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Objective(s): Identification of effective biomarkers is crucial for the heterogeneous disease of gastric 
cancer (GC). Recent studies have focused on the role of pseudogenes regulating gene expression 
through competing endogenous RNA (ceRNA) networks, however, the pseudogene-associated 
ceRNA networks in GC remain largely unknown. The current study aimed to construct and analyze a 
three-component ceRNA network in GC and experimentally validate a ceRNA.
Materials and Methods: A comprehensive analysis was conducted on the RNA-seq and miRNA-
seq data of The Cancer Genome Atlas (TCGA) stomach adenocarcinoma (STAD) dataset to identify 
differentially-expressed mRNAs (DEMs), pseudogenes (DEPs), and miRNAs (DEMis). Pseudogene-
associated ceRNA and protein-protein interaction (PPI) networks were constructed, and functional 
enrichment analyses were performed. DEMs and DEPs with degree centralities≥2 were selected for 
survival analysis. A ceRNA was further selected for experimental validation.
Results: 10,145 DEMs, 3576 DEPs, and 66 DEMis were retrieved and a ceRNA network was then 
constructed by including DEMis with concurrent interactions with at least a DEM and a DEP. 
Functional enrichment analysis demonstrated that DEMs of the ceRNA network were significantly 
enriched in cancer-associated pathways. LPIN1 and WBP1L were two mRNAs showing an association 
with STAD patients overall survival. Expression analysis of LPIN1 showed a significant decrease in 
GC tumors compared to non-tumor tissues (P=0.003).
Conclusion: Our research emphasizes the significant implications of ceRNA networks in the 
development of new biomarkers for the detection and prognosis of cancer. Further examination is 
necessary to explore the functional roles of LPIN1 in the pathogenesis of GC.
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Introduction
According to the latest  GLOBOCAN statistics, stomach 

or gastric cancer (GC)  continues to be a significant global 
health issue, contributing to more than one million new 
cases and an estimated 769,000 deaths in 2020 (representing 
approximately one in every 13 deaths worldwide). It holds 
the fifth rank in terms of incidence and the fourth rank in 
mortality globally. The rates of stomach cancer are twice as 
high in men compared to women. Among men, it is the most 
frequently diagnosed cancer and the leading cause of cancer-
related mortality in various South Central Asian nations, 
such as Iran, Afghanistan, Turkmenistan, and Kyrgyzstan 
(1). This disease is diagnosed in advanced and late stages, 
so its treatment is challenging (2). GC is a multi-factorial 
and heterogeneous disease, meaning environmental and 
genetic factors play a role in its formation and development 
(1, 3). Mechanisms underlying cancers, especially GC, are 
not fully understood (4). As the need for more efficient 
methods of diagnosis and treatment of diseases continues to 
grow, it is crucial to identify new prognostic and diagnostic 
biomarkers as well as novel therapeutic targets.

In 2011, Salmena et al. demonstrated that microRNAs 
(miRNAs) can mediate a crosstalk among coding and non-
coding RNA molecules having shared miRNA response 
elements (MREs). Different RNA species can be targeted by 
the same miRNAs and can indirectly calibrate each other by 
competing for them. These RNAs, also known as competing 
endogenous RNAs (ceRNAs), lead to the formation of ceRNA 
networks representing a novel layer of post-transcriptional 
gene regulation (5). Dysregulation of ceRNA networks has 
been implicated in different diseases such as cancer. Therefore, 
studying these networks may lead to a better understanding of 
cancer pathogenesis, providing novel diagnostic/prognostic 
biomarkers and developing effective therapeutic strategies for 
the treatment of cancer (6).

Pseudogenes were initially disregarded due to their lack 
of transcriptional and protein-coding activities. However, 
recent research has indicated their involvement in cancer 
progression, based on duplications, deletion, and additions 
via retrotransposons (7). Several studies have investigated 
the relationship between pseudogenes and cancer 
development (8), including GC (9). For example, the role of 
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phosphatase and tensin homolog pseudogene 1 (PTENP1) 
in the progression of various cancers, has been extensively 
investigated (10).

