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Objective(s): Quinolinic acid (QA)-mediated excitotoxicity has been widely 

used as a model for studying neurodegenerative disorders. Recent studies 

suggested that saffron (Crocus sativus) or its active metabolite, i.e. safranal, 

exerts pharmacological actions on central nervous system including anxiolytic, 

anticonvulsant, and neuroprotective properties. The present study aimed to 

investigate the effect safranal pretreatment on QA-induced oxidative damage in 

rat hippocampus. 

Materials and Methods: Under anesthesia, a guide cannula was stereotaxically 

inserted into left ventral hippocampus of rats. The rats were then given either 

saline or safranal (72.75, 145.5, and 291 mg/kg, IP) 30 min before 

administration of QA (300 nmol, intrahippocampal injection). The markers of 

oxidative stress including thiobarbituric acid reactive substances (TBARS, as 

an index of lipid preoxidation), total sulfhydryl groups, antioxidant capacity of 

hippocampus (using FRAP assay), and oxidative DNA damage (%tail DNA, 

using comet assay) were measured in hippocampus. 

Results: The QA induced a significant increase in TBARS levels and %tail 

DNA and remarkable decrease in antioxidant power (FRAP value) and total 

sulfhydryl content of hippocampus, in comparison with control animals. 

Systemic administration of safranal (291 mg/kg, IP), effectively and dose-

dependently decreased the QA-induced lipid peroxidation (P<0.001) and 

oxidative DNA damage (P<0.001). Safranal also prevented the decrease of 

hippocampal thiol redox and antioxidant status (P<0.001) produced by QA. 

Conclusion: Safranal have protective effects on different markers of oxidative 

damage in hippocampal tissue following QA administration. Our findings 

might raise a possibility of potential therapeutic application of safranal for 

preventing and treating neurodegenerative disorders such as Alzheimer’s 

disease. 
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Introduction 
A growing body of evidence suggests that 

excessive activation of glutamate receptors and 

subsequent excitotoxicity and oxidative stress are 

involved in the pathophysiology of many 

neurological and neurodegenerative disorders        

(1, 2). Quinolinic acid (2,3-pyridine dicarboxylic 

acid, QA), a major tryptophan metabolite 

produced in the kynurenine pathway (KP), is an 

endogenous agonist at receptors for the glutamate 

analogue, N-methyl-D-aspartate (NMDA),        

and has been hypothetically linked to the 

pathogenesis of a variety of neurodegenerative        

as well as inflammatory and non-inflammatory 

human neurological and psychological diseases 

such as schizophrenia or HIV-associated 

dementia (HAD) (3-6). Under brain inflammatory 

conditions, QA is produced by activated 

microglia and infiltrating macrophages which 

leads to neurotoxicity (7). A diversity of toxic 

mechanisms have been proposed for QA 

including NMDA receptors overactivation and 

increased intracellular Ca
2+

 concentrations 

followed by mitochondrial dysfunction and 

cytochrome c release, decreased ATP production, 

formation of damaging free radicals, i.e., reactive 

oxygen, and nitrogen species (ROS and RNS, 

respectively) which in turn leads to oxidative 

stress and neuroinflammation (8,9). Furthermore, 

QA increases glutamate release and decreases 

glutamate uptake, in vivo and in vitro (10,11). 

Therefore, QA-mediated excitotoxicity has been 

widely used as a model for studying 

neurodegenerative disorders and also to 

investigate possible pharmacological 

interventions against excitotoxic neuronal damage 

(12, 13).  

Crocus sativus (saffron), a perennial stemless 

herb of the Iridaceae family, is widely cultivated 

in Iran and also in some              other countries 

such as India. Safranal (2,6,6-trimethyl-1,3- 

cyclohexadiene-1-carboxaldehyde, C10H14O) is 

the main constituent of C. sativus essential 

volatile oil (14). Recently, numerous 

neuropharmacological properties such as 

antioxidant, analgesic and anti-inflammatory, 

hypnotic and anxiolytic, anticonvulsant, anti-

ischemic, antidepressant, and neuroprotective 

have been reported for safranal (15-24). In a 

recent study, reduction of metabolic and 

behavioral signs of acute stress in rats by saffron 

extract has been attributed to its constituent, 

safranal (25).  

