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Gliomas are the most common lethal tumors of the brain associated with a poor prognosis and 
increased resistance to chemo-radiotherapy. Circular RNAs (circRNAs), newly identified noncoding 
RNAs, have appeared as critical regulators of therapeutic resistance among multiple cancers and 
gliomas. Since circRNAs are aberrantly expressed in glioma and may act as promoters or inhibitors 
of therapeutic resistance, we categorized alterations of these specific RNAs expression in therapy 
resistant-glioma in three different classes, including chemoresistance, radioresistance, and glioma 
stem cell (GSC)-regulation. circRNAs act as competing endogenous RNA, sponging target microRNA 
and consequently affecting the expression of genes related to glioma tumorigenesis and resistance. 
By doing so, circRNAs can modulate the critical cellular pathways and processes regulating glioma 
resistance, including DNA repair pathways, GSC, epithelial-mesenchymal transition, apoptosis, and 
autophagy. Considering the poor survival and increased resistance to currently approved treatments 
for glioma, it is crucial to increase the knowledge of the resistance regulatory effects of circRNAs 
and their underlying molecular mechanisms. Herein, we conducted a comprehensive search and 
discussed the existing knowledge regarding the important role eof circRNAs in the emergence of 
resistance to therapeutic interventions in glioma. This knowledge may serve as a basis for enhancing 
the effectiveness of glioma therapeutic strategies.
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Gliomas are the brain’s most common lethal tumors, 
representing 81% of the central nervous system (CNS) 
malignancies that typically arise from astrocytes, ependymal 
cells, and oligodendrocytes (1-3). The WHO grades for 
gliomas include low-grade or benign tumors (grade 1 
and grade 2), which are considered to be low proliferative 
tumors, and high-grade tumors (grade 3 and grade 4), which 
are regarded as high proliferative tumors (3, 4). Among 
brain tumors, glioblastoma (GBM) as a grade IV glioma is 
the most lethal tumor of the CNS (4). The median survival 
time in patients with low-grade glioma is about 11.6 years, 
whereas in patients with grade 3 glioma is about three years, 
and grade 4 glioma patients have a low median survival 
time of 14 months(5, 6). None of the applicable therapeutic 
options for gliomas, including surgery, chemotherapy, 
radiotherapy, and a combination of them, has been shown 
to treat glioma completely so far (7). 

Despite recent substantial work to develop efficient 
therapeutic approaches, the poor prognosis of glioma has 
not been improved, and the emergence of resistance to 
chemo-radiotherapy remains a serious issue (8). Therefore, 
there is a need for further identification of the molecular 

processes implicated in glioma oncogenesis and therapeutic 
resistance. Gene mutations (9, 10), activation of cell survival 
and DNA repair pathways (11, 12), upregulation of ATP-
binding cassette (ABC) transporter proteins (13), the 
existence of glioma stem cells (GSCs) (14), the stimulation 
of autophagy (15), epithelial-mesenchymal transition 
(EMT) (16), and epigenetic regulation have been proposed 
as potential underlying mechanism of the resistance (17). As 
an important part of epigenetic regulation, noncoding RNAs 
(ncRNAs) are crucial for modulating therapeutic resistance 
(18-20). A specific and newly identified ncRNA molecule 
is circular RNA (circRNA). CircRNAs are single-stranded 
RNA constituting a circle via covalent binding of their 5′ 
and 3 ends (21, 22). CircRNAs have a long half-life, high 
conservation, and distinct expression patterns according to 
cell-tissue type and developmental stage (23, 24). Growing 
evidence supports the abnormal expression of circRNAs 
in cancers, including glioma, which may operate as a 
double-edged sword in therapeutic resistance, enhancing 
and inhibiting resistance (25, 26). Indeed, they play a dual 
role as either oncogenic circRNAs (onco-circRNAs) or 
tumor suppressors (27). Tumor suppressor circRNAs are 
down-regulated in the tumor cells, while onco-circRNAs 
are highly expressed and enhance therapeutic resistance 

http://ijbms.mums.ac.ir
https://dx.doi.org/10.22038/ijbms.2024.81644.17669
https://creativecommons.org/licenses/by-nc/4.0/legalcode.en


Iran J Basic Med Sci, 2025, Vol. 28, No.1

Masoomabadi et al. Role of circular RNAs in glioma therapeutic resistance

4

by regulating EMT, CSCs, apoptosis, and autophagy (28-
30). Mechanistically, circRNAs can either act as “sponges” 
for microRNAs (miRNAs) as major regulators of post-
transcriptional genes or act as competitive endogenous 
RNAs (ceRNAs) to modulate parental gene expression 
related to the tumorigenesis and resistance (24, 31). 
Considering the poor survival and enhanced resistance 
to current treatments for glioma, a deeper understanding 
of the resistance regulatory effects of circRNAs and their 
underlying molecular mechanisms is necessary to improve 
the efficacy of current therapeutic methods. Therefore, in 
this paper, we particularly discussed the existing knowledge 
concerning the regulatory role of circRNAs in developing 
resistance to therapeutic interventions in glioma. 

Overview of CircRNAs characteristics and implication in 
glioma pathogenesis

Recent developments in high-throughput sequencing 
approaches and computational methods have revealed 
ncRNAs in many cell types and tissues. ncRNAs, including 
long noncoding (lnc)RNAs, miRNAs, and circRNAs, 
play important roles in tumorigenesis and resistance. 
CircRNAs are newly identified ncRNAs produced in the 
circular form by back-splicing premature messenger RNAs 
(mRNAs) (21-23). Various kinds of circRNA, such as 
exonic or mixed exonic-intronic, can be produced due to 
RNA back splicing. Since circRNAs have a closed circular 
structure, they are stronger than linear RNAs and resist 
exonuclease-mediated degradation (24). Furthermore, 
they are abundant in the human transcriptome, highly 
conserved, and typically have cell type and tissue-specific 
expression patterns (32). CircRNAs act as miRNA or 
protein sponges and regulate mRNA transcription and 
protein-coding (24). Moreover, they can participate in 
intercellular communication by entering exosomes (33). 
These specific characteristics of circRNAs reveal their 
promising diagnostic, prognostic, and therapeutic potential. 
Accordingly, differential expression analyses have identified 
the differentially expressed circRNAs in glioma cells and 
tissue specimens compared with the parallel normal tissues 