Pseudogene, as a particular type of long non-coding 
RNAs (lncRNAs), can function as RNA sponges for miRNAs, 
thus exerting a regulatory effect on gene expression through 
ceRNA networks. However, there are few studies about 
ceRNA networks including pseudogenes in cancers (11, 12).

In the present study, we initially conducted a 
comprehensive analysis of differentially-expressed mRNAs 
(DEMs), pseudogenes (DEPs), and miRNAs (DEMis) in the 
stomach adenocarcinoma (STAD) dataset from The Cancer 
Genome Atlas (TCGA) and constructed a pseudogene-
associated ceRNA network for GC. A protein-protein 
interaction (PPI) network and functional enrichment 
analyses were then conducted for the mRNAs of the 
ceRNA network. To experimentally validate the results of 
the current study, a candidate ceRNA was selected. The 
selection was based on three-component axes that included 
different RNA species with the same direction of ceRNA 
expression changes. The selected axes also had a degree 
of centralities greater than two. Two axes, “hsa-miR-105-
5p, LPIN1 and MTCO1P12” and “hsa-miR-122-5p, LPIN1 
and MTCO1P12” met the criteria. As lipin 1 (LPIN1), a 
phosphatidic acid phosphatase converting phosphatidic 
acid (PA) to diacylglycerol (DAG), was found to be a 
survival-related RNA in our analyses, as well, it was chosen 
for experimental validation in an in-house cohort of GC 
patients. Dysregulation and association of LPIN1 with 
patients’ survival has been reported in several other cancer 
types (13-16). Figure 1 presents a flow chart of this study 
analysis procedure.

Materials and Methods
Data retrieval and processing

The TCGAbiolinks R package was utilized to retrieve 

RNA- and miRNA-seq data from the STAD-TCGA 
database, which included 407 (375 tumor and 32 non-
tumor) and 491 samples (446 tumor and 45 non-tumor), 
respectively. The intersected data, which included 372 
tumor and 32 non-tumor samples, was normalized utilizing 
the DESeq2 package. Differential gene expression analysis 
was performed to identify differentially-expressed RNAs 
(DERs) with the criteria of |log2 fold change (FC)| > 2 and a 
false discovery rate (FDR) < 0.05 for DEMis. For DEMs and 
DEPs, a cutoff value of FDR < 0.05 was used.

Construction of a ceRNA network
A ceRNA network was constructed including DEMs, 

DEPs, and DEMis. The miRNA-mRNA interactions were 
identified utilizing the multiMiR package in the R Studio 
software with setting the parameters to get the top 20% 
predictions within each external database. The output was 
furthermore filtered to include the results of TargetScan 
predictions (17) with a context++ score of ≤ -0.6, miRDB 
predictions (18) with a score of > 90, and miRTarBase 
predictions (19) with the cut-off set to strong evidence. 
Interactions between DEMis and DEPs were furthermore 
obtained from the RNAInter online tool (20) with a score of 
> 0.4. A ceRNA network was then constructed by including 
DEMis with simultaneous interactions with at least a 
DEM and a DEP. Cytoscape software (version 3.9.3) was 
utilized for network visualization, where the genes with the 
highest degree centrality scores were determined using the 
cytoHubba plugin (21). The network was made available on 
the Network Data Exchange (NDEx), a database and online 
community for sharing and collaborative development of 
network models (22). 

PPI network construction
The PPI network of the DEMs that were included in the 

ceRNA network was constructed using the Search Tool for 

Figure 1. A flowchart of the whole analysis process conducted in the current study
Initially, two types of data including expression data and clinical information on TCGA-STAD were downloaded. After determining DEMs, DEPs, and DEMis and their interaction 
prediction, a network based on DEMis and DEMs/DEPs was constructed and a DER was selected for experimental validation. Moreover, enrichment and survival analyses were 
conducted on the subnetwork of ceRNA
ceRNA: Competing endogenous RNA, DEMis: Differentially-expressed miRNAs, DEMs: Differentially-expressed mRNAs, DEPs: Differentially-expressed pseudogenes, DER: 
Differentially-expressed RNA, GO: Gene ontology, KEEG: Kyoto encyclopedia of genes and genomes, PPI: Protein-protein interaction, STAD: Stomach adenocarcinoma, TCGA: 
The cancer genome atlas
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the Retrieval of Interacting Genes (STRING) database (23)
with a minimum confidence score of 0.4. The resulting PPI 
network was then imported into the Cytoscape software and 
likewise made available on the NDEx.

