being 

the leading cancer in India, with an increasing incidence 
rate of 10.4% and a mortality rate of 9.3% for both men 
and women. On a global scale, it ranks as the eighth most 
prevalent cancer form (1). Despite the continued importance 
of surgical resection in cancer treatment, a major obstacle lies 
in the substantial risk of cancer recurrence observed in many 
patients, frequently occurring within a short period (2).

Andrographis paniculata, a herbal plant belonging to 
the Acanthaceae family, has been traditionally used in 
medicine for addressing a variety of health conditions. 
Widely cultivated in India, Thailand, and China (3), this 
plant’s leaves and stem are rich in the diterpene lactone 
known as andrographolide. A. paniculata showcases 
diverse bioactive properties, including anticancer effects 
(4), anti-inflammatory benefits (5), hepatoprotection (6), 
immunomodulation, and anticancer properties (7), as well 
as anti-infection properties (8). Through dichloromethane 
extraction, the primary bioactive compound andrographolide 
from A. paniculata has demonstrated the ability to hinder 
the proliferation of various human cancer cells, spanning 

a broad spectrum of cancer types (9). The primary 
bioactive compound found in the plant is andrographolide 
(C20H30O5), constituting 1.84% of the plant extract. This 
colorless, crystal-like compound possesses an intensely 
bitter taste and features a lactone structure, specifically a 
bicyclic diterpenoid lactone (10). Its molar mass is 350.455 
g/mol and its melting point is 230-231 °C. Its solubility in 
water is limited. In contemporary contexts, andrographolide 
and its various derivatives have been documented to exhibit 
numerous pharmacological attributes. These include anti-
inflammatory, hepatoprotective, anti-viral, neuroprotective, 
antioxidant, anti-fibrotic, anti-hyperglycemic, anti-tumor, 
anti-atherosclerotic, antimicrobial, and cardiovascular 
protective properties (11-16).

Andrographolide has the capability to traverse the blood-
brain barrier (BBB) and exerts a potent anti-inflammatory 
influence on various types of leukocytes, such as T-cells, 
macrophages, and neutrophils (17), as well as endothelial 
cells (18). Beyond its anticancer attributes, numerous 
studies have suggested that andrographolide exhibits a 
comprehensive anti-inflammatory impact, including the 
inhibition of NFκB binding to DNA (19, 20).
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Andrographolide has been observed to regulate various 
signaling pathways associated with cancer and angiogenesis, 
including PI3K/AKT/mTOR (21, 22), SRC/MAPKs/AP-1 
(23), TLR4/NF-κB/MMP-9 (24), and VEGF/VEGFR2/AKT 
(25). Recent findings underscore that the administration 
of andrographolide in human cancer cells elevates 
apoptosis rates and impedes cell proliferation. While this 
effect has been extensively studied in numerous cancer 
cells, the specific mechanistic pathways through which 
andrographolide exerts its anti-tumorigenic actions in OC 
remain unclear and await comprehensive understanding.

To explore the potential anti-cancer attributes of 
Andrographolide, particularly concerning OC, the 
present study utilized a combination of in-silico network 
pharmacology and in vitro assays.

Materials and Methods 
In-silico analysis
Drug‑likeness prediction

To assess the drug-likeness of andrographolide, 
Lipinski’s rule of five (RO5) was employed, for 
screening oral drugs in humans. Various parameters 
were evaluated. Andrographolide  SMILES format, 
CC12CCC(C(C1CCC(=C)C2CC=C3C(COC3=O)O)(C)
CO), was entered into the “SwissADME server (http://www.
swissadme.ch)”, an online tool that calculates parameters like 
absorption, distribution, metabolism, excretion (ADME), 
oral bioavailability (OB), and drug-likeness (DL)(26). 

Target proteins of andrographolide and oral cancer
To predict the targets of andrographolide, the “Swiss Target 

Prediction database (http://www.swisstargetprediction.
ch/)”(27) was employed for predicting the corresponding 
genes associated with andrographolide. The DisGeNet 
database was utilized to obtain the genes related to OC. The 
common genes were subsequently identified and selected 
for further analysis.

