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Objective(s): Trans-sodium crocetinate (TSC) is one of the crocetin derivations that is more soluble and 
stable than crocetin and its cis form. It easily crosses the blood-brain barrier. TSC has neuroprotective 
effects. Bisphenol A (BPA) is an endocrine-mimicking compound that induces Parkinson-like disease 
by impacting the dopaminergic system. In this research, the effects of TSCs on BPA-induced Parkinson-
like symptoms via behavioral and molecular assays have been investigated.
Materials and Methods: Male Wistar rats received BPA (75 mg/kg, gavage), TSC (10, 20, and 40 mg/
kg), and levodopa (L-dopa) (10 mg/kg) via intraperitoneal injection (IP) for 28 days. Parkinsonian-like 
motor features were evaluated using bar test, rotarod, and open field experiments. Malondialdehyde 
(MDA) and glutathione (GSH) levels were also measured as the most important indicators of oxidative 
stress. Western blotting was performed for the molecular assays of alpha-synuclein (α-syn), Bcl-2, 
Bax, caspase-3, Beclin, and LC3 I/II proteins. 
Results: Our analyses indicated that treatment with TSC at high dose reduces MDA levels and 
protects GSH reserves. TSC can also increase anti-apoptotic Bcl-2 and decrease pro-apoptotic Bax 
and caspase-3 proteins. While it does not affect autophagy markers, TSC decreased α-syn protein 
expression, reduced the catalepsy time, and improved the time spent staying on the rotating bar and 
the locomotor activity.  
Conclusion: Overall, TSC likely ameliorates BPA-mediated Parkinson’ s-like symptoms by suppressing 
oxidative stress inhibition. This leads to reduced α-syn expression, which ultimately results in 
apoptosis inductions. Therefore, TSC can serve as a promising exploratory target for future research 
aimed at controlling Parkinson’s disease.
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Introduction
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                                   This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses),                                                                                            
                                   which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Saffron (Crocus sativus L.) is a herbaceous plant cultivated 
in various countries, including Iran, India, and Greece 
(1). The most important compounds of saffron are crocin, 
crocetin, safranal, and picrocrocin. Studies have reported 
that crocin effectively improves Parkinson-like symptoms 
in rats by reducing apoptosis and α-synuclein expression 
(2, 3). Crocetin (8,8′-diapocarotene-8,8′-dioic acid) is a 
low-molecular-weight carotenoid with diverse therapeutic 
effects (4) such as anticancer (4), antihyperlipidemia (5), 
antiatherosclerosis (6), and anti-inflammatory (7). The 
underlying mechanisms of therapeutic effects of crocetin 
include antioxidant properties, increasing oxygenation 
in hypoxic tissues, suppression of pro-inflammatory 
mediators, inhibition of proliferation, and induction of 
apoptosis in cancerous cells (8). It has been reported that 
crocetin protects neurons and prevents Parkinson’s disease 
through its antioxidant properties (9, 10). In addition, 

crocetin suppressed the destruction of dopaminergic 
neurons caused by 6-hydroxydopamine and prevented the 
decrease of dopamine levels (10).

Trans sodium crocetinate (TSC), as one of crocetin 
derivatives, reduces plasma resistance by changing the 
intermolecular forces of water molecules. It also increases 
oxygen diffusion through the plasma, enhancing oxygen 
supply to the tissues. TSC differs from other carotenoids due 
to polar groups at both ends of its hydrophobic carbon chain 
(11). TSC has neuroprotective effects. It has been reported 
that crocetin clears amyloid-beta by inducing autophagy 
through the AMPK pathway, and TSC can increase the 
degradation of amyloid-beta in monocytes of Alzheimer’s 
patients (12). 

Among common neurodegenerative disorders, 
Parkinson’s disease (PD) holds the second rank worldwide, 
following Alzheimer’s disease. It affects around ten million 
people globally. The destruction of dopaminergic neurons 
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in the substantia nigra region of the brain is identified as 
the primary cause of this disease. These neurons release 
dopamine, a neurotransmitter that regulates motor function 
by transmitting messages from the substantia nigra to the 
motor areas of the brain (13, 14). Destruction of 60–80% of 
dopamine-secreting cells leads to the onset of Parkinson’s 
motor symptoms (15). It has been reported that factors 
such as oxidative stress, inflammatory factors, aquaporin 4, 
α-synuclein (α-Syn) accumulation, and apoptotic pathways 
play roles in the pathogenesis of Parkinson’s disease(16, 
17). Autophagy has also been linked to Parkinson’s disease 
through α-synuclein (2). α-Syn is a soluble protein that 
accumulates in Lewy bodies as insoluble masses (18). The 
overexpression of α-Syn, a hallmark observed in both 
familial and sporadic cases of PD, as well as in several severe 
neurodegenerative diseases, inhibits autophagy at the early 
stages of autophagosome formation (19). Additionally, 
α-Syn can induce progressive degeneration of dopaminergic 
neurons and apoptosis in rodents (20). 