Functional enrichment analysis
The ShinyGO 0.77 Bioinformatics tool (24) was utilized 

to investigate Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway-enriched terms in 
DEMs of the constructed ceRNA network. All terms with a 
false discovery rate (FDR) of less than 0.05 were considered 
statistically significant.

Survival analysis
DEMs and DEPs with degree centralities greater than 

two were chosen from the ceRNA network to analyze the 
correlation between their expression and TCGA-STAD 
patients’ overall survival. ‘’survival’’ and ‘’survminer’’ R 
packages were utilized to determine the association. Samples 
were divided into two groups based on the median expression 
of each RNA and the Kaplan-Meier method was used to 
visualize the results. The thresholds for significance were set 
at P<0.05.

Clinical specimens
A total of 60 specimens of GC tumor tissues and adjacent 

non-tumor tissues were obtained from patients diagnosed 
with GC. The specimens were collected by Iran National 
Tumor Bank, which is funded by the Cancer Institute 
of Tehran University, for cancer research as described 
previously (25, 26). Prior to their participation, all patients 
provided written informed consent to the Iran Tumoral 
Bank. The study protocol was approved by the Ethics 
Committee of Isfahan University of Medical Sciences 
(IR.MUI.MED.REC.1400.838) and was conducted in 
accordance with the Declaration of Helsinki. 

Total RNA extraction and real-time quantitative reverse 
transcription PCR (qRT-PCR)

Total RNA was extracted from both tumor and non-
tumor tissues using the QIAzol lysis reagent (Qiagen, 
Germany), according to the manufacturer’s instructions. 
RNA purity and concentration were then measured using a 
Nanodrop spectrophotometer to determine the absorbance 
of RNA at 230, 260, and 280 nm (Biochrom WPA, UK). 
The RNA yield was calculated based on the absorbance 
at 260 nm (A260). The ratios A260/A280 and A260/A230 were 
assessed to evaluate RNA purity. For cDNA synthesis, all 
RNA concentrations were equalized and diluted based on 
their measurements. In order to eliminate possible genomic 
DNA contamination, the samples were treated with DNase 
I (Thermo Scientific, USA). YTA cDNA synthesis Kit (Yekta 
Tajhiz Azma, Iran) was then used to synthesize cDNA 
according to the manufacturer’s instructions. Gene Runner 
(Version 6.3.01 Beta) was used to design specific PCR 
primers for the LPIN1 gene (Supplementary Table 1). Basic 
Local Alignment Search Tool (BLAST) (http://blast.ncbi.
nlm.nih.gov/Blast.cgi) was utilized to confirm the primer 
specificity. A real-time PCR instrument (Biomolecular 
Systems, Magnetic Induction Cycler (MIC), Australia) was 
then used to conduct the quantitative RT-PCR assay. The 
amplification process involved an initial denaturation at 95 
°C for 15 min, followed by 40 cycles of denaturation at 95 °C 
for 20 sec, annealing at 58.5 °C/61 °C for LPIN1/ACTB (the 

housekeeping gene) (27) for 30 sec, and an extension step 
for 30 sec at 72 °C. Real-time PCR was performed with at 
least three independent technical replicates for each sample. 
The average measurements from these replicates were 
utilized for further analysis. Of note, in the case of a high 
degree of variability in Ct of three replicates of a sample, the 
real-time PCR was repeated for that sample.

Statistical analysis
The Livak method (28) was employed to analyze the real-

time qRT-PCR data, and GraphPad Prism 9 software was used 
to conduct statistical analysis. The Kolmogorov-Smirnov 
test was employed to verify normal statistic distributions 
of gene expressions. As the data did not follow a normal 
distribution, the two-tailed Mann-Whitney statistical test, 
considering P<0.05 as statistically significant, was used to 
compare the mean of gene expressions between tumor and 
non-tumor gastric tissues. All data were expressed as means 
± Standard Error of the Mean (SEM).