Gene ontology and pathway enrichment
To perform GO (Gene Ontology) and KEGG (Kyoto 

Encyclopedia of Genes and Genomes) pathway enrichment 
analysis, we utilized two different tools: the Database 
for Annotation, Visualization, and Integrated Discovery 
(DAVID, https://david.ncifcrf.gov/, ver. 6.8) for GO analysis 
and the ShinyGO database (ShinyGO, http://bioinformatics.
sdstate.edu/) for pathway enrichment analysis. DAVID is 
a versatile tool for annotating and interpreting gene lists, 
while ShinyGO specializes in GO and pathway enrichment 
analysis. KEGG is a comprehensive pathway database 
that provides graphical representations of biochemical 
pathways(28, 29). GO is a valuable resource for functional 
genomics, offering definitions and classifications of gene 
functions (30). To present and analyze the data, we generated 
bubble charts and histograms using the Bioinformatics cloud 
platform (http://www.bioinformatics.com.cn/), an online 
platform designed for data processing and visualization.

Protein-protein interaction analysis
Protein-protein interactions play a crucial role in 

biological processes and are essential for understanding 
the complex systems within living cells (31). To map the 
PPI network, the cluster of target genes was analyzed using 
the Search Tool for the Retrieval of Interacting Genes 

database (http://string-db.org/; version 11.5). The analysis 
focused on “Homo sapiens” as the species and a threshold 
of >0.9 was applied to ensure high-confidence information. 
Subsequently, the PPI network was constructed using 
Cytoscape (https://cytoscape.org/; version 3.9.1), a widely 
used bioinformatics software for data visualization and 
integration (32). To identify clusters or highly interconnected 
regions within the PPI network, the Cytoscape plugin 
cytoHubba (https://apps.cytoscape.org/apps/cytohubba; 
version 0.1) was employed. Proteins with the highest MNC 
(Maximum Neighborhood Component) level rankings 
were identified as hub targets within the network.

Molecular docking assessment between hub genes and 
andrographolide

 The molecular docking simulations were executed using 
CB-Dock, a tool capable of automatically identifying active 
sites within a given protein, determining their centers and 
sizes, based on the query ligands (33). The Protein Data 
Bank (http://www.rcsb.org) was used to access the crystal 
structures of the target proteins. Similarly, the 3D structure 
of Andrographolide was obtained from the PubChem 
compound database (https://pubchem.ncbi.nlm.nih.gov/). 
These protein and ligand structures were used as inputs for 
CB-Dock, where the docking analysis explored the binding 
activities between the proteins and andrographolide. The 
Discovery Studio Visualizer software (Accelrys Software 
Inc.) was employed for the visualization and analysis of the 
docking results (34).

Top of form
Gene expression levels of hub genes

In this study, Gene Expression Profiling Interactive 
Analysis (GEPIA; http://gepia2.cancer-pku.cn/) was 
employed to verify the varied expressions of the hub genes in 
OC and normal oral tissues. GEPIA is an online server that 
offers interactive and customizable functionalities utilizing 
data from the Cancer Genome Atlas (TCGA) and Genotype-
Tissue Expression (GTEx) database Furthermore, GEPIA 
facilitated the analysis of these genes based on pathological 
stages, providing valuable insights into their expression 
patterns in different disease stages (35).

Overall survival analysis of hub genes
To investigate the impact of the hub targets on the overall 

survival (OS) of patients with OC, the Kaplan-Meier [KM] 
Plotter (http://kmplot.com/analysis/index.php?p=service)
(36), a cancer genomics dataset, was utilized. This dataset 
allows for the assessment of the prognostic significance of 
genes on survival outcomes. The patients with OC were 
categorized into two groups based on the presentation levels 
of the hub genes: low and high expression. A KM survival 
plot was generated to compare the survival outcomes 
between the two groups. 

Anticancer activity of Andrographolide
Cell culture and maintenance

The KB (Oral Cancer) cell line was obtained from the 
National Centre for Cell Sciences (NCCS) in Pune. These 
cells were cultured in DMEM (GibcoTM) medium at a 
temperature of 37 °C. The culture medium was supplemented 
with 10% Fetal Bovine Serum (FBS, GibcoTM) and 1% 
antimycotic-antibiotic solution (GibcoTM). The cells 
were maintained in a CO2-enriched environment with a 
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concentration of 5% to support their growth and viability.