PD is a progressive chronic disease that ultimately 
leads to death. Therefore, finding a therapeutic approach 
to control or treat this disease is paramount. Various 
clinical strategies such as pharmacotherapy, surgery, deep 
brain stimulation, and gene therapy have been described 
for the treatment of PD. Among them, pharmacotherapy, 
especially L-dopa, is the most common (2, 21). However, 
L-dopa has been documented to have several side effects 
(21). Therefore, exploring the potential of natural products, 
with their therapeutic effects or supporting roles for existing 
medicines, is considered for treating PD (22).

Bisphenol A (BPA) is among several endocrine-
disrupting compounds that mimic the action of hormones 
(23, 24). Additionally, BPA is a fundamental component 
in the production of plastics, including polycarbonate 
and epoxy resins (25). This compound exerts toxicity by 
various mechanisms such as oxidative stress leading to 
DNA and cell membrane damage, the inhibition of nerve 
transmission resulting in the inhibition of proliferation and 
differentiation of neural stem cells, and the induction of cell 
death (26-28). Conditions such as increased heat and acidity 
can trigger hydrolysis of the ester bond between bisphenol 
monomers, ultimately causing its release from containers 
and equipment into food and the environment (29). BPA 
induces apoptosis by activating caspase 3, increasing the 
expression of the pro-apoptotic Bax gene, and triggering the 
c-Jun N-terminal kinases (JNKs) pathway due to elevated 
levels of free radicals (30, 31). Furthermore, this compound 
can disrupt synaptic function, significantly affecting 
memory processes (32, 33). Chronic exposure to BPA is 
directly associated with changes in the central nervous 
system, especially the dopaminergic system (13, 34). 

Considering the positive effects of saffron and its 
compounds on the dopaminergic system, along with the 
favorable physicochemical properties and neuroprotective 
effects of TSC, the present study was conducted to investigate 
the impact of TSC on Parkinson-like disease induced by 
BPA in rats.

Materials and Methods
Chemicals

BPA (Ca NO. 803546), thiobarbituric acid (TBA) (Ca NO. 
108180), glycine (Ca NO. 104201), tris (hydroxymethyl) 
aminomethane (CaN. 108387), tris hydrochloride (Tris 
HCL) (Ca NO.  648317), and acrylamide (Ca NO. 800830) 

were purchased from Merck, Germany. The TSC (Ca NO. 
t59123009908) was obtained from Tinab Chem Middle East 
Company, Iran. The 5,5′-dithiobis-(2-nitrobenzoic acid) 
(DTNB) (Ca NO. D218200) was purchased from Sigma-
Aldrich, and other compounds were supplied from Merck, 
Germany. 

Animal 
In this study, we used male Wistar rats at 10–12 weeks 

of age purchased from the Center of Reproduction and 
Maintenance of Laboratory Animals (Mashhad University of 
Medical Sciences, Mashhad, Iran). Rats were grouped (a set 
of 7 rats per cage) and, one week before experiment initiation, 
acclimated to the new home cage under temperature (22–24 
°C) and humidity (40–60%) conditions with a dark/light 
cycle of 12 hr. Animal maintenance conditions and all the 
steps for conducting experiments were met following the 
ethics committee guidelines of the Mashhad University of 
Medical Sciences (ethics code: IR.MUMS.AEC.1401.046).

Compounds including Olive oil (Vehicle) and BPA (75 
mg/kg bw) were gavaged orally, and distilled water, TSC (10, 
20, and 40 mg/kg bw) were injected intraperitoneal (35). 
Based on previous studies, L-dopa (10 mg/kg bw) was also 
injected intraperitoneal (36). BPA dose was extrapolated 
using a pilot test (at the 75 mg/kg dose, all rats showed 
Parkinsonian-like symptoms) (37). All compounds were 
prepared fresh daily and used for 28 days. Behavioral tests 
were performed 24 hours after receiving the last dose of 
compounds. After completing the behavioral tests, the 
animals were anesthetized using ketamine and xylazine 
(70/10 mg/kg bw) (38), the brain was removed, and the 
striatum region was isolated. A part of the isolated tissue was 
used to measure lipid peroxidation and GSH content, and 
another part was saved at -80 °C for western blot analysis.