Results
Differentially-expressed RNAs

The analysis of RNA-seq and miRNA-seq data from the 
TCGA-STAD database revealed 10145 DEMs (5299 down-
regulated and 4846 up-regulated), 3576 DEPs (578 down-
regulated and 2998 up-regulated) and 66 DEMis (23 down-
regulated and 43 up-regulated) between 372 tumor and 32 
non-tumor samples. A visual representation of this data is 
shown in Figure 2, which displays the volcano plots for each 
set of DEMs, DEPs, and DEMis. 

ceRNA network
To gain insight into the interactions between DEMs 

and DEMis, the multiMiR package in the R software was 
employed to access three databases including TargetScan, 
miRTarBase, and miRDB. Subsequently, the 66 distinct 
DEMis were used to query the RNAInter database to 

Figure 2. Volcano plots illustrating differentially-expressed RNAs between 
tumor and non-tumor tissues of TCGA-STAD
Volcano plots of DEMs (A), DEPs (B), and DEMis (C). The horizontal and vertical 
axes represent -log2 (fold change) and -log10 (adjusted p), respectively. Green and 
red colors are used to indicate down-regulated and up-regulated RNAs, respectively. 
The significance threshold for DEMs and DEPs was set as adj. P<0.05, whereas the 
threshold for DEMis was set to adj. P<0.05 and |log2 FC|>2.
DEMis: Differentially-expressed miRNAs, DEMs: Differentially-expressed mRNAs, 
DEPs: Differentially-expressed pseudogenes, FC: Fold change, STAD: Stomach 
adenocarcinoma, TCGA: The cancer genome atlas
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identify DEPs-DEMis relationships. A ceRNA network 
containing 277 nodes (263 DEMs, 10 DEPs, and 4 DEMis) 
and 284 edges was then constructed by including DEMis 
with concurrent interactions with at least a DEM and a DEP 
(Figure 3). The network is furthermore available on the 
NDEx via this link (https://tinyurl.com/yeyn9bfs).

PPI network construction and analysis
A PPI network including 206 nodes and 780 edges (Figure 

4A) was constructed to gain a deeper understanding of the 
interactions between the DEMs of the ceRNA network. 
AKT1, CTNNB1, CCND1, VEGFA, KRAS, CREB1, 
HSPA4, RHOA, SOX9, and BDNF (Figure 4B) were the top 
10 proteins of the PPI network with the highest degree of 
centrality. The PPI network is available on the NDEx via this 
link (https://tinyurl.com/bd38hst9).

Functional enrichment analyses
KEGG pathway analysis was performed utilizing the 

ShinyGO tool. Figure 5 shows the top 20 enriched pathways 
with the lowest adjusted P-values. This analysis revealed 
that the ceRNA network DEMs were enriched in cancer-
related pathways such as the “PI3K-Akt signaling pathway”, 
“microRNAs in cancer” and “Pathways in cancer”. Plots of 
the most significant ten GO terms relating to biological 
processes, cellular components, and molecular function are 
depicted in Figure 6.

Survival analysis of DEMs and DEPs of the ceRNA network
372 TCGA-STAD samples containing clinical 

information were divided into two groups, low expression 
and high expression, based on the median expression of 
each DEM and DEP of the constructed ceRNA network 
which had degree centralities greater than two. Based on 
the univariate Cox regression, it was determined that the 
overall survival of patients was significantly associated with 
2 of the 11 RNAs (LPIN1 and WBP1L, with P=0.049 and 
P=0.012, respectively). Figure 7 displays the Kaplan-Meier 

Figure 3. ceRNA network in STAD
Ovals, diamonds, and hexagons represent DEMs, DEPs, and DEMis, respectively. The up-regulated and down-regulated RNAs are represented in red and blue, respectively
ceRNA: Competitive endogenous RNA, DEMis: Differentially-expressed miRNAs, DEMs: Differentially-expressed mRNAs, DEPs: Differentially-expressed pseudogenes, STAD: 
Stomach adenocarcinoma