Preparation of stock solutions
Andrographolide (Sigma-Aldrich) was prepared as 

a stock solution with a concentration of 10 mg/ml by 
dissolving 10 mg of andrographolide in 1 ml of Dimethyl 
Sulfoxide (DMSO). This stock solution was then stored at 
-80 °C. From the stock solution, a working solution with 
a concentration of 1 mg/ml was prepared by diluting the 
stock solution in a complete medium and passing it through 
a sterile 0.22 µm filter to ensure sterility. Dilutions of the 
compound were made in a complete culture medium to 
obtain concentrations of 110, 100, 90, 80, 70, and 60 µg/ml. 

Cytotoxicity assay of andrographolide
The MTT conversion assay was employed to assess 

cell cytotoxicity. KB cells were seeded in a 96-well plate 
at a density of 5×104 cells/ml. Various concentrations of 
andrographolide, ranging from 60 µg/ml to 110 µg/ml, 
were applied to the cells. After treatment, 20 µl of 5 mg/
ml MTT solution was added to each well and incubated 
for 4 hr. Subsequently, 100 µl of DMSO was added to each 
well to dissolve the formazan crystals. The absorbance at 
570 nm was measured using the Multi-scanGo Thermo 
Fischer Scientific ELISA plate reader. The IC50 values were 
calculated using a Microsoft Office Excel worksheet (37).

Apoptosis analysis
The apoptosis assay was performed using the FITC 

Annexin V/Dead Cell Apoptosis Kit (Invitrogen-Molecular 
Probes®). The protocol prescribed by the manufacturer was 
followed. Flow cytometry was used to examine these stained 
cells at emission wavelengths of 530 and >575 nm. In this 
assay, Andrographolide and Paclitaxel (PTX) IC50 and IC25 
values were used for performing the Apoptosis assay (38).

Cell cycle analysis
KB cells, both with and without treatment of 

andrographolide and PTX, were harvested 24 hr after 
washing with 1X PBS and trypsinization. To the collected 
cells, a mixture of 25 μl RNase A (20 mg/ml Invitrogen), 2 mM 
MgCl2 (Sigma), and 5-10 μl of 100 µg/ml propidium iodide 
(Invitrogen) was added. The cells were then incubated at 
room temperature for 10-15 min and subsequently analyzed 
using a FACS-caliber instrument from BD Bioscience (39). 

Wound scratch assay
 A density of 2×105 cells/ml was seeded in 12-well plates 

and allowed to reach over 90% confluency. A linear wound 
was created in the center of each well using a 200 μl plastic 
tip. The wounded cell monolayers were washed three times 
with 1X PBS to remove cell debris and then treated with 
andrographolide and PTX, with a control group, before 
being incubated for 24 hr. Photos of the scratches were 
recorded at 0, 6, and 24 hr using an OLYMPUS CKX53 
microscope. Subsequently, the cells were allowed to migrate 
by incubating them at 37 °C in a medium containing 5% 
serum in the presence or absence of the drugs (40). 

Estimation of generation of intracellular reactive oxygen 
species [ROS]

To assess ROS generation, flow cytometry was employed 
using DCFHDA(41). In this assay, KB cells were cultured in 

6-well plates for 24 hr. Upon reaching 70-80% confluence, 
the cells were treated with andrographolide and PTX at 
concentrations corresponding to their respective IC50 and 
IC25. Flow cytometry [Beckman Coulter Cytomics FC 
500 instrument] (495 nm and 520 nm) was employed to 
measure the fluorescence. 

Mitochondrial membrane potential (ΔΨm):
To assess ΔΨm in KB cells, we employed the MitoProbe™ 

DiIC1 (5) Assay Kit as per the manufacturer’s instructions. 
This kit contains DiIC1 (5), a cyanine dye sensitive to 
changes in membrane potential, and CCCP, a disrupter 
of mitochondrial membrane potential used for research. 
DiIC1 (5) can readily enter cell cytoplasm and accumulate 
in mitochondria with active ΔΨm, yielding a bright far-red 
fluorescence. 