Behavioral experiments
Catalepsy test

On the 29th day of the experiment, a catalepsy test was 
performed to evaluate muscle rigidity caused by PD. The 
apparatus used in this test was a wooden box with a stainless 
bar in the middle. The longer the time to hold the bar, the 
more severe the catalepsy (39). 

Rotarod performance test
The Rotarod test is a common test to assess coordination 

and movement balance. The speed gradient of the rod used 
in the rotarod apparatus is adjusted from 5 to 30 rpm. This 
test includes two parts: 1) the training stage and 2) The test 
phase. The average animal movement on the rotating rod 
was estimated as a criterion for maintaining balance and 
muscle stiffness (40, 41).

Open field test
The open field test was conducted using a Plexiglas open 

field, including a square with 100 x 100 cm2 dimensions and 
walls 50 cm in height. Then, factors such as the number of 
passes through the central zone (50 x 50 cm), the peripheral 
areas, and the total number of passes were measured. The 
extent of stopping and the distance traveled show the 
severity of muscle contraction and stiffness (38).

Biochemical experiments 
Lipid peroxidation

This method is based on the reaction of malondialdehyde 
(MDA), which is a lipid peroxidation product, with 
thiobarbituric acid (TBA) and the formation of a colored 
complex. To perform this method, phosphoric acid and 
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TBA (0.6%) were added to the 10% homogenized samples. 
Then, the complex was placed in a boiling water bath for 
45–90 min. After cooling at room temperature, n-butanol 
was added, and finally, the absorbance of the organic portion 
was measured at 532 nm. The concentration of MDA in the 
samples was extrapolated using the MDA standard curve 
and expressed as nmol/g tissue (42, 43).

Glutathione content 
The basis of the method is the reaction of sulfhydryl 

groups with 5, 5’-dithiobis(2-nitrobenzoic acid) (DTNB) 
reagent. DTNB (0.04%) reacts with sulfhydryl groups, 
creating a colored complex with maximum absorption at 
412 nm. Briefly, a 10% homogenate was first prepared with 
phosphate buffer, and 10% TCA was added to the samples. 
Then, after the samples were centrifuged, the supernatants 
were separated. Eventually, DTNB was added, the samples’ 
absorption was evaluated, and the concentration of GSH was 
extrapolated using the GSH standard curve and expressed 
as nmol/g tissue  (42, 44).

Western blotting 
After removing the brain and separating the striatum, the 

samples were immediately stored at -80 °C for more analysis 
by immunoblotting technique. Before performing western 
blotting, all tissue proteins were extracted using lysing 
buffer (50 mM Tris base, 2 mM EDTA, 2 mM EGTA, 10 mM 
NaF, 1 mM Na₃VO₄·2H₂O, 10 mM β-Glycerophosphate, 10 
mM 2-Mercaptoethanol and Sodium deoxycholate 0.2 w/v), 
0.1 mM phenylmethylsulfonyl fluoride (PMSF), and 1X 
protease inhibitor cocktail. Then, protein absorption was 
measured by the Bradford method at a wavelength of 595 
nm, and the total protein concentration was calculated using 
the calibration curve. Protein separation was performed 
by loading equal quantities of each sample onto a 12 (for 
Bax, Bcl-2, Beclin, and α-synuclein proteins)  and 15% 
(for caspase-3 and LC3 I/II proteins) polyacrylamide gel 
containing 10% SDS. Then, electro-transfer was conducted 
to transfer separated proteins onto a polyvinylidene 
fluoride (PVDF) membrane (Biorad, USA). Next, the 
PVDF membrane was imbedded in the Tris-buffered saline 
with 0.1% Tween (TBST) and overnight incubated at 4 °C. 
Afterward, primary antibodies, including rabbit anti-Bcl-2 
(1:1000 dilution, Cell Signaling #2870), anti-Bax (1:1000 
dilution, Cell Signaling #2772), anti-Caspase-3 (1:1000 
dilution, Cell Signaling #9665), anti-Beclin-1 (1:1000 
dilution, Cell Signaling #3495), anti Lc3 (1:1000 dilution, 
Cell Signaling #12741), anti α-synuclein (1:1000 dilution, 
Cell Signaling #4179), and internal control, Mause anti 
β-actin (1:1000 dilution, Cell Signaling #3700), were used to 
detection of targeting peptides. After overnight incubation, 
primary antibodies were removed, and secondary antibodies 
such as horseradish peroxidase-conjugated anti-mouse 
(1:3000 dilution, Cell Signaling #7076) and anti-rabbit 
(1:3000 dilution, Cell Signaling #7074) antibodies were 
added to the membrane and incubated at room temperature 
for 2 hr. Eventually, after three washes, the blot appeared 
using a chemiluminescent (Gel Doc Alliance 4.7, UK) 
detection method, and the density of the blot was used to 
assay the protein expression level. The final concentration 
of each sample protein level was calculated by comparing 
the blot density of each sample with the blot density of its 
internal references (β-actin). 