(34, 35). Aberrant expression of circRNAs plays critical 
roles in tumor cell proliferation, angiogenesis, invasion, and 
metastasis by regulating the complementary miRNAs and/
or target mRNAs of different oncogenic signaling pathways, 
consisting of nuclear factor-kB(NF- kB), Notch, Janus 
kinase/signal transducer and activator of transcription 
(JAK-STAT), Wnt (wingless)/β-catenin, tumor growth 
factor β (TGF-β), and phosphoinositide 3-kinase (PI3K)–
AKT pathways (36-39). The role of circRNAs in glioma 
progression and pathogenesis is vast and beyond the scope 
of this review. Interested readers are referred to references 
for a detailed review of this topic (40-42). This review 
focuses on circRNA-miRNA-target gene interplays engaged 
in chemo/radioresistance; however, we summarized some 
circRNA-miRNA-target gene interplays engaged in glioma 
tumorigenesis in Figure 1. The following sections will 
thoroughly discuss the regulatory effects of circRNAs in 
resistance to chemo/radiotherapy.

CircRNAs involved in glioma chemoresistance 
(Temozolomide) 

Temozolomide (TMZ) is an oral bioavailable DNA-
alkylating anticancer drug frequently exploited as the 
standard first-line treatment for GBM by initiating cellular 
DNA damage in glioma cells. However, most glioma 
patients develop resistance to TMZ due to increased DNA 
repair and dysregulation of apoptotic-related genes and 
signaling pathways (43). Recent advancements in oncology 
have identified additional novel resistance mechanisms, 
including the activity of drug efflux transporters, the 
role of miRNAs, activation of cellular autophagy and 
associated cell survival, and the emergence of stem cells. 
Microarray experiments suggest the different profiles of 
circRNAs in TMZ-resistant glioma and the corresponding 
primary tissues. High expression of specific circRNAs 
is deeply intertwined with the resistance of TMZ (44). 
Mechanistically, all these circRNAs can exert their 
functions by competitively attaching to miRNAs and 
further modulating the expression of genes involved in 
glioma tumorigenesis and resistance. Consistently, hsa_

Figure 1. A diagrammatic illustration of circRNA-miRNA-target gene interactions involved in glioma tumorigenesis
CircRNAs play key roles in glioma cellular proliferation, angiogenesis, and invasion by regulating the complementary miRNAs or target mRNAs
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circ_0000936 is up-regulated in TMZ-resistant glioma 
cells, and hsa_circ_0000936 operates as a miR-1294 sponge 
affecting TMZ sensitivity (45). Wei et al. explored the 
potential function of circASAP1 in modulating the TMZ 
resistance of GBM (46). They observed that circASAP1 
expression was highly increased in TMZ-resistant cells and 
recurrent GBM tissues.CircASAP1 up-regulation increases 
TMZ resistance via induction of cell growth and inhibition 
of cellular apoptosis so that knockdown of circASAP1 
could reverse these effects and ultimately enhance the 
TMZ sensitivity in both in vitro and in vivo experiments. 
Furthermore, data suggests that eukaryotic translation 
initiation factor 4A3 (EIF4A3) binds to a circASAP1 flanking 
sequence and further increases circASAP1 expression (46). 
The role of circASAP1, as a competitive sponge for miR-
502-5p, is implicated in the disruption of neuroblastoma 
ras viral oncogene homolog (NRAS), a key member of the 
RAS family well-known for its GDP/GTP-regulated on/off 
switch mechanism. This disruption subsequently activates 
the mitogen-activated protein kinase/extracellular signal-
regulated kinase (MEK1/ERK1–2) oncogenic signaling 
pathway and contributes to glioma progression and 
resistance to TMZ therapy (46). Research revealed that 
circKIF4A was remarkably elevated in glioma tissues and 
cell lines (47), which resulted in glioma progression and 
TMZ  resistance. Mechanistically, circKIF4A, by interacting 
with miR-335-5p, regulates the expression of a glycolysis-
regulating enzyme aldolase A (ALDOA). The outcomes 
would be an elevated glycolysis rate, enhanced glioma 
growth, and increased resistance to TMZ (47). Furthermore, 
suppression of circKIF4A significantly increases the TMZ- 
sensitivity both in vitro and in vivo (47). A study showed 
that Circ-VPS18 expression was remarkably elevated in 
TMZ-resistant and glioma tissues (48). The interaction 
of Circ-VPS18 with miR-370 downregulates runt-related 
transcription factor 1 (RUNX1) expression, a member of 
the RUNX transcription factors with oncogenic properties, 
and subsequently accelerates the glioma growth as well 
as TMZ-resistance (48). Furthermore, the suppression of 
Circ-VPS18 significantly increases glioma responsiveness 
to the TMZ in vivo (48). Deng et al. have shown the 
upregulation of circ_0005198 expression in TMZ-resistant 
glioma cells, glioma tissues, and serum (46). Suppression 
of circ_0005198 reverses TMZ resistance and increases the 
apoptosis of TMZ-resistant glioma cells (46). This effect 
was mediated through circ_0005198 targeting of MiR-198 
and further regulation of MiR-198 target gene tripartite 
motif-containing 14 (TRIM14), which is involved in EMT 
and chemoresistance of glioma (46, 49). Dysregulation 
of the RTK/PI3K signaling pathway is deemed to be one 
of the principal pathways mediating glioma therapeutic 
resistance. Using high-throughput RNA sequencing, 
circHIPK3 expression has been shown to be increased in 
TMZ-resistant glioma cells that act as hsa- miR-524-5p 
sponge. This facilitates glioma progression and resistance 
through up-regulating an M-type nonmotile microtubule 
depolymerase, kinesin family member 2A (KIF2A), 
expression through activating the PI3K/AKT pathway (50). 
Furthermore, hsa_circ_0110757 exhibits upregulation in 
TMZ-resistant glioma cells, operating as a sponge for hsa-
miR-1298-5p. This activity promotes glioma progression and 
resistance by augmenting integrin subunit alpha 1 (ITGA1) 
gene expression by activating the PI3K/AKT pathway (51). 
Since the PI3K/AKT pathway has a close relationship with 