RNA isolation and RT-PCR
The culture cells were treated with the desirable drug 

concentrations. After drug incubation cells were harvested 
by discarding the growth medium and total RNA was isolated 
from cells using the TRIzol method (TRIzol™ Reagent, 
Invitrogen cat no. 15596018), following the manufacturer’s 
instructions. The primers used in the present study are listed 
in Supplementary Table 1[ST: 1].

Statistical analysis
The experiments were replicated three times, and the 

results are presented as the mean±standard deviation 
(SD). Data analysis was done using GraphPad Prism 8. 
“Two-way ANOVA” followed by respective post hoc tests at 
****P<0.0001, ***P<0.001, and  **P<0.01 to determine the 
statistical significance between the groups as compared to 
control.

Results 
In-silico analysis
Molecular properties of andrographolide

Our findings demonstrate that andrographolide adheres 
to Lipinski’s Rule of Five (RO5). The molecular properties of 
andrographolide, followed the RO5 criteria, indicating that 
it possesses favorable drug-like characteristics. 

Target identification and analysis
 Screening of OC-related targets using the search term 

“Lip and oral Cavity carcinoma” resulted in the identification 
of a total of 734 targets. Additionally, the Swiss Target 
Prediction database was employed to search for targets of 
andrographolide, leading to the identification of 100 targets. 
A comparison between the targets of andrographolide and 
the OC-related targets revealed a common set of 15 genes. 
(Supplementary Figure 1. SF:1). 

Development of protein–protein interaction network (PPI) 
and determination of key targets

The study used the STRING Database to analyze 
protein-protein interactions among 15 identified targets. 
Cluster analysis in Cytoscape 3.9.1 revealed two distinct 
clusters: Cluster 1 (P-value-0.00297)(SF:2) associated with 
cell proliferation (red), apoptosis (yellow), cell migration 
(blue), and the MAPK cascade (green), and Cluster 2 
(P-value-0.00889)(SF:2) linked to cell division, G2/M 
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transition regulation (red), and G1/S transition regulation 
in the mitotic cell cycle (blue). These clusters suggest close 
associations and shared biological processes among the 
target proteins.
Top 10 hub genes analysis

Through the application of various algorithms, the study 
identified the top 10 hub genes: IL6, MMP9, MAPK1, 
AR, CDK4, MAPK14, MAPK8, ADAM17, WEE1, and 
CDK1. Among these hub genes, IL6 emerged as the most 
prominently active gene (ST: 2, SF:3).

GO and KEGG enrichment analysis
GO enrichment analysis of the 10 hub genes revealed 

around 69 GO terms. In terms of biological processes (BP), 
these targets are involved in cellular responses to ROS, 
regulation of the G2/M phase, and apoptotic processes. 
The cellular component (CC) results included the cyclin-
dependent protein kinase, mitotic spindles, and the 
endoplasmic reticulum lumen. In relation to molecular 
function (MF), the targets predominantly play roles in 
IL6 receptor binding and MAP kinase activity (Figure 1). 
Through KEGG pathway analysis, a total of 40 pathways 
were identified. Among these pathways, the top 15 pathways 
were selected for further examination. It was found that 
the top 10 hub genes had close associations with various 
pathways, predominantly the TNF signaling pathway, IL-17 
signaling pathway, and cellular senescence (Figure 1). The 
top 10 pathways consistently involved genes such as MAPK 
1, 8, 14, and IL-6. These genes were notably associated with 
the MAPK signaling pathway (ST:3). 

Confirmation of hub target by molecular docking
In a recent evaluation of drug-target interactions, ten hub 

genes were chosen as targets for molecular docking analysis. 
Using CB-DOCK, the structure of andrographolide was 
assessed for its docking potential with IL6, MMP9, MAPK1, 
AR, CDK4, MAPK14, MAPK8, ADAM17, WEE1, and 
CDK1. The results revealed binding energies lower than 
-5.0 for all core target proteins, indicating a robust binding 
activity between andrographolide and the core targets. The 
specific binding energies are presented in Table 1, and the 
docking sketch maps illustrating the interactions between 
the target proteins and andrographolide are depicted in 

Figure 2.