Statistical analysis
This study used GraphPad Prism version 9 software for 

data analysis. All data were obtained from at least three 
independent experiments, and the triplicated values of 
each experiment were expressed as mean ± SD. The one-
way ANOVA test with Tukey as a post hoc test was used to 
compare more than two experimental groups. Statistically, 
the lowest significance level was identified with the 
P-value<0.05.

Results
The effects of TSC on the BPA- induced Behavioral changes
TSC improved the catalepsy induced by BPA

Our data in Figure 1 demonstrated that BPA-induced 
severe catalepsy was significantly decreased with TSC 
40 mg/kg (P<0.001) compared to the BPA alone group. 
The catalepsy time in the rats receiving BPA alone was 
significantly increased compared to the control (P<0.001). 
The BPA-alone group also showed a significant increase in 
catalepsy time compared to the L-dopa and BPA groups 
(P<0.001). However, the group that received TSC 40 mg/kg 
and BPA did not exhibit a significant difference in catalepsy 
time compared to the L-dopa and BPA group. Moreover, 
the group that received TSC 40 mg/kg alone did not show a 
significant difference compared to the control group.

TSC improved the BPA-induced imbalance
Groups exposed to BPA alone showed a significant 

decrease in the time spent on the rotarod bar compared 
to the control (P<0.001). Our results indicated that groups 
receiving TSC at a dose of 40 mg/kg along with BPA 
exhibited a notable increase in dwell time on the rotating 
rod compared to the BPA-only group (P<0.001). There was 
no significant difference between the group receiving TSC 
40 mg/kg with BPA and the group receiving L-dopa 10 
mg/kg with BPA. In the rats that received L-dopa 10 mg/
kg and BPA, the time spent on the rotarod bar significantly 
improved compared to those receiving BPA alone (P<0.001). 
Furthermore, the group that received TSC 40 mg/kg alone 

Figure 1. The effect of Bisphenol A (BPA) and Trans sodium crocetinate 
(TSC) on catalepsy in bar test in rat
Decent latency of the bar test was evaluated 24 hr after the last dose of BPA, 
TSC, and L-dopa, as well as olive oil and distilled water (DW) as vehicle.
n=7 were used to calculate the mean. The one-way ANOVA and Tukey's 
post hoc test were used for data analysis, and the chart shows the values 
as means ± SD; **P<0.01 and ***P<.001 indicate significant differences 
between control and other treated groups; ###P<0.001 indicates significant 
differences between BPA and other treated groups.
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did not show a significant difference compared to the 
control group (Figure 2). 

TSC ameliorated the locomotor activities of rats exposed to BPA 
Rats in groups that received BPA alone showed a 

statistically significant decrease in traveled distance 
compared to the control group (P<0.001), as measured by 
the number of squares traversed. Our analyses revealed 
that rats receiving TSC at 40 mg/kg and BPA exhibited a 
significant increase in the number of squares traversed 
compared to the group exposed to BPA alone. The traveled 
distance in the group exposed to L-dopa at 10 mg/kg and 
BPA significantly improved compared to the BPA-only 
group (P<0.001). The difference in distances traversed by 
the group receiving TSC at 40 mg/kg alone compared to 
control rats was not statistically significant. Furthermore, 
our analyses indicated that in rats receiving TSC at 40 
mg/kg and BPA, there was no significant difference in the 

number of squares traversed compared to the L-dopa at 10 
mg/kg and BPA group (Figure 3).

Oxidative stress indices
TSC preserved the GSH level in the brain of rats exposed to BPA

Examination of thiol groups in the striatum of rats 
revealed a statistically significant decrease in glutathione 
levels in the groups receiving BPA alone compared to the 
control (P<0.001). The changes in glutathione levels in the 
group receiving TSC 40 mg/kg alone were not significantly 
different from those in the control group. TSC 40 mg/kg 
alongside BPA significantly preserved glutathione resources 
compared to the group receiving BPA alone (P<0.001). The 
glutathione levels were also significantly preserved in the rats 
that received L-dopa at 10 mg/kg along with BPA alone group 
(P<0.001). However, the group that received TSC 40 mg/kg 
and BPA did not show a significant difference compared to 
the L-dopa at 10 mg/kg and BPA group (Figure 4a).