Recently, subacute (21 days) and acute         

(2 days) toxicity of safranal were determined in 

mice and rats. In rats, administration of safranal 

with dose of 425 mg/kg/day (0.5 ml/kg/day) 

once-daily for 21 days, caused a significant 

decrease in food and water consumption and 

body weight while an increase  in  serum  levels  

of  lactic  acid dehydrogenase  and  urea nitrogen 

was observed. Pathological data also showed 

some toxic effects in kidneys and lungs. In acute 

toxicity test, the LD50 (50% lethal dose) values 

of safranal were found to be 1260 mg/kg (1.48 

ml/kg) and 1275 mg/kg (1.50 ml/kg) in male 

mice and rats, respectively (26).   

Considering the possible involvement of QA 

in the neuropathogenesis of several major 

neurological diseases such as Alzheimer’s 

disease, Huntington's disease, epilepsy, and 

postischemic neuronal damage, the present study 

focused on the possible protective effects of 

safranal against oxidative damages induced by 

intrahippocampal injection of quinolinic acid. 

 

Materials and Methods 
Chemicals 

Safranal and quinolinic acid (QA)                  

were purchased from Fluka (St. Gallen, 

Switzerland) and Sigma (St. Louis, US), 

respectively. DTNB (2,2'-dinitro-5,                

5'-dithiodibenzoic acid), tripyridyltriazine 

(TPTZ), TBA (2-thiobarbituric acid),                

Tris (hydroxymethyl) aminomethane (Trizma 

base), ethylene diamine tetraacetic               

acid disodium salt (Na2EDTA),                        

t-octylphenoxypoly-ethoxyethanol (Triton X-

100), sodium lauroyl sarcosinate (sarkosyl), 

ethidium bromide, methanol, sodium acetate, 

glacial acetic acid, phosphoric acid, potassium 

chloride, ferric chloride, ferrous sulfate, 

chloral hydrate, and hydrochloric acid were 

obtained from Merck (Dramstadt, Germany). 

Low melting point (LMP) and normal melting 

point (NMP) agarose were purchased from 

Biogen (Mashhad, Iran) and Fermentase (Glen 

Burnie, US), respectively. 
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Animals 

Adult male Wistar rats weighting 250-300 g 

from the Central Animal House of Mashhad 

University of Medical Sciences (Mashhad, 

Iran), were used throughout the study. The 

animals were housed in the same room under a 

constant temperature (22±2 °C) and standard 

conditions of a 12h light/dark cycle with free 

access to food pellets and tap water, available 

ad libitum. The experimental protocol was 

approved by the Animal Care and Use 

Committee (87534), Mashhad University of 

Medical Sciences and was performed in 

accordance with the National Institutes of 

Health Guidelines for the Care and Use of 

Laboratory Animals. 

 

Treatment schedule 

The animals were randomly divided into five 

different experimental groups of seven animals 

each. Group 1 (sham group) received single 

intraperitoneal (IP) injection of normal saline (10 

ml/kg) plus 1 µl of normal saline which was 

infused into the left hippocampus, 30 min later. 

Group 2 (QA group) received single IP injection 

of normal saline (10 ml/kg) plus 

intrahippocampal (IH) administration of QA 

(300 nmol/1 μl/rat), 30 min later. Groups 3-5 

(treatment groups) were injected by safranal 

(72.75, 145.5, and 291 mg/kg, IP), 30 min prior 

to QA administration (300 nmol/1 μl/rat, IH).   

 

Intrahippocampal administration of QA 
The animals were anesthetized with chloral 

hydrate (400 mg/kg, IP and then positioned in 

a stereotaxic apparatus (Stoelting, US). After 

exposing the bregma suture, a small burr hole 

was made through the skull to permit access of 

microinjection needle into the left ventral 

hippocampus according to the brain atlas of 

Paxinos and Watson (AP 3.7 mm, ML 2.4 mm, 

and DV 3.2 mm) (27). Using a 29-gauge 

stainless steel needle connected to a Hamilton 

syringe (Bonaduz, GR, Switzerland), one 

microliter saline solution containing 300 nmol 

QA (or vehicle alone as control) was 

unilaterally microinjected into the left ventral 

hippocampus region over a period of 1 min 

and left in situ for another 1 min to prevent 

back diffusion of the injected drug solution 

(28, Figure 1). Following surgery, the animals 

were kept warm to recover from surgery and 

maintained in suitable situation for 24 hr. After 

that, the animals were decapitated, brains were 

quickly removed, kept in ice-cold saline, and 

the extracted hippocampi were immediately 

frozen in liquid nitrogen and maintained at        

-80°C until processing. The injection site was 

also verified using 1 µl methylene blue and 

anatomical observation.  