apoptosis-related proteins, it could be concluded that hsa_
circ_0110757 induced glioma resistance to TMZ is partially 
mediated through the regulation of apoptosis. CircRNAs 
also work as miRNA sponges to impact glioma apoptosis 
and subsequent TMZ sensitivity by regulating sirtuin 1 
(SIRT1) expression. SIRT1 is a NAD-dependent deacetylase 
with oncogenic and epigenetic regulatory functions. SIRT1 
also induces pro-survival and anti-apoptosis properties 
in different cancer types (52). Circ_0076248 acts as a 
miR‐181a sponge to assist TMZ chemotherapy resistance 
by increasing the expression of SIRT1 (53). Circ_CEP128 
is up-regulated in TMZ-resistant glioma cells. On the 
other hand, the knockdown of circ_CEP128 inhibits cell 
proliferation and increases TMZ sensitivity by interacting 
with miR-145-5p, further decreasing the expression of ATP-
binding cassette superfamily G member 2 (ABCG2) (54). 
Another circRNA, circ-GLIS3, a miR-548m sponge, is also 
up-regulated in TMZ-resistant glioma cells and facilitates 
glioma progression and resistance presumably through the 
induction of mediator of RNA polymerase II transcription 
subunit 31 (MED31) expression (a transcription 
coregulatory) (55). Taken together, all this evidence revealed 
the positive regulatory effects of circRNAs on glioma TMZ 
resistance and offered circRNAs as ideal biomarkers for 
glioma resistance, diagnosis, and treatment.

Exosomal circRNAs and chemoresistance  
Exosomes, which are nanosized extracellular vesicles 

carrying diverse cargo, including lncRNAs, miRNAs, 
and circRNAs, can impact the development as well as the 
treatment of various malignancies, including gliomas. 
circRNAs can be transferred by exosomes and contribute to 
drug resistance by sponging miRNAs. In this line, a study 
revealed that circ_0072083 is elevated in TMZ-resistant 
glioma tissues and cells (56). Exosomal circ_0072083 
controls Nanog Homeobox (NANOG) expression, a key 
stemness marker involved in TMZ resistance, via controlling 
miR-1252-5p-mediated degradation and methylation after 
targeting N6-methyladenosine (m6A) demethylase, human 
AlkB homolog (5ALKBH5) (57). ALKBH5 maintains the 
glioma tumorigenicity and TMZ resistance by regulating 
resistance-related mRNA (58, 59). Moreover, they found 
that releasing exosomal hsa_circ_0072083 in resistant cells 
relies on the Warburg effect. Geng et al. demonstrated 
that exosomal circWDR62 acts as a miR-370-3p sponger 
to control O-6-Methylguanine-DNA Methyltransferase 
(MGMT), which is a DNA repair enzyme implicated in 
chemoresistance and ultimately enhances resistance to TMZ 
and promotes glioma progression in vitro and in vivo (30).

Li and colleagues also explored the TMZ resistance 
regulatory effect of exosomal circ_0043949 (60). They 
observed that circ_0043949 is extremely expressed in 
exosomes extracted from TMZ-resistant cells, and exosomal 
circ_0043949 promotes the resistance of GBM cells to TMZ 
in vivo (60). Functionally, current circular RNA promoted 
TMZ resistance by up-regulating the expression of integrin 
alpha 1 (ITGA1) through the sequestration of miR-876-
3p. This evidence suggests that ITGA1 is a possible target 
for overcoming TMZ resistance in GBM (60). It has been 
indicated that exosomal circ-HIPK3 acts with miR-421 to 
induce resistance to TMZ by elevating the expression of a 
well-known tumorigenic transcription factor, the zinc finger 
of the cerebellum 5(ZIC5) (61, 62). It has been proposed 
that heparinase is required for the secretion and function of 
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exosomes. Notably, heparanase is positively associated with 
TMZ resistance, which might be attributed to increased 
delivery of exosomal circRNAs by heparanase (63). 
Accordingly, research showed that heparanase facilitates 
exosomal hsa_circ_0042003 transport from TMZ-resistant 
glioma cells to drug-sensitive tumor cells, confirming 
its contribution to TMZ resistance (63). Circ-Serpine2, 
a GSC exosome-containing circRNA, enhanced glioma 
progression through the miR-124-3p/KIF20A axis(64). All 
these exosomal circRNA could be considered a promising 
biomarker for evaluating TMZ efficacy.

circRNAs and autophagy-related chemoresistance
Regulation of autophagy by circRNAs has been 

proposed as another mechanism involved in regulating 
chemoresistance (65, 66). Autophagy is an intracellular self-
degradation process known to have a dual role in cellular 
functions and homeostasis by eliciting both cytoprotective 
and pro-apoptotic effects depending on the cellular 
context (67, 68). Since appropriate autophagic activity 
induces cytoprotective functions and makes tumor cells 
resistant to apoptosis, excessive autophagy results in more 
apoptosis in tumor cells and consequently reinforces tumor 
responsiveness to chemotherapy (69). Recently, the role of 
several autophagy targeting circ-RNAs involved in glioma 
progression and resistance has been investigated. In this 
line, Chi et al. explored the biological effects of Matrine, a 
traditional Chinese medicine, on the glioma cells (70). They 
found that Matrine triggers apoptosis and autophagy due 
to reduced expression of circ-104075 through suppression 
of Wnt-β-catenin and PI3K/AKT pathways in glioma 
cells. circRNA-104075 overexpression counteracts the 
promoting effects of Matrine on apoptosis and autophagy 
(70). CircMMP1 is up-regulated in glioma cells and tissues, 
and the circMMP1 knockdown reduced glioma progression 
and increased apoptosis and autophagy by targeting the 
miR-195-5p/TGIF2 axis (70). These results support the pro-
apoptotic effects of autophagy and the negative regulation 
of autophagy by circRNAs. However, circRNAs may 
positively regulate autophagy in glioblastoma cells, further 
evoking pro-apoptotic effects and sensitizing glioma cells to 
chemo/radiotherapy. In an investigation, Hsa_circ_0072309 
promoted autophagy and improved the sensitivity of GBM 
to TMZ in wild type p53 group, but not in the GBM group 
possessed a p53 mutation via affecting the p53 signaling 
pathway. They showed that Hsa_circ_0072309 inhibits p53 
ubiquitination using MiR-100 and strengthens the durability 
of p53 protein in the wild-type p53 group. Autophagy 
suppressant or P53 suppressant could reduce the effect of 
hsa_circ_0072309 on TMZ sensitivity in p53 wild-type 
GBM (71). CircRNAs can also affect appropriate autophagy 
and thus regulate drug resistance. Zhang et al. indicated that 
Hsa_circ_0075323 is considerably expressed in GBM cells 
and is involved in GBM progression through the regulation 
of Protein p62 (sequestosome 1) -mediated autophagy 
pathway (72). p62 plays a vital part in protective autophagy 
in tumor cells. The author concluded that since protective 
autophagy is common in chemo/radiotherapy resistance 
of GBM cells, hsa_circ_0075323 can be considered as a 
prognostic biomarker or a promising therapeutic target to 
combat chemo/radiotherapy resistance (72). These studies 
imply a binary interplay between circ-RNAs and autophagy 
affecting glioma progression and therapeutic resistance 
positively or negatively. 