Figure 2. The effect of Bisphenol A (BPA) and Trans sodium crocetinate 
(TSC) on balance and coordination of locomotor in the rotarod test in rat
Difficulty moving and inability to balance by rotarod evaluated 24 hr after the last 
dose of BPA, TSC, and L-dopa, as well as olive oil and distilled water (DW) as the 
vehicle. n=7 were used to calculate the mean. The one-way ANOVA and Tukey's post 
hoc test were used for data analysis, and the chart shows the values as means ± SD; 
***P<0.001 indicates significant differences between control and other treated groups; 
###P<0.001 indicates significant differences between BPA and other treated groups.

Figure 3. The effect of Bisphenol A (BPA) and Trans sodium crocetinate 
(TSC) on locomotor activities in the open field test in rat
The slowness of movements in the open field was evaluated 24 hr after the last dose 
of BPA, TSC, and L-dopa, as well as olive oil and distilled water (DW) as vehicle. 
n=7 were used to calculate the mean. The one-way ANOVA and Tukey's post hoc 
test were used for data analysis, and the chart shows the values as means ± SD; 
***P<0.001 indicates significant differences between control and other treated groups; 
###P<0.001 indicates significant differences between BPA and other treated groups.

Figure 4. The effect of Bisphenol A (BPA) and Trans sodium crocetinate (TSC) on stress oxidative indexes in the rat brain
In the striatum region of brain tissues of rats, a) Box plot shows results for malondialdehyde (MDA) measuring using thiobarbituric acid (TBA), and b) Box plot shows results for 
GSH measuring using 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB). At least 3 samples were used to calculate the mean. The one-way ANOVA and Tukey's post hoc test were used 
for data analysis, and values are expressed as means ± SD; *P<0.05, ***P<0.001 indicate significant differences between control and other treated groups; ###P<0.001 indicates 
significant differences between BPA and other treated groups.
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TSC attenuated BPA-induced lipid peroxidation levels
The assessment of MDA levels using the TBA reaction 

(Figure 4b) revealed a significant increase in MDA levels in 
the group exposed to BPA alone compared to the control 
(P<0.001). Treatment with TSC (20 and 40 mg/kg) or 
L-dopa (10 mg/kg) alongside the BPA group decreased 
MDA levels compared to the BPA-only group (P<0.001). 
However, the group receiving TSC (40 mg/kg) alone did not 
show significant differences in MDA levels compared to the 
control group (P<0.05). Moreover, the groups treated with 
TSC (20 or 40 mg/kg) and BPA exhibited no statistically 
significant differences in MDA levels compared to the 
L-dopa (10 mg/kg) and BPA group (P<0.001).

Blotting analysis
TSC ameliorates BPA-induced α-synuclein protein expression

The results of the blotting analysis in Figure 5 indicated 
a significant increase in α-syn protein levels in rats exposed 
to BPA alone compared to the control (P<0.01). The level 
of α-syn protein in rats receiving TSC (20 and 40 mg/kg) 
or L-dopa (10 mg/kg) alongside BPA significantly decreased 
compared to rats receiving BPA alone (P<0.01). However, 
the level of α-syn protein in the groups receiving TSC 40 
mg/kg alone did not show significant changes compared 
to the control group. Additionally, α-syn protein levels in 
the groups receiving TSC 20 or 40 mg/kg and BPA did not 
significantly differ from those receiving L-dopa and BPA.

TSC ameliorates BPA-induced pro-apoptotic Bax and 
Caspase-3 proteins and induces anti-apoptotic Bcl-2 protein 
expression