The left hippocampus portion was gently 

homogenized in ice-cold phosphate buffered 

saline (0.1 M, pH 7.4) to give a 10% 

homogeny suspension and used for 

biochemical and comet assay. 
 

Ferric reducing/antioxidant power (FRAP) 

assay 

The basis of FRAP assay is reducing the 

colorless Fe
III

-TPTZ complex to blue colored 

Fe
II
-TPTZ complex, by action of electron 

donating antioxidants in biological samples 

(29). The FRAP reagent consists of 300 mM 

acetate buffer (pH=3.6), 10 mM TPTZ in 40 

mM HCl, and 20 mM FeCl3.6H2O in the ratio 

of 10:1:1. 

Briefly, 50 μl of homogenate was added to 

1.5 ml freshly prepared and prewarmed        

(37ºC) FRAP reagent in a test tube and 

incubated at 37ºC for 10 min. The absorbance 

of the blue colored complex was read against 

reagent blank (1.5 ml FRAP reagent + 50 μl 

distilled water) at 593 nm. Standard solutions 

of Fe
II
 in the range of 100 to 1000 mM were 

prepared from ferrous sulphate (FeSO4.7H2O) 

in distilled water. FRAP values were 

expressed as nmol ferric ions reduced to 

ferrous form/mg tissue (29). 

 

Total sulfhydryl (SH) groups measurement 

Total thiol content was estimated based on the 

Ellman method (30). In this method, SH 

groups react with chromogenic DTNB and 

produce a yellow-colored dianion (5-thio-2- 

nitrobenzoic acid, TNB), which has peak 

absorbance at 412 nm.  
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Figure 1. Photograph representing the microinjection 

site of quinolinic acid into the ventral hippocampus 

(black arrow) 

 

Briefly, 1 ml Tris-EDTA buffer (0.1 M 

Tris, 10 mM EDTA, pH=8.6) was added to         

50 µl homogenate sample in 2 ml cuvettes. 

Sample absorbance was read at 412 nm against 

Tris-EDTA buffer alone (A1), then 20 µl 

DTNB reagent (10 mM in methanol) was 

added to the mixture. Following 15 min 

incubation at room temperature, the sample 

absorbance was read again (A2). DTNB 

reagent absorbance was also read as a blank 

(B). Total thiol concentration was calculated 

by the following equation and expressed as 

nmol/mg tissue (22). 

Total thiol concentration (mM) = (A2-A1-B) × 

(1.07/0.05) × 13.6 

 

Thiobarbituric acid reactive species 

measurement 

Hippocampal lipid peroxides formation was 

measured as malondialdehyde (MDA), which 

is the end product of lipid peroxidation and 

reacts with thiobarbituric acid (TBA) as a 

TBA reactive substance (TBARS) to produce a 

pink colored complex which has peak 

absorbance at 535 nm (31). In brief, 1 ml of 

homogenate sample was mixed with 2 ml of 

TCA-TBA-HCl reagent (15% TCA, 0.67% 

TBA, and 0.25N HCl) and heated for 45 min 

in a boiling water bath. After cooling, the 

mixture was centrifuged at 3000 rpm for 10 

min. The supernatant was collected, and the 

absorbance was read against blank, at 535 nm. 

The amount of MDA produced was calculated, 

using a molar absorption coefficient of 

1.56×10
5 

M
-1

cm
-1

 and expressed as nmol/g 

tissue (32). 