CircRNAs involved in glioma radioresistance 
Radioresistance is a serious hindrance to clinical glioma 

therapies due to improved DNA repair, modified DNA 
damage response (DDR), and evasion of apoptosis (73). 
Differential expression of circRNAs between radioresistant 
and radiosensitive patients have been identified. Therefore, 
the discovery of circRNAs involved in radioresistance or 
radiosensitivity is essential to improve the outcome of 
radiotherapy in glioma patients. Several radioresistance-
promoting circRNAs have been identified in glioma. 
According to a study, circATP8B4 was significantly up-
regulated in radiation-resistant glioma cells (74). Further 
evaluations showed that circATP8B4 may perform as a 
molecular sponge for miR766 to expedite cell radioresistance 
(74). Ring finger protein 2 (RNF2) is an eminent E3 ligase 
with oncogenic proprieties and is closely linked to the 
ubiquitination and phosphorylation of the DNA damage 
molecule, H2AX. H2AX is a pivotal sensor that can provoke 
the early DDR. RNF2 elicits tumor-promoting functions 
following exposure to irradiation (75). Accordingly, 
silencing RNF2 sensitizes glioma cells to radiation by 
enhancing apoptosis (76). Hence, identifying RNF2-
associated circRNAs is important for overcoming glioma 
radioresistance. Di and colleagues have consistently found 
that circ_0008344 level is highly elevated in radioresistant 
glioma cells and tissues. On the other hand, suppression of 
circ_0008344 enhanced glioma radiosensitivity both in vitro 
and in vivo (77). Functionally, circ_0008344 performed as 
a miR-433-3p sponge to improve glioma radioresistance by 
augmenting the Ring finger protein 2 (RNF2) expression (77-
79). Evidence suggests that radiation can cause the release 
of exosomes containing oncogenic circRNAs, which can 
promote proliferative and resistant profiles, in conformity 
with this notion. Wang et al. indicated that low-dose 
irradiation can cause the release of exosomes containing 
circ-METRN. Up-regulated circ-METRN increases 
the gamma H2A histone family member X ( γ-H2AX) 
expression and stimulates the DDR process in radioresistant 
glioblastoma cells (80). A study revealed that CircATP8B4 
in extracellular vesicles obtained from radioresistant cells 
reduces radiation sensitivity via sponging miR-766 (74). In 
contrast to the above-mentioned radioresistant promoting 
circRNA, the effects of circ-AKT3 as radio-sensitizing 
circRNA in glioma cells have been examined by Xia et al. 
(81). They demonstrated that circ-AKT3 is downregulated 
in GBM and acts as a tumor suppressor. Circ-AKT3 encodes 
a 174 amino acid (aa) novel protein, AKT3-174aa, which 
can reduce GBM cell growth, in vivo tumorigenicity, and 
radiation resistance. Regarding the mechanism of action, 
AKT3-174aa competitively cooperates with phosphorylated 
PDK1, decreases AKT-thr308 phosphorylation, and thus 
negatively regulates the RTK/PI3K signaling pathway 
(81). According to these findings, circ-AKT3 can induce 
AKT3-174aa, a negative RTK/PI3K signaling regulator. 
Hence, circRNAs have a dual regulatory effect in glioma 
radioresistance mechanisms. Together, these findings 
highlight the promise of circRNAs as a promising diagnostic 
tool for overcoming radioresistance in glioma radiotherapy.

CircRNAs involved in glioma targeted therapy- resistance
Platinum chemotherapeutic drugs, particularly Cisplatin 

(DDP), are broadly applied for treating multiple tumors, 
such as gliomas. DDP indicates a cytotoxic effect through 
the construction of the platinum-DNA complex, resulting 
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in the activation of apoptotic signaling pathways (82, 83). 
Unfortunately, tumor cells are prone to evolve resistance to 
DDP treatment, which is a main obstacle to glioma therapy 
(84). Meanwhile, circRNAs have also been reported to 
regulate glioma resistance to DDP. In this line, researchers 
examined the effect of circ_PTN in developing resistance 
to DDP in GBM cells (85). circ_PTN was up-regulated 
in DDP-resistant GBM cells and enhances resistance to 
DDP in these cells via sponging miR-542-3p and up-
regulating Phosphatidylinositol 3-kinase regulatory subunit 
gamma (PIK3R3), thereby activating PI3K/AKT signaling 
pathway(85). Circ_0055412 is another circRNA reported 
to be significantly up-regulated in glioma cells (86). 
Suppression of circ_0055412 enhances cisplatin sensitivity 
of glioma cells in vitro and in vivo. This circular RNA affects 
miR-330-3p to simplify cisplatin resistance in glioma cells 
by increasing the expression of the regulated nuclear factor 
of activated T cells 3 (NFATC3)(86). NFATC3 can activate 
the transcription of catenin beta 1 (CTNNB1) to increase 
β‐catenin and stimulate the Wnt/β‐catenin signaling 
pathway(86).