The results of blot analysis revealed that in the striatum 

of rats exposed to BPA alone, the levels of pro-apoptotic 
Bax (Figure 6a,c) and Caspase-3 (Figure 6a,d) proteins 
significantly increased compared to the control group 
(P<0.001). In rats receiving BPA plus TSC (10, 20, and 40 
mg/kg) or L-dopa 10 mg/kg, the levels of Bax and Caspase-3 
proteins significantly decreased compared to the BPA alone 
group (P<0.001). Additionally, the anti-apoptotic Bcl-2 
protein expression (Figure 6a,b) in the BPA alone group 
significantly decreased compared to the control group. 
Meanwhile, Bcl-2 protein levels in the groups receiving 
TSC (10, 20 (P<0.001) and 40 (P<0.01) mg/kg) or L-dopa 
10 mg/kg (P<0.001) alongside BPA were significantly lower 
compared to rats exposed to BPA alone. However, there was 
no significant difference in the levels of Bax (Figure 6a,c), 
Caspase-3 (Figure 6a,d), and Bcl-2 (Figure 6a,b) proteins 
between the group receiving TSC 40 mg/kg alone and the 
control group. Additionally, the changes in the levels of Bax 
(Figure 6a,c), Caspase-3 (Figure 6a,d), and Bcl-2 (Figure 
6a,b) proteins were not significant in rats treated with BPA 
and TSC (10, 20, and 40 mg/kg) compared to the L-dopa 10 
mg/kg and BPA group.

Figure 5. The effect of Bisphenol A (BPA) and Trans sodium crocetinate 
(TSC) on alpha-synuclein (α-syn) protein level in the rat brain
Western blots performed using striatum region of brain tissues of rats exposed to olive 
oil and distilled water (DW) (vehicle-treated controls), Bisphenol A (BPA), Trans 
sodium crocetinate (TSC), and L-dopa for the detection of α-syn protein; a) 18 kDa 
and 45 kDa bands show results for α-syn and β-actin proteins respectively, b) graph 
shows analysis results for α-syn protein. At least 3 samples were used to calculate the 
mean. The one-way ANOVA and Tukey's post hoc test were used for data analysis, 
and values are expressed as means ± SD; **P<0.01, ***P<0.001  indicate significant 
differences between control and other treated groups; #P<0.05, ##P<0.01 indicate 
significant differences between BPA and other treated groups.

Figure 6. The effect of Bisphenol A (BPA) and Trans sodium crocetinate 
(TSC) on Bcl-2, Bax, and Caspase-3 protein levels in the rat brain
Western blots performed using striatum region of brain tissues of rats exposed to olive oil 
and distilled water (DW) (vehicle-treated controls), Bisphenol A (BPA), Trans sodium 
crocetinate (TSC),  and L-dopa for the detection of apoptotic marker proteins; a) 25 
kDa, 21 KDa, 17-19 KDa, and 45 KDa bands show results for Bcl-2, Bax, Caspase-3, and 
β-actin proteins respectively, b) graph shows analysis results for anti-apoptotic Bcl-2 
protein, c) graph shows analysis results for pro-apoptotic Bax protein, d) graph shows 
analysis results for pro-apoptotic Caspase-3 protein, and e)  graph shows analysis results 
for Bax/Bcl-2 proteins ratio. At least 3 samples were used to calculate the mean. The 
one-way ANOVA and Tukey's post hoc test were used for data analysis, and values are 
expressed as means ± SD; ***P<0.001 indicates significant differences between control 
and other treated groups; ##P<0.01, ##P<0.001 indicate significant differences between 
BPA and other treated groups.
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TSC and BPA effects on the autophagy pathway proteins 
Beclin and LC -3 I/II expression

The expression levels of Beclin and LC-3 I/II in the groups 
treated with BPA, TSC, and L-dopa did not show noticeable 

changes compared to the control group, and there were no 
significant differences among these groups (Figure 7).

Discussion
Although many factors are involved in the occurrence of 

Parkinson’s disease, the main factor in the occurrence of this 
neurodegenerative disorder is still not known. One of the 
strongest hypotheses for PD occurrence is the destruction 
of dopaminergic neurons located in the substantial nigra 
region resulting in decreased levels of dopamine. The death 
of dopaminergic neurons occurs following the accumulation 
of Lewy bodies containing insoluble protein α-syn in the 
striatum. Our findings show that TSC can ameliorate the motor 
symptoms of BPA-induced Parkinson-like disease by reducing 
the α-syn protein level and inhibiting apoptosis (Figure 8). 

Motor evaluations show that TSC has successfully 
prevented Parkinsonian-like symptoms such as catalepsy 
and movement disorders caused by involuntary muscle 
contractions. These observed properties of TSC were 
consistent with the Ajzashokouhi et al. study, which 
showed that TSC improved acrylamide-induced behavioral 
impairment in rats (45). The movement symptoms 
associated with Parkinson’s disease include tremors, muscle 
stiffness, slowness of movements, and difficulty in moving 
and walking, mainly due to a decrease in dopamine secretion 
resulting from the death of dopaminergic neurons in the 
substantia nigra region (46). Two main pathological features 
characterize PD. First, there is apoptosis of dopaminergic 
neurons caused by oxidative stress and ROS production, 
leading to motor stiffness, slowness, and an inability to 
maintain stature. Second, protein coils are formed in masses 
known as Lewy bodies (LBs). The primary component of 
these protein coils is the α-syn protein (19, 47). There is 
documented evidence supporting the notion that LBs, 