 

Alkaline single cell gel electrophoresis 

(SCGE) assay 

The in vivo alkaline SCGE (comet) assay was 

conducted based on the method described by 

Sasaki et al with some modifications (33). In 

brief, 10 µl of the hippocampus cells 

suspension, prepared as above, was mixed 

with 90 µl LMP agarose (0.5% in 

physiological saline), and the mixture was 

quickly layered over a microscope slide 

precoated with a layer of 100 µl NMP agarose 

(1% in physiological saline), the slides were 

then covered with a cover slip, and placed on 

ice to allow agarose to gel. Finally, another 

layer of LMP agarose was added on top. The 

slides were immersed immediately in a chilled 

lysing solution (pH 10) made up of 2.5 M 

NaCl, 100 mM Na2EDTA, 10 mM Trizma, 1% 

sarkosyl, 10% DMSO, and 1% Triton X-100, 

and kept at 0
○
C in the dark overnight. Then, 

the slides were placed on a horizontal gel 

electrophoresis platform and covered with a 

chilled alkaline solution made up of 300 mM 

NaOH and 1 mM Na2EDTA (pH>13). They 

were left in the solution in the dark at 0
○
C for 

40 min, and then electrophoresed at 0
○
C in the 

dark for 30 min at 25 V and approximately 

300 mA. The slides were rinsed gently three 

times with 400 mM Trizma solution (pH 7.5) 

to neutralize the excess alkali, stained with 50 

µl of 20 mg/mL ethidium bromide, and 

covered with a cover slip. 

One hundred nuclei per organ from each 

animal (50 nuclei on one slide) were examined 

and photographed using a fluorescence 

microscope (Nikon, Kyoto, Japan) at 400X 

magnification equipped with an excitation 

filter of 520-550 nm and a barrier filter of 580 

nm. Undamaged cells resemble an intact 

nucleus without a tail, and damaged cells have 

the appearance of a comet. The percent of 

DNA in the comet tail (%tail DNA), which is 

an estimate of DNA damage, was measured 

using a computerized image analysis software 

(CASP software).  
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Statistical analysis 

The statistical analysis was performed using 

Prism 5.00 for Windows software (Graph-Pad 

Software, San Diego, CA). Data were 

expressed as mean±SEM. Comparisons 

between the study groups were made using 

one-way ANOVA followed by Tukey-Kramer 

post-hoc test for multiple comparisons. The p-

values less than 0.05 were considered to be 

statistically significant. 

 

Results 
Effect of safranal on lipid peroxidation level 

The amount of QA-induced free radical damage 

was assessed using lipid peroxidation, which 

was measured as MDA levels. There was a 

significant increase (51.7%) in the MDA levels 

following QA administration as compared with 

sham-operated animals (122.2±7.9 vs. 185.4±7.3 

nmol/g tissue, P<0.001) (Figure 2). Safranal 

pretreatment resulted in a significant and dose-

dependent reduction in the levels of MDA. In 

safranal-pretreated groups with doses of 72.75 

mg/kg, 145.5 mg/kg, and 291 mg/kg, MDA 

levels were 173.6, 141.2, and 128.7 nmol/g 

tissue, respectively (Figure 2). 

 

Effect of safranal on FRAP value 

QA caused a significant reduction in FRAP 

value (79.3%) of homogenate samples as 

compared with sham-operated animals (3.1±0.4 

vs. 0.64±0.08 μmol/g tissue, P<0.001) (Figure 

3). Safranal pretreatment increased antioxidant 

power (FRAP value) of brain homogenate 

samples, in a dose-dependent manner (from 

0.64±0.08 to 2.8±0.4 μmol/g tissue, P<0.001, 

291 mg/kg) (Figure 3). 

 

Effect safranal on total thiol content  

Following QA microinjection a significant 

reduction (74.3%) in total SH content (3.5±0.4 

vs. 0.9±0.1 μmol/g tissue, P<0.001) was 

observed (Figure 4). Safranal pretreatment 

produced significant and dose-dependent 

elevation in total thiol concentration, as 

compared with QA group (from 0.9±0.1 to 

3.7±0.40 μmol/g tissue, P<0.001, 291 mg/kg) 

(Figure 4). 

 

Effect of safranal on DNA damage 

As shown in Figure 4, a significant increase in 

the %tail DNA was seen in hippocampal nuclei 

of QA-treated rats, as compared with those of 

sham group (P<0.001). In contrast, safranal 

significantly decreased DNA damage induced by 

QA, in a dose-dependent manner (Figure 5). 