mRNA expression levels of hub genes
Using the GEPIA database, we found that CDK1, CDK4, 

and MMP9 mRNA levels were significantly higher in OC 

Figure 1. Gene ontology (GO) and kyoto encyclopaedia of genes and genomes (KEGG) enrichment analysis
A): GO enrichment analysis was obtained by taking 10 biological processes (BP), Molecular functions (MF), and Cellular components (CC) from the DAVID Database for the 
targets in andrographolide treating oral cancer.  B): A Bubble plot depicting the enrichment of the top 15 signaling pathways associated with Oral Cancer was generated. The X-axis 
represents the enrichment factor of the genes, while the Y-axis represents the different pathways. The circles in the plot are color-coded and sized based on the Log10 [P-value], 
where red signifies pathways with the highest number of genes and light green indicates pathways with fewer genes

Table 1. Molecular docking scores for  andrographolide with hub target 
proteins depicting binding energy levels indicating strong interaction of 
hub gene and andrographolide

Figure 2. Sketch and matching diagrams of molecular docking of 
Andrographolide and top 10 hub genes (target proteins)
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tissues compared to normal oral mucosa samples (P<0.01)
(Figure 3A). Furthermore, results showed that CDK1, 

CDK4, IL6, MAPK8, and MMP9 exhibited significant 
changes across different pathological stages. CDK1, CDK4, 
IL6, and MAPK8 showed substantial increases in stage IV, 
while MMP9 increased in stage II (Figure 3B). 
Survival analysis of the hub genes

Survival analysis was conducted on the 10 hub genes. The 
analysis was performed on a cohort of 500 OC patients from 
the TCGA database. The results demonstrated that all of 
the hub genes exhibited a significant association with poor 
prognosis (P<0.05)(Figure 4).

Anticancer activity of andrographolide on KB cell line:
Cytotoxicity result

Using different concentrations of Andrographolide (60, 
70, 80, 90, 100, and 110 µg/ml) and PTX (40, 50, 75, 100, 
150, and 200 µg/ml) the experiment was performed and 
the findings demonstrate that andrographolide exhibited 
a potent cytotoxic effect on the KB cell line in a dose-
dependent manner, with an IC50 value of 106±1 µg/ml and 
an IC25 value of 53±1 µg/ml. Similarly, PTX displayed an 
IC50 value of 92±4.43 µg/ml and an IC25 value of 46.1±2.21 
µg/ml (SF:4).

Effect of andrographolide on apoptosis regulation
Apoptosis analysis of KB cells was conducted with two 

concentrations of andrographolide: IC50 and IC25 for 24 
hr. Results showed that exposure to the IC50 concentration 
led to 22.22±0.1 cells in the early stage of apoptosis and 

Figure 3. mRNA expression levels of hub genes in the cancer genome atlas 
(TCGA) and genotype-tissue expression (GTEx) databases
(A) mRNA expression levels in the GEPIA database (Boxplot of hub genes). Red 
depicts Oral Cancer tissue and grey depicts normal oral mucosa. (B) mRNA 
expression level and pathological stage in the GEPIA database. (Stage plot of hub 
genes)

Figure 4. Kaplan–Meier overall survival analyses of patients with oral cancer based on expression of the ten hub genes. HR, hazard ratio (“http://kmplot.
com/analysis/index.php?p=service&cancer=pancancer_rnaseq”)

Figure 5. Apoptosis (A-C)
A) Flow-cytometry assay of andrographolide-induced apoptosis with andrographolide at IC50 (106.2 µg/ml) and IC25 (53.1µg/ml) after 24 hr, (B) represents the cells treated 
with PTX at IC50 (92.27 µg/l) and IC25 (46.13µg/ml) after 24 hr. (C) The data was expressed as mean±standard deviation (SD), comparing apoptotic phases for the respective 
concentrations of andrographolide and PTX. 5: Cell Cycle (D-F). D) Assessment of the impact of andrographolide and PTX on cell cycle distribution with concentration of 
andrographolide IC50 (106.2 µg/ml) and IC25 (53.1 µg/ml). E)  PTX IC50 (92.27 µg/l) and IC25 (46.13µg/ml) for 24 hr. F) The data was expressed as mean±standard deviation (SD); 
comparing different phases of the cell cycle for the respective concentrations of andrographolide and PTX
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37.48±3.1 cells in the late stage of apoptosis. Similar 
observations were made with the IC25 concentration 
of Andrographolide (Figure 5A). Whereas PTX, at its 
IC50, resulted predominantly in late stage of apoptosis. 
Similar observations were made at the IC25 value of PTX 
(Figure 5B). Additionally, when comparing the effects of 
andrographolide and PTX, it was noted that both compounds 
had a more pronounced impact on late apoptosis compared 
to early apoptosis (Figure 5C).