Figure 7. The effect of Bisphenol A (BPA) and Trans sodium crocetinate 
(TSC) on Beclin, LC3 I/II proteins levels in the rat brain
Western blots performed using striatum region of brain tissues of rats exposed to 
olive oil and distilled water (DW) (vehicle-treated controls), Bisphenol A (BPA), 
Trans sodium crocetinate (TSC), and L-dopa for the detection autophagy marker 
proteins; a) 60 kDa,16-17 KDa, and 45 KDa bands show results for Beclin, LC3 I/
II, β-actin proteins respectively,  b) graph shows analysis results for pro-autophagy 
Beclin protein, and c) graph shows analysis results for LC3 I/II protein ratio. At least 3 
samples were used to calculate the mean. The one-way ANOVA and Tukey's post hoc 
test were used for data analysis, and values are expressed as means ± SD.

Figure 8. Schematic description of the mechanistic effects of  Trans sodium crocetinate (TSC) and L-dopa against Bisphenol A (BPA)-induced Parkinson-
like disease in the rat brain
Glutathione (GSH), malondialdehyde (MDA), α-Synuclein (α-Syn), B cell lymphoma-2 (BCL-2), Bcl-2-associated X-protein (Bax), Caspase-3.
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containing misfolded and accumulated α-syn proteins, 
induce apoptosis of dopaminergic neurons (48, 49). 

The occurrence of cytoplasmic inclusions or LBs, 
along with the decrease of dopaminergic neurons, are 
two important pathological symptoms of Parkinson’s 
disease (13). Destruction of dopaminergic neurons plays 
an important role in various neurological and locomotion 
disorders (50). It seems that TSC prevents the destruction 
of dopaminergic neurons by reducing the level of α-syn and 
oxidative stress and inhibiting the induction of apoptosis. In 
accordance, TSC has compensated for decreased locomotor 
activity, imbalance, and increased muscle contractions 
caused by BPA and prevents Parkinson’s-like symptoms.

Following TSC treatment, protein α-syn levels decreased 
dramatically. α-syn, which can bind to phospholipids and 
play a role in lipid metabolism, is a presynaptic protein 
of 140 amino acids implicated in PD. α-syn is highly 
expressed in the central nervous system (CNS), particularly 
in presynaptic nerve terminals. The measurement of this 
protein in different brain regions is used to evaluate damage 
caused by Parkinson’s (51). In the present study, we showed 
that exposure to BPA leads to an uncontrolled increase in 
α-syn protein levels, and treatment with TSC reverses this 
elevated level to the basal state. 

Accumulation of α-syn, a key component of Lewy bodies, 
in multiple brain regions indicates the creation of intracellular 
toxicity in the brain tissue. Mutations or increased protein 
expression are associated with Parkinson’s disease (52, 53). 
Lewy bodies, eosinophilic cytoplasmic spheres, lead to the 
aggregations of proteins such as α-syn in various brain areas, 
causing damage to intracellular signals and cellular respiration. 
However, the precise role of Lewy bodies in neuronal death is 
not understood (51). It seems that the use of TSC has improved 
BPA-induced Parkinson-like symptoms by reducing α-syn 
protein levels in rats. The potential mechanism of how TSC 
ameliorates the increased α-syn protein levels induced by BPA 
will be discussed in the following.

Based on the results of the present study, TSC has reversed 
the disturbance of BPA-induced oxidative stress indices. As 
shown in Figure 4a and b, TSC dramatically diminished 
and elevated the increased level of lipid peroxidation and 
decreased sulfhydryl groups caused by BPA, respectively. 
BPA induces ROS production by reducing the activity 
of antioxidant enzymes such as superoxide dismutase, 
catalase, and glutathione and increasing lipid peroxidation 
(54-56). Increased α-syn protein levels can be another 
possible mechanism that contributes to BPA-induced ROS 
production. A mutual relationship exists between α-syn 
levels and oxidative damage, mitochondrial cytochrome c 
release, and mitochondrial dysfunction (13, 57). Therefore, 
one hypothesis is that α-syn aggregation is increased due to 
the reduction of ROS-scavenging enzyme activity by BPA. 
This is consistent with previous studies (58, 59). It was 
reported that mitochondrial cytochrome c release can also 
be involved in α-syn aggregation (60). Excessive oxidative 
stress also can play a pivotal role in the pathogenesis of α-syn 
by promoting the α-syn misfolding and its intracellular 
aggregation (60-62). Conversely, abnormal a-syn 
aggregation can lead to an imbalance in Ca2+ homeostasis, 
increase cytosolic calcium and reactive oxygen and nitrogen 
species production, and activate calcium-dependent 
proteases (51, 63). However, BPA induces oxidative stress 
followed by an increase in α-syn accumulation, increasing 
free radicals. TSC can abrogate the effects of BPA on a-syn 