 

 

 
 

Figure 2. Effect of safranal on malondialdehyde 

(MDA) level of hippocampus homogenate samples 

following microinjection of quinolinic acid (QA, 300 

nmol) into rat hippocampus. Values are mean±SEM 

(n=8). 
**

P<0.01, 
***

P<0.001 as compared with QA-

treated animals; 
###

P<0.001 as compared with saline-

treated animals (One-way ANOVA followed by 

Tukey-Kramer test) 

 
 

 

 
 

Figure 3. Effect of safranal on antioxidant power 

(FRAP value) of hippocampus homogenate samples 

following microinjection of quinolinic acid (QA, 300 

nmol) into rat hippocampus. Values are mean±SEM 

(n=8). 
*
P<0.01, 

***
 P<0.001 as compared with QA-

treated animals; 
###

P<0.001 as compared with saline-

treated animals (One-way ANOVA followed by Tukey-

Kramer test) 
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Figure 4. Effect of safranal on total thiol concentration 

of hippocampus homogenate samples following 

microinjection of quinolinic acid (QA, 300 nmol) into 

rat hippocampus. Values are mean±SEM (n=8).  
***

 

P<0.001 as compared with QA-treated animals;           
###

 P<0.001 as compared with saline-treated animals 

(One-way ANOVA followed by Tukey-Kramer test) 

 
 

 
Figure 5. Effect of safranal on DNA damage (percent 

of DNA in the comet tail, %tail DNA) following 

microinjection of quinolinic acid (QA, 300 nmol) into 

rat hippocampus. Values are mean±SEM (n=8). 
**

P<0.01, 
***

P<0.001 as compared with QA-treated 

animals; 
###

 P<0.001 as compared with saline-treated 

animals (One-way ANOVA followed by Tukey-

Kramer test) 

 

Discussion 
Therapeutic options for neurodegenerative 

disorders such as stroke, Huntington’s disease, 

Parkinson’s disease, and Alzheimer’s disease 

are limited and inadequate to control these 

diseases. Therefore, the search for new 

effective natural products with neuroprotective 

properties is a promising approach for drug 

discovery and development (34).  

In this study, we found that QA caused 

significant hippocampal neuronal lesion and 

oxidative stress marker by increasing lipid 

peroxidation, oxidative DNA damage, and 

depletion of sulfhydryl groups and antioxidant 

power in the rat hippocampus, as previously 

reported in the literature (35-37). In addition, 

we described for the first time some protective 

effects of safranal against QA-induced 

oxidative damage in the rat hippocampus. We 

found that safranal exhibits no toxic effects on 

hippocampus at high concentration used alone 

(291 mg/kg, data not shown). Free radical-

induced DNA damage is an important cause of 

numerous diseases (38). Our results showed 

that pretreatment with safranal significantly 

and dose-dependently decreased free radical-

mediated lipid peroxidation and DNA damage 

and improved hippocampal antioxidant status 

following QA insult.  

The present results demonstrated that 

safranal at low dose (72.75 mg/kg) was not 

able to reduce QA-induced oxidative damage, 

but when administered at relatively high 

concentration is possible to obtain inhibition of 

lipid peroxidation, restore thiol redox and 

antioxidant status and decrease DNA damage. 

While QA increased the percent of DNA in the 

comet tail (%tail DNA) from 3.84% (in sham 

group) to 80.56%, pretreatment with safranal 

(291 mg/kg) significantly decreased QA-

induced DNA damage to about 15.73%.     
Excitotoxicity and resultant oxidative stress is 

a major pathological mechanism involved in 
neuronal degeneration and many central nervous 
system (CNS) disorders (39). In inflammatory 
conditions, oxidative tryptophan metabolism       
via kynurenine pathway is often routed 
preferentially towards the production of QA (7). 
Brain structures, especially hippocampus, are 
very sensitive to the exposure to high 
concentration of QA which causes significant 
neurodegeneration (40). QA has been reported to 
be associated with several brain pathologies 
including neurological and neurodegenerative 
disorders (Alzheimer’s disease, Parkinson’s 
disease, Huntington’s disease, and epilepsy) and 
affective disorders (HIV-assocaited dementia, 
schizophrenia, depression, and anxiety) (4,7). It 
is now widely accepted that QA-induced 
neurotoxicity is mediated through several 
mechanisms including excessive NMDA 
receptor activation leading to massive increase in 
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intracellular Ca
2+ 