Figure 4. PPI network of the DEMs of the ceRNA network. 
A PPI network was constructed showing interactions between 206 nodes and 780 edges. Disconnected nodes were not included in the network (A). A bar 
plot of the top 10 proteins with the highest degree of centrality was extracted from the PPI network (B). 
ceRNA: Competitive endogenous RNA, DEMs: Differentially-expressed mRNAs, PPI: Protein-protein interaction
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plots for the two RNAs. Furthermore, the hazard ratios 
(HRs) and confidence intervals (CIs) of these two RNAs are 

summarized in Table 1.

Figure 5. KEGG functional enrichment analysis
The lollipop plot of the most significant 20 KEGG terms. The color indicates the gene number (from the lowest in blue to the highest in red) and the bubble size indicates the -log10 
adjusted P-value. KEGG terms were ordered based on -log10 adjusted P-value (adj.P.value)
DEMs: Differentially-expressed mRNAs, KEGG: Kyoto encyclopedia of genes and genomes

Figure 6. GO analysis on the DEMs of the ceRNA network
The bar plot of the most significant 10 GO terms relating to biological process (A), cellular component (B), and molecular function (C). The horizontal and 
vertical axes represent gene number and enrichment terms, respectively. GO terms were ordered based on -log10 adjusted P-value (adj.P.value)
ceRNA: Competitive endogenous RNA, DEMs: Differentially-expressed mRNAs, GO: Gene ontology

Figure 7. Kaplan–Meier survival curves of the two survival-related RNAs
Survival plots of LPIN1 (A) and WBP1L (B) were constructed by division of TCGA-STAD tumor samples into two groups based on the median of gene expression. Red and blue 
colors stand for those samples with gene expression higher and lower than the median, respectively
STAD: Stomach adenocarcinoma, TCGA: The cancer genome atlas 
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Relative quantification of LPIN1 expression in gastric 
tissues

To select a candidate ceRNA to experimentally validate 
the results of the current study, we focused on three-
component axes which included all three different RNA 
species, showing the same direction of ceRNA expression 
changes that should be opposite of the miRNA expression 
changes (according to the ceRNA hypothesis) as well as 
having degree of centralities greater than two. Two axes 
including “hsa-miR-105-5p, LPIN1 and MTCO1P12” and 
“hsa-miR-122-5p, LPIN1 and MTCO1P12” met the criteria 
and as LPIN1 was found to be a survival-related RNA as 
well, it was selected for experimental validation. The RNA 
levels of LPIN1 were found to be significantly (P=0.003) 
decreased in GC tumors compared to non-tumor tissues. 
The same trend was furthermore observed in the TCGA-
STAD samples (Figure 8).

study has comprehensively analyzed a three-component 
mRNA-pseudogene-miRNA ceRNA network in GC. For 
instance, in 2022, a differential-expression analysis was 
initially performed on five GC Gene Expression Omnibus 
(GEO) datasets, and then miRNAs and pseudogenes/
lncRNAs that might combine with COL5A2, a hub DEM, 
were identified and its ceRNA network was constructed 
(31). The main difference between this study and ours is that 
they mainly focused on a ceRNA axis and did not construct 
a general ceRNA network via a hypothesis-free approach.

Analysis of the PPI network showed that the top 10 proteins 
with the highest degree of centrality all have associations 
with neoplasms and cancer. Then, an enrichment analysis 
was conducted on the DEMs of the ceRNA network, which 
revealed the most enriched signaling pathways and GO terms 
that were cancer-related like “PI3K-Akt signaling pathway”, 
“microRNAs in cancer”, and “Pathways in cancer”. Pieces of 
Evidence show that the PI3K–Akt signaling pathway is one 
of the most pivotal intracellular pathways, which regulates 
survival, cell growth, differentiation, cellular metabolism, 
and cytoskeletal reorganization of cells. Deregulation of this 
pathway has been documented in several cancer types (32).