Histone deacetylases (HDACs), the chief arms of the 
epigenetic control of gene expression, play a crucial role 
in glioma progression and resistance to treatment (87, 
88). In consequence, suppressing HDACs is a promising 
therapeutic approach for reversing epigenetic modification 
in glioma. However, resistance to (HDAC) inhibitor-
based therapeutic drugs is one of the foremost difficulties 
in glioma therapy. CircRNAs have been postulated to be 
implicated in the modulation of HDAC inhibitor tolerance 
in multiple human malignancies and gliomas. In this line, 
Meng et al. explored the association between circRNAs and 
tolerance to a pan-HDAC inhibitor, SAHA (Vorinostat), 
in GBM (89). They discovered circ_0000741, and TRIM14 
were up-regulated, while miR-379-5p was downregulated 
in SAHA-tolerant GBM cells. Furthermore, circ_0000741 
depletion inhibited cell proliferation and invasion, reduced 
SAHA tolerance, and promoted apoptosis in SAHA-tolerant 
GBM cells (89). Circ_0000741 operated as a miR-379-5p 
sponge, influencing TRIM14. Thus, Circ_0000741 might 
promote SAHA tolerance via modulation of the miR-379-
5p/TRIM14 axis, offering a promising target for treating 
GBM (89). Therefore, circRNA targeting might provide 
a new approach for glioma-targeted therapy. A summary 
of circRNAs and potential underlying mechanisms in the 
development of glioma therapeutic resistance is listed in 
Table 1. 

circRNAs involved in glioma therapeutic resistance 
through regulation of GSCs

It has been evidenced that GSCs, a minor population of 
cells with stem cell-like properties, have self-renewal and 
multilineage differentiation potential, contributing to GBM 
therapeutic resistance and recurrence (90). GSCs promote 
therapeutic resistance by induction of the DNA damage 
machinery response and activation of several chemo-
resistance-mediating factors and signaling pathways (90-94). 
Several dysregulated signaling pathways, such as Notch, NF-
κB, PI3K/Akt/mTOR, and Wnt/β-catenin, are accountable 
for tumorigenesis and therapeutic resistance of GBM by 
GSCs (95-101). circRNAs have been shown to contribute 
efficiently to the modulation of GSCs maintenance and 
carcinogenesis, thereby affecting strategies for anti-glioma 
therapy. Given that GSC features are closely associated 

with glioma tumorigenesis and therapeutic resistance, 
identifying GSCs-associated circRNAs and the mechanism 
of their action will be of great clinical significance in 
improving anti-glioma treatments. Accordingly, in the 
following sections, circRNA-mediated regulation of 
stemness properties, regulation of deregulated transcription 
factors, and signaling pathway in GSCs and their functional 
relevance in GSCs maintenance and carcinogenesis will be 
discussed. 

Regulation of the expression of stemness markers
Several findings show the role of circRNAs in regulating 

stemness properties and subsequent GSC maintenance 
and carcinogenesis. In this context, a study revealed that 
circPTN sponges miR-145-5p/miR-330-5p to increase 
the self-renewal of GSCs and the expression of different 
stemness markers (Nestin, CD133, SOX9, and SOX2) (102). 
circEPHB4 has been also shown to sponges miR-637 and 
further increase the expression of stemness markers, SOX10 
and Nestin(103). This effect is associated with enhanced 
glioma cell stemness, proliferation, and glycolysis(103). 
circNDC80 has been found as an oncogenic factor in the 
development of glioblastoma through the miR-139-5p/ 
Endothelin-converting enzyme-1 (ECE1) pathway that 
preserves the stemness of GSCs to enhance GSC self-
renewal (104). ATP-binding cassette, subfamily C, member 
3 (ABCC3), is a member of the ABC transporter superfamily 
that is involved in multidrug resistance. circABCC3 sponges 
miR-770-5p to increases the expression of SOX2 stemness 
marker through the PI3K/AKT pathway in glioma cells(105).  
The SOX family transcription factors have been found to be 
fundamental regulators of  stemness, EMT, carcinogenesis, 
and drug  resistance. Thus, circRNA-mediated targeting 
of SOX transcription factors may be a useful target for 
overcoming GSC maintenance and resistance.

Regulation of the expression of other GSC markers 
Along with their role in regulating stemness properties 

described above, circRNAs also regulate resistance-
mediating factors in GSCs. Based on a report, circCHAF1A 
expression was elevated in glioma and enhanced the 
proliferation and tumorigenesis of GSCs(106). Regarding 
its mechanism of action, circCHAF1A increased the 
expression of transcription factor Homeobox C8 (HOXC8)  
in GSCs by targeting miR-211-5p. Up-regulated HOXC8 
can, in return, increase the MDM2 expression, which is 
highly associated with chemotherapeutic resistance in 
human malignancies, and suppress the antitumor effect 
of p53. Additionally, the RNA-binding protein FMR1 can 
bind to and enhance the expression of circCHAF1A by 
preserving its stability, while HOXC8 also transcribes the 
FMR1 expression to create a feedback loop which ultimately 
may facilitate the tumorigenesis of GSCs(106). circASPM 
has been shown to be overexpressed in GBM, enhancing 
GSC proliferation and tumorigenesis (107). Functionally, 
circASPM directly binds to miR-130b-3p as a molecular 
sponge in GSCs. This binding induces overexpression 
of E2 transcription factor1 (E2F1), a regulator of tumor 
occurrence and chemoresistance, ultimately enhancing 
GSC proliferation and tumorigenesis(107, 108). Another 
circRNA, circ-ASB3, has been presented to be up-regulated 
in GSCs, increasing the expression of Twist1, a master 
regulator of EMT, by competitively inhibiting miR-543, 
thereby enhancing glioma malignancy and recurrence(109). 
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Table 1. CircRNAs and their mechanisms in the development of glioma therapeutic resistance