Effect of Andrographolide on cell cycle regulation of KB 
cells

Andrographolide at concentrations corresponding 
to IC50 and IC25 for 24 hr showed that approximately 
46.7±0.8% of cells were arrested in the G1 phase, with 
36.15±0.9% in the S phase at IC25 value. Similarly, at the 
IC50 concentration, around 7642±1.0% of cells were arrested 
in the G1 phase, and 16.8±0.6% were in the S phase (Figure 
5D, 5E). After 24 hr of treatment with PTX at the IC50 
concentration, there was an accumulation of 75.85±0.21 
cells in the G1 phase and 16.75±0.92 cells in the S phase. 
Similarly, at the IC25 concentration, 46.35±0.07 cells were 
observed in the G1 phase and 21.4±4.38 cells in the S phase 
(Figure 5F). This finding underscores the specific impact of 
andrographolide on halting cell cycle progression during 
the G1 phase, shedding light on its potential implications 
for therapeutic interventions.

Effect of andrographolide on intracellular ROS 
measurement and mitochondrial membrane potential 
(ΔΨm) measurement

While Andrographolide at IC25 showed a slight ROS 
decrease in cancer cells, it wasn’t statistically significant 
(SF:5). We used potentiometric dyes in flow cytometry 
to detect early apoptosis stages marked by ΔΨm loss, but 
Andrographolide at IC50 and IC25, along with PTX, did not 
affect mitochondrial membrane potential in KB cells (SF:6). 
Thus, these treatments did not impact the mitochondrial 
membrane potential of KB cells.

Wound scratch assay results
 After seeding the cells, a 24-hour incubation period was 

provided before treating them with IC50 concentrations of 
Andrographolide and PTX, alongside the control group. 

The wells were examined at 0, 6, and 24 hr to assess the 
effects of the treatments. The results indicated that the 
control group exhibited cell proliferation and migration 
after 6 hr, which was not observed in the group treated 
with Andrographolide and PTX (Figure 6A). The group 
treated with andrographolide and PTX showed significant 
inhibition of cell proliferation and migration at both 6 and 
24 hr compared to the control group (Figure 6B).

Andrographolide-induced apoptosis in KB cells by 
targeting genes

Andrographolide caused an up-regulation of Bax 
gene expression predominantly by IC50 value, whereas 
IC25 did not show a significant effect on Bax expression. 
Whereas IC50 did not show any changes in SLUG 
expression. However, IC25 showed a slight increase in 
SLUG expression. indicating the induction of apoptosis 
in cancer cells and not affecting Epithelial-Mesenchymal 
Transition. Andrographolide induced apoptosis of OC 
cells by the TGF-β/c-myc pathway. At both IC-25 and IC-
50 concentrations, andrographolide significantly reduced 
the expression of TGF-β and c-myc. IC50 value showed a 
significant reduction in c-myc expression compared to IC25 
value. This observation suggests that andrographolide may 
inhibit c-myc expression by suppressing TGF-β, thereby 
regulating cellular proliferation and apoptosis (Figure 7).

Overall Andrographolide IC50 value exhibited a 
significant effect on the above-mentioned gene expression 
contributing to the anti-cancer activity of andrographolide 
against OC predominantly as an apoptosis promoter and 
regulation of cellular proliferation.