Survival analysis showed that the overall survival of 
TCGA-STAD patients was significantly associated with 
expression of LPIN1 and WBP1L. Higher expression of 
WBP1L, which is also referred to as outcome predictor 
in acute leukemia 1 (OPAL1) was firstly reported to be 
associated with favorable prognosis in patients with acute 
lymphoblastic leukemia (ALL) (33), however, a subsequent 
study reported that OPAL1 expression may not be an 
independent prognostic feature in childhood ALL (34). 
LPIN1 (lipin 1) is a protein-coding gene that is primarily 
involved in lipid metabolism. Dysregulation of fatty acid 
metabolism is generally recognized as a player in malignant 
transformation in different cancer types (35, 36). Recent 
pieces of evidence show that LPIN1 plays a critical role in 
the regulation of the PI3K-AKT-mTOR pathway, a common 
dysregulated pathway in most cancers (16). Association 
of LPIN1 with prognosis has been furthermore reported 
in several cancer types including breast cancer (37), lung 
adenocarcinoma (38), and head and neck squamous cell 
carcinoma (39).

As a survival-related gene, appearing in two axes in the 
constructed ceRNA network and showing a gene expression 
pattern compatible with the ceRNA hypothesis (5), LPIN1 
was selected as a candidate gene for experimental validation 
in the current study. Consistent with its gene expression 
pattern in TCGA-STAD patients, we also observed its lower 
expression in GC tumors compared to non-tumor tissues. 
Dysregulation of LPIN1 gene expression has been previously 
documented in several cancer types like breast cancer (40), 
lung adenocarcinoma (15), and prostate cancer (14). 

Conclusion
we conducted a comprehensive analysis of gene expression 

profiles in GC patients from TCGA and presented a three-
component ceRNA network consisting of three types of 
RNAs including mRNAs, pseudogenes, and miRNAs. 
LPIN1 expression was shown to be associated with the 
overall survival of patients with stomach adenocarcinoma 
and its dysregulation was experimentally confirmed in a 
cohort of GC tissues. Our study highlights the important 
implications of ceRNA networks to introduce novel 
biomarkers for cancer diagnosis and prognosis. Further 

 

 

Gene name Type Hazard ratio P Lower 0.95 CI * Upper 0.95 CI 

LPIN1 mRNA 1.39 0.049 0.51 0.99 

WBP1L mRNA 1.53 0.012 0.47 0.91 

 

Table 1. Univariate Cox regression analysis of the correlation of LPIN1 and 
WBP1L expression levels with overall survival

*: Confidence Interval

Figure 8. Expression level of LPIN1 in gastric cancer
Relative expression of LPIN1 in an in‐house cohort of GC tissue (A) and TCGA-
STAD (B) samples which shows reduced expression in tumor vs non-tumor samples 
with a statistical significance of P=0.003 and adjusted P-value = 8.69e-5, respectively. 
Data are presented as mean ± standard error of the mean (SEM). 
GC: Gastric cancer, STAD: Stomach adenocarcinoma, TCGA: The cancer genome atlas

Discussion
GC is one of the most lethal diseases globally, due to its 

aggressive nature. Investigating the molecular mechanisms 
of GC can lead to discovering new biomarkers potentially 
being used to increase the quality of life of those affected 
(1-3). It has been established that long non-coding RNAs 
are associated with tumorigenesis, but more studies are 
required to understand their exact role. Pseudogenes are 
long non-coding RNAs and have been proposed to regulate 
the expression of their functional counterparts. Recent 
studies suggest that pseudogenes are involved in ceRNA 
regulatory networks and modulate gene expression through 
miRNAs as mediators (29-30).

In the current study, to create a pseudogene-related 
ceRNA network for GC, a comprehensive differential-
expression analysis of TCGA-STAD RNAs including 
mRNAs, pseudogenes, and miRNAs was conducted. The 
role of pseudogenes acting as ceRNAs in GC has not been 
extensively studied and to the best of our knowledge, no
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studies investigating the functional roles of LPIN1 in GC 
pathogenesis are highly demanded.
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