Temozolomide (TMZ), neuroblastoma ras viral oncogene homolog (NRAS), aldolase A (ALDOA), runt-related transcription factor 1 (RUNX1), tripartite motif-containing 14 
(TRIM14), kinesin family member 2A (KIF2A), sirtuin 1 (SIRT1), integrin subunit alpha 1 (ITGA1), ATP-binding cassette superfamily G member 2 (ABCG2), mediator of RNA 
polymerase II transcription subunit 31 (MED31), Nanog Homeobox (NANOG), O6-methylguanine-DNA methyltransferase (MGMT), zinc finger of the cerebellum 5(ZIC5), 
Ring finger protein 2 (RNF2), the gamma H2A histone family member X ( γ-H2AX), Phosphatidylinositol 3-kinase regulatory subunit gamma (PIK3R3), regulated nuclear factor 
of activated T cells 3 (NFATC3)

 

 

circ_0055412 miR-330-3p NFATC3 Up 
Increasing the glioma resistance 

-catenin signaling pathway 
Cisplatin 

in vitro 

/in vivo 
(86) 

circ_0000741 miR-379-5p TRIM14 Up 
Increasing the glioma cell proliferation and invasion and 

reducing apoptosis 
Vorinostat 

in vitro 

/in vivo 
(89) 

circ-104075   Up 

Reducing apoptosis and autophagy, 

-catenin and PI3K/AKT signaling 

pathways 

Matrine in vitro (70) 

hsa_circ_0072309 miR-100  Down Promoting autophagy and TMZ sensitivity 
TMZ 

 

in vitro 

/in vivo 
(71) 

hsa_circ_0075323 

 
 Protein p62 Up 

Promoting autophagy Increasing the GBM progression 

and resistance 
TMZ in vitro (72) 

CircRNA miRNA Target gene Expression Biological Effect Treatment Study design Ref. 

hsa_circ_0000936 miR-1294  Up Chemoresistance TMZ in vitro (45) 

circASAP1 miR-502-5p NRAS Up 
Induction of cell growth, inhibition of apoptosis 

activation of MEK1/ERK1 2 
TMZ 

in vitro 

/in vivo 
(46) 

circKIF4A miR-335-5p ALDOA Up 
Increasing the glycolysis rate, glioma growth, and 

chemoresistance 
TMZ 

in vitro 

/in vivo 
(47) 

circ-VPS18 miR-370 RUNX1 Up Increasing the glioma growth and chemoresistance TMZ 
in vitro 

/in vivo 
(48) 

circ_0005198 miR-198 TRIM14 Up Increasing the EMT and chemoresistance TMZ in vitro (46) 

circHIPK3 hsa- miR-524-5p KIF2A Up 
Increasing the glioma progression and resistance 

Activating the PI3K/AKT 
TMZ in vitro (50) 

hsa_circ_0110757 hsa-miR-1298-5p ITGA1 Up Regulating apoptosis Activating the PI3K/AKT pathway TMZ 
in vitro 

/in vivo 
(51) 

circ_0076248 

 
miR‐181a SIRT1 Up Increasing the glioma growth, invasion, and resistance TMZ 

in vitro 

/in vivo 
(53) 

circ_ CEP128 miR-145-5p ABCG2 Up Increasing the glioma cell proliferation and resistance TMZ 
in vitro 

/in vivo 
(54) 

circ-GLIS3 miR-548m MED31 Up Increasing the glioma progression and resistance TMZ 
in vitro 

/in vivo 
(55) 

Exosomal 

circ_0072083 
miR-1252-5p 

 

(NANOG) 
Up Increasing the glioma tumorigenicity TMZ 

in vitro 

/in vivo 
(56) 

Exosomal 

circWDR62 
miR-370-3p MGMT Up Increasing the glioma tumorigenicity and resistance TMZ 

in vitro 

/in vivo 
(30) 

Exosomal 

circ_0043949 
miR-876-3p ITGA1 Up Increasing the glioma progression and resistance TMZ in vivo (60) 

Exosomal 

circ-HIPK3 
miR-421 ZIC5 Up Increasing the glioma tumorigenicity and resistance TMZ 

in vitro 

/in vivo 
(61) 

circ-Serpine2 

 
miR-124-3p KIF20A Up 

Increasing the glioma cell proliferation, migration, 

invasion, and resistance 

 

TMZ 
in vitro 

/in vivo 
(64) 

circ- ATP8B4 miR 766  Up Increasing the glioma resistance Radiotherapy 
in vitro 

/in vivo 
(74) 

circ_0008344 

 
miR-433-3p RNF2 Up Increasing the glioma tumorigenicity and resistance Radiotherapy 

in vitro 

/in vivo 
(77) 

circ-METRN  -H2AX Up Promoting the DDR process and resistance Radiotherapy in vitro (80) 

circ-AKT3  
protein, AKT3-

174aa 
Down Reducing GBM cell proliferation and resistance Radiotherapy 

in vitro 

/in vivo 
(81) 

hsa_circ_0003949 miR-542-3p PIK3R3 Up 
Increasing the glioma tumorigenicity and resistance 

Activating the PI3K/AKT pathway 
Cisplatin 

in vitro 

/in vivo 
(85) 
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circPTPRF enhances the progression and neurosphere 
formation ability of GBM by sponging miR-1208 to augment 
the expression of the Yin Yang 1 (YY1) transcription factor 
(110). Another investigation revealed that circMELK is up-
regulated in GBM, acting as a sponge for tumor suppressor 
miR-593, to increase the oncogenic gene Eph receptor B2 
(EphB2), a member of Eph receptor tyrosine kinases family 
identified as a regulator of cancer stemness, drug resistance 
and subsequently glioblastoma EMT and GSC maintenance 
(105). Similarly, circRNAs, such as circARF1, circATP5B, 
and circCHAF1A, are overexpressed in GBM and involved 
in GSC proliferation and tumorigenesis (106, 111). 
circARF1 through U2AF2 /circARF1/miR-342-3p/ ISL LIM 
homeobox 2 (ISL2) feedback loop affects angiogenesis in 
GSCs(111). Experiments proved that circARF1 increased 
the expression of ISL2 in GSCs via miR-342-3p sponging. 
Additionally, U2AF2 binds to and enhances the stability 
and expression of circARF1, while ISL2 stimulates U2AF2 
expression, which creates a feedback loop in GSCs(111). 
From these documents, it could be concluded that 
circRNAs, by sponging miRNAs and subsequent alteration 
of gene expression, create a feed-forward regulatory loop to 
increase their stability and expression in GSCs.