production and aggregation.
In response to the question regarding the bilateral 

increase of oxidative stress and the effects of α-syn on the 
survival of striatum region cells, this study investigated the 
indices of apoptosis and autophagy. The results indicate that 
TSC strongly suppresses BPA-induced apoptosis through a 
significant decrease in the pro-apoptotic proteins Bax and 
caspase-3 and a substantial increase in the anti-apoptotic 
protein Bcl-2. BPA may induce apoptosis in the cells of the 
striatum, both directly through excessive ROS levels and 
indirectly by increasing α-syn production and aggregation 
(55, 56, 59, 60, 62). 

 BPA might stimulate ROS-induced apoptosis in 
dopaminergic neurons by increasing the aggregation 
of α-syn proteins (49). Excessive oxidative stress, a 
known initiator of apoptosis in various cells and animal 
models, is also implicated in the development of several 
neurodegenerative disorders, including Parkinson’s and 
Alzheimer’s disease (64). Studies have shown that any 
method reinforcing the antioxidant system and contributing 
to oxidative homeostasis balance can be considered a 
potential treatment approach against PD (65, 66). The 
antioxidant effects of the main compounds of the saffron 
plant, such as crocin and crocetin, have been well studied. 
Notably, crocin has improved Parkinson ‘s-like symptoms 
by reducing apoptosis and α-syn protein levels in rats (2). 
Studies have reported that both crocin and crocetin exert 
their neuroprotective effects by scavenging and reducing 
the production of free radicals and safeguarding energy-
producing pathways (2, 67, 68). Consistent with prior 
research, which showed that TSC is potentially a potent 
antioxidant and anti-apoptotic compound (69), our 
study indicates that TSC, an active derivative of crocetin, 
may prevent the onset of BPA-mediated Parkinson-
like symptoms by maintaining oxidative homeostasis, 
preventing apoptosis, and suppressing the production and 
accumulation of α-syn protein.

The investigation of autophagy markers Beclin and 
LC3 proteins in the present study showed that removal 
by the autophagy process is not the mechanism involved 
in destroying the striatum area cells. Almost 30 genes 
regulate autophagy, among which LC3 and Beclin-1 genes 
play a pivotal role. Beclin-1 is involved in the signaling 
pathways and in the initiation phase of autophagosome 
formation, where the interaction with PI3PK and hvp34 
is necessary (70-72). LC3 consists of a soluble (cytosolic) 
form, LC3I, and a lipid form, LC3II, expressed as three 
isoforms (LC3A, LC3B, LC3C) in mammalian tissues. The 
LC3I interacts with phosphatidylethanolamine to form 
the LC3II, specifically localizing on the autophagosome 
(71, 72). Although crocetin has been shown to induce 
amyloid-beta clearance by triggering autophagy through 
the STK11/LKB1-mediated AMPK pathway (12), the use of 
TSC in the present study did not have significant effects on 
the autophagy marker proteins. TSC apparently regulates 
autophagy by increasing the BCL-2 protein level, which can 
interact with Beclin-1.

Bcl-2/ Beclin-1 complex can prevent the development of 
autophagy (73). An increased expression of caspase protein 
caused by BPA, contributing to the apoptosis process, is also 
proposed as a mechanism for BPA-mediated autophagy 
abrogation and induced apoptosis (74). The activation of 
caspases cleaved the Beclin-1 proteins and inhibited the 
development of autophagy. The overexpression of α-syn 
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by BPA is probably another stronger mechanism to abolish 
autophagy. Several studies have shown that overexpression 
of α-syn inhibits autophagosome synthesis and maturation 
(19, 75). α-Syn inhibits autophagosome synthesis by 
disrupting Rab1 a, a vital regulator of the secretory 
pathway, secretion, and homeostasis (19). Abnormal actin 
stabilization by α-syn is also a mechanism documented 
to impair autophagosome maturation (75). TSC Probably 
reversed the inhibitory effect of BPA on autophagy but not 
significantly and prevented the induction of apoptosis by 