and causing oxidative damage 
as a result of massive free radicals formation. In 
addition, QA overstimulates the glutamatergic 
system by inhibition of glutamate uptake and 
stimulation of glutamate release (10). QA is also 
pro-oxidant in the nature and can generate 
reactive oxygen species by a receptor-
independent mechanism through chelate 
formation with ferrous ion (41). It is well 
documented that the nervous system is 
especially vulnerable to free radical-mediated 
injury due to several reasons including high 
oxygen consumption, high contents of 
polyunsaturated fatty acids (PUFA) which are 
particularly vulnerable to free radical attack, 
relatively low antioxidant defense mechanisms, 
and high Ca

2+
 trafficking across neuronal 

membranes (42). 
Considering the role of reactive oxygen 

species in QA-induced neuronal death, safranal 
has been reported to exhibit antioxidant and free 
radical scavenger properties (15). Recently, an 
inhibitory effect of safranal on deoxyribose 
oxidation, erythrocyte membrane, and liver 
microsomal non-enzymatic lipid peroxidation 
has been described by Hosseinzadeh et al (19). 
The protective effect of safranal against subacute 
toxicity of diazinon has also been reported 
mediated through its antioxidant properties (43). 
In a rat model of global cerebral ischemia, 
safranal restored some biomarkers of oxidative 
stress (21). In support of this view, Bharti et al 
showed that safranal dose-dependently 
normalized myocardial antioxidant levels, 
cardiac injury markers (lactic acid 
dehydrogenase and CK-MB), and decreased 
TNF-α level in ischemia-reperfusion-insulted 
rats myocardium, probably due to its fortified 
antioxidant and anti-apoptotic potential (44).  

Recently, it has been shown that safranal 
could inhibit kainic acid-evoked glutamate 
release in rat hippocampus (45). Based on this 
information and the fact that some neurotoxic 
actions of QA are also related to disturbances on 
glutamate release and uptake, we can 
hypothesize that safranal by decreasing synaptic 
glutamate concentration and reduced QA-
induced oxidative damage.   
Excitotoxicity produced by QA was also 
associated with gamma-aminobutyric acid 

(GABA) depletion and specific GABAergic 
neuronal death (5, 46, 47). Moreover, it has been 
shown that following QA lesion of rat striatum, 
there was a marked increase in the central and 
peripheral GABAA/benzodiazepine receptors 
(46). Furthermore, the peripheral benzodiazepine 
receptor ligand, PK11195, has been shown to 
reduce microglial activation, inflammatory 
responses, oxidative damage, and neuronal death 
in QA-injected rat striatum (48). It has also         
been reported that diazepam, a well-known 
benzodiazepine agonist, is anticonvulsant against 
QA-induced seizures (49). Several studies have 
proposed that safranal exerts its anticonvulsant 
effects by acting on GABAA/benzodiazepine 
receptor complex which may play a role in 
protecting against QA insult (22, 50).  

Neuroinflammation is one of the key features 
of acute and chronic neurodegenerative 
conditions (51, 52). Several studies have shown 
that QA causes remarkable upregulation of 
proinflammatory cytokines (IL-1β, IL-6 and 
TNF-α) and activation of caspase 3, leading to 
apoptosis of neurons and glial cells, in vitro         
and in vivo (36, 48, 53). Recently, strong            
anti-inflammatory and anti-apoptotic potential           
have been described for safranal. These            
effects have been shown to mediate              

through direct suppression of IKK-/NF-
κB/Bax/caspase3/TNF-α or upregulation of Bcl2 
expression (44). Therefore, inhibition of 
inflammatory responses may be another 
plausible mechanism for alleviating effects of 
safranal against QA-induced lesion. 

 
Conclusion 
The present study demonstrated that safranal has 
protective effects on QA-induced oxidative 
damage in rat hippocampus through inhibition of 
lipid peroxidation and oxidative DNA damage 
and improving hippocampal antioxidant and 
thiol redox status, suggesting its antioxidant and 
neuroprotective properties. 
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