Regulation of dysregulated signaling pathways in GSCs
CircRNA-mediated targeting of dysregulated signaling 

pathways may represent another GSC maintenance and 
resistance mechanism. According to Hu et al., circGNB1 is up-
regulated in glioma, promoting GSC proliferation, invasion, 
and neurosphere formation (112). Functional assays have 
claimed that circGNB1 acts as miR-515-5p and miR-582-3p 
sponge to increase the expression of oncogene Xenotropic 
and polytropic retrovirus receptor 1 (XPR1), an inorganic 
phosphate cell-surface transmembrane protein inducing 
chemotherapy resistance by reducing Pi concentration 
(112, 113). XPR1 could further promote the malignant 
phenotype of GSCs through IL6 overexpression and JAK2/
STAT3 signaling activation (112). Consistently, circATP5B 
has been reported to be up-regulated in GSCs, promoting 
the proliferation of GSCs through activation of the IL6-
mediated JAK2/STAT3 signaling pathway (114). circRPPH1 
had also proved to be up-regulated in GSCs, promoting the 
self-renewal and proliferation of GSCs by up-frameshift 
protein 1 (UPF1)/circRPPH1/ Activating transcription 
factor (ATF3) feedback loop through interacting with the 
TGF-β signal pathway (115). Furthermore, the knockdown 
of circRPPH1 markedly reduced the GSC proliferation 
and clonogenicity(115). In a recent work, circNCAPG has 
been found to be overexpressed in glioma, contributing to 
GSC progression(64). Functionally, circNCAPG interacts 
with and stabilizes a zinc finger transcription factor, RAS-
responsive element-binding protein 1 (RREB1), that can 
activate the TGF-β1 signaling pathway. Furthermore, RREB1 
could surge the GSC stemness through overexpression 
of Nestin and also elevate the expression of the U2AF65 
splicing factor to develop the stability of circNCAPG in 
GSCs(64). Jiang et al. demonstrated that over-expressed 
circKPNB1 in GBM can promote the GSC tumorigenicity, 
neurosphere formation abilities, and stemness. They 
found that circKPNB1 controls the protein stability and 
nuclear translocation of transcription factor SPI1 so that 
SPI1 enhances the malignant phenotype of GSCs through 
TNF-α mediated NF-κB signaling(116). Evidence suggests 
that circRNA-encoded proteins could also contribute to 

glioma tumorigenesis and development. For instance, 
circRNA, circSmo encodes a novel protein Smoothened 
(SMO) -193a.a, essential for Hedgehog signaling activation 
in CSCs (117). Up-regulation of Smo-193a.a is linked to 
abysmal prognosis of glioblastoma and positively controls 
the Hedgehog signaling, while the downregulation of Smo-
193a.a can considerably suppress self-renewal of CSCs 
and tumorigenesis (117). Irregular activation of Growth 
Factor Receptor (EGFR) signaling is common in GBM and 
is associated with up to 60% of all GBM cases(118, 119). 
EGFR is also involved in GSCs maintenance and functions, 
and acquired resistance to EGFR Inhibitors appears to be 
associated with GSCs. According to Gao et al., the circ-
E-Cad variant activates EGFR independently of EGF and 
GSC tumorigenicity maintenance (120). They also found 
that inhibition of circ-E-Cad meaningfully enhances the 
anticancer effects of EGFR-targeting therapies in GBM 
(120). These findings underscore the therapeutic potential of 
circRNAs in EGFR-driven GBM. Together, these collective 
findings suggest that GSCs-associated circRNAs can 
regulate stemness properties by targeting the specific gene 
and the downstream signal pathways known to mediate 
glioma carcinogenesis and resistance. Thus, the merits of 
targeting GSCs-associated circRNAs should be considered 
in the context of approaches that target therapy resistance in 
glioma. Several circRNA--miRNA-target gene interactions 
affect different characteristics of GSCs in glioma (Table 2).

Targeting ferroptosis in GSCs
Ferroptosis is a type of ferrous iron-dependent regulated 

cell death pathway and assumes a significant character in 
GBM malignancy. It must be noted that agents inducing the 
ferroptosis pathway have also been established to increase 
GBM drug sensitivity (121-123). Accordingly, several 
circRNA targeting ferroptosis have been recently uncovered. 
In this line, circCDK14 has been revealed to suppress 
ferroptosis and increase GBM progression through the 
regulation of PDGFRA (124). Circ-TTBK2 also modulates 
glioma cell tumorigenicity and ferroptosis via targeting 
ITGB8 by sponging miR-761 (125). Knockdown of specific 
circRNA increases ferroptosis and enhances drug sensitivity 
in other types of tumors (126). An important note, due to 
certain features of CSCs, ferroptosis can selectively target 
aggressive CSCs and induce CSCs death in tumors (127, 
128). Therefore, identifying ferroptosis-targeting circRNAs 
in GSCs could potentially be exploited to eradicate GSCs and 
suppress glioma progression and resistance. In conformity 
with this notion, Jiang et al. indicated diminished expression 
of circLRFN5 in GBM, and that circLRFN5 overexpression 
reduces the GSC proliferation, stemness, and tumorigenesis 
through induction of ferroptosis(129). They reported that 
CircLRFN5 connects to paired related Homeobox 2(PRRX2) 
protein, promoting its proteasomal degradation and 
suppressing PRRX2-mediated transcription of Guanosine 
triphosphate cyclohydrolase (GCH1), a ferroptosis 
suppressor, in GSCs(129). Thus, circRNA-mediated 
ferroptosis regulation may serve as a novel GSCs-targeting 
therapy and, thus, overcome therapeutic resistance.