Discussion
Despite ongoing research and treatment advancements, 

clinical outcomes and overall survival rates for HNSCC 
have seen limited improvement in recent decades, with a 
discouraging 5-year survival rate as low as 50% (42, 43). 
Given the unsatisfactory results and significant toxicity 
associated with current treatment approaches for HNSCC, 
current research is concentrated on exploring alternative 
therapies with reduced toxicity. Complementary and 
alternative medicine has gained increasing attention as a 
promising area for cancer management, leading to a greater 
focus on exploring these options in recent years. In the 

Figure 6. Representative Image for scratch assay
A) KB cells were incubated with andrographolide at IC50 (106.2 µg/ml) and PTX IC50 (92.21µg/ml) after 24 hr. The migration of KB cells was suppressed by andrographolide IC50 
after 6 and 24 hr, as depicted in the second vertical panel. The first panel represented the control group. Additionally, the scratch area of KB cells treated with PTX IC50 was shown 
in the third panel. B) The data was expressed as Mean ± Standard Deviation (SD) of n=3 of independent experiments
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recent past, over 3000 anti-cancer products derived from 
plants have been introduced, and what’s intriguing is that 
they tend to have significantly fewer side effects compared 
to conventional chemotherapy drugs (44). 

An in-silico approach identified anti-cancer genes 
targeted by andrographolide. We assessed its cytotoxicity 
using the MTT assay and examined apoptotic potential 
through multiple assays in an OC cell line.

We identified 15 common genes associated with 
andrographolide and OC, impacting processes like cell 
proliferation, apoptosis regulation, cell migration, and the 
MAPK cascade. Notably, IL6, MMP9, MAPK1, MAPK14, 
and ADAM17 were prominent among the top 10 hub genes. 
Andrographolide demonstrated cytotoxic effects with an 
IC50 value of 106.2 µg/ml, inducing late apoptosis. This 
aligns with previous research where A. paniculata leaves’ 
methanol extract yielded four cytotoxic compounds, with 
andrographolide exhibiting the highest cytotoxicity and 
caspase-3 activation in HSC-2 cells (45). 

Andrographolide was found to induce apoptosis in HT-
29 cells, linked to increased intracellular ROS levels and 
disruption of ΔΨm. Interestingly, it caused G2/M phase 
cell cycle arrest at lower doses and G0/G1 phase arrest at 
higher doses (46). In contrast to some previous studies, we 
didn’t observe significant changes in ROS and MMP activity 
in our study. Andrographolide led to cell cycle arrest in the 
G0/G1 phase in our experiments.

Cancer cells often evade apoptosis by boosting anti-
apoptotic BCL-2 proteins. Conversely, more resistant 
cancer types may down-regulate or inactivate pro-
apoptotic proteins like Bax to suppress apoptosis. In our 
study, we noticed an up-regulation of Bax, suggesting that 
andrographolide exerts its anticancer effects by targeting 
the apoptotic pathway. Top of Form

Elevated c-Myc levels have been associated with reduced 
expression of immune checkpoints, which can suppress 
the immune response. In another study, inhibiting c-Myc 
expression was found to enhance apoptosis in CAL-27 
cells (47). Another study by Marconi et al. emphasized 

the critical role of c-Myc in cell survival, proliferation, and 
tumor growth in Cal-27 cells (48). In accordance with these 
study results, our study also suggested that andrographolide 
may act as a negative regulator of c-Myc activity.

Conclusion
Our network pharmacology analysis demonstrates 

its impact on various targets, pathways, and biological 
processes, effectively regulating cell proliferation and 
apoptosis to combat OC. This indicates it inhibits cell 
viability, induces apoptosis, and suppresses TGF-β and 
downstream gene c-myc, highlighting its anti-OC activity. 
By inhibiting c-myc, it stabilizes the cell cycle, proliferation, 
DNA synthesis, and genomic stability, potentially enhancing 
chemotherapy efficacy against OC. It is a promising candidate 
for tumor therapies and a chemopreventive agent in human 
OC treatment. Nonetheless, further research is needed 
to validate its clinical effectiveness and comprehensively 
understand its mechanisms in the context of OC.
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Figure 7. mRNA Expression levels of KB cells (Real time qRT-PCR)
Comprehensive analysis of Bax, c-Myc, SLUG, and TGF-β genes in KB cells treated with andrographolide and PTX at IC50 and IC25 with medium only. The b-actin gene is used 
as a control. The results were subjected to Two-way ANOVA followed by Tukey post hoc tests at ****P<0.0001, ***P<0.001, and **P<0.01 to determine the statistical significance 
between the groups as compared to the control of respective time points
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