Future perspectives
As we have summarized current knowledge on the 

regulatory effects of circRNAs in therapy resistant-glioma, 
it seems that circRNAs perform as a double-edged sword 
in therapeutic resistance. Most of the circRNAs mentioned 
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in this review are overexpressed in glioma and contribute 
to therapeutic resistance by activation of divers signaling 
pathways, including the PI3K/AKT, Wnt-β-catenin, 
Notch and NF-κB, thus affecting cell survival, apoptosis, 
autophagy, EMT, and stemness. A graphical presentation 
is provided in Figure 2. For these circRNAs that promote 
therapeutic resistance, targeted inhibition or an appropriate 
combination of circRNA-targeted agents and chemo/
radiotherapy may present a viable strategy for increasing 
tumor sensitivity. Several RNA-based therapies, such as 
antisense oligonucleotide and interfering RNA, have gained 
FDA approval (131). However, the therapeutic targeting 
of circRNAs is still at an early stage and is far from being 

able to be incorporated into clinical settings and requires 
further investigations. Some circRNAs are downregulated 
in glioma and play a tumor-suppressive role in glioma by 
inhibiting therapeutic resistance. Endogenous or synthetic 
circRNAs, therefore, have the potential to be used as a 
potent therapeutic sensitizer. The successful application 
of circRNA overexpression strategies is also limited and 
requires complementary research. For example, the 
appropriate doses and the immunogenic and toxic effects 
of circRNAs have to be determined and optimized in target 
cells. Identifying a standardized circRNA delivery system 
can reduce the limitations of circRNA-based approaches 
caused by off-target effects. Exosomes represent a novel 

Table 2. Summary of circRNAs--miRNA-target gene interactions affecting GSCs in glioma 

glioma stem cells (GSCs), Endothelin-converting enzyme-1 (ECE1), homeobox B5 (Hoxb5), up-frameshift protein 1 (UPF1, Activating transcription factor 
(ATF3), RAS-responsive element-binding protein 1 (RREB1), Protein. Spi-1 proto-oncogene (SPI1), Homeobox C8 (HOXC8),E2 transcription factor1 
(E2F1),Yin Yang 1 (YY1),Eph receptor B2 (EphB2),ISL LIM homeobox 2 (ISL2), Xenotropic and polytropic retrovirus receptor 1 (XPR1), paired related 
Homeobox 2(PRRX2)

circRNA microRNA Target gene Expression Biological Effects  Pathway Ref. 

circATP5B miR-185-5p HOXB5 Up GSC self-renewal and proliferation IL6-mediated JAK2/STAT3 (114) 

circRPPH1 - 
UPF1 

ATF3 
Up GSC self-renewal, proliferation, clonogenicity TGF-  (115) 

circNCAPG - RREB1 Up GSCs progression and GSC stemness TGF-  (64) 

circKPNB1 - SPI1 Up 
GSC stemness tumorigenicity 

 
TNF- -  (116) 

circSmo  SMO-193a.a Up Self-renewal of CSCs and tumorigenesis Hedgehog signaling (117) 

circ-E-Cad - Protein C-E-Cad Up GSC tumorigenicity EGFR signaling (120) 

circPTN miR-145-p, miR-330-5p 
Nestin, CD133, 

SOX9, SOX2 
Up GSC self-renewal  (102) 

circEPHB4 miR-637 
SOX10, 

Nestin 
Up Glioma cell stemness, proliferation, and glycolysis  (103) 

circNDC80 miR-139-5p 
Endothelin converting 

enzyme 1 
Up 

GSCs stemness and self-renewal, cell proliferation, 

migration, invasion 

ECE1 pathway 

 
(104) 

circCHAF1A miR-211-5p HOXC8 Up GSCs proliferation and tumorigenesis  (106) 

circASPM miR-130b-3p E2F1 Up GSC proliferation, tumorigenesis  (107) 

circ-ASB3 miR-543 Twist1 Up Glioma malignancy and recurrence  (109) 

circPTPRF miR-1208 YY1 Up 
Glioma neurosphere formation ability and 

progression 
 (110) 

circMELK miR-593 EphB2 Up EMT and GSC maintenance  (105) 

circARF1 miR-342-3p ISL2 Up Angiogenesis in GSCs  (111) 

circGNB1 
miR-515-5p, 

miR-582-3p 
XPR1 Up 

GSC proliferation, invasion, and neurosphere 

formation 
IL6-mediated JAK2/STAT3 (112) 

circLRFN5 - PRRX2 Down GSCs proliferation, stemness, tumorigenesis Ferroptosis pathway (130) 
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means of intercellular communication by delivering various 
circRNAs that affect post-transcriptional genetic regulation 
to exert glioma growth and resistance. Thus, following up 
with further preclinical validation and clinical exploration of 
exosomal circRNAs in human gliomas would be worthwhile 
in developing more effective diagnostic and therapeutic 
strategies. Abnormal expression of circRNAs can potentially 
be a diagnostic biomarker of therapeutic resistance. 
Applying circRNAs as potential biomarkers would help 
choose patients most likely to benefit from chemotherapy 
and radiation therapy. Despite the discovery of many 
circRNAs, there are still many circRNAs with unknown 
functions in glioma therapeutic resistance, especially 
GSCs. It is important to note that autophagy is related to 
processes that drive GSC maintenance and tumorigenicity. 
Thus, elucidating the cross-talk between circ-RNAs and 
autophagy in GSCs could be beneficial for establishing more 
qualified therapeutic modalities for controlling chemo/
radioresistance. Mechanisms underlying the effect of the 
circRNAs on therapeutic resistance in tumors are complex. 
Further identification of the effects of circRNAs on other 
resistance-promoting factors and signaling pathways is 
therefore worthy of consideration. 

Conclusion
Taken together,circRNAs exhibit abnormal expression 

patterns in glioma and may function as either facilitators 
or suppressors of therapeutic resistance. circRNAs serve 
as competing endogenous RNAs, sequestering specific 
microRNAs and thereby influencing the expression of genes 
associated with glioma tumorigenesis and resistance. By 
doing so, circRNAs can alter essential cellular pathways 
and processes that govern glioma resistance, including 
DNA repair mechanisms, glioma stem cells, epithelial-
mesenchymal transition, apoptosis, and autophagy. Given 
the dismal survival rates and increased resistance to existing 
glioma treatments, pursuing further preclinical validation 
and clinical investigation of circRNAs in human gliomas 
is imperative to establish more effective diagnostic and 
therapeutic approaches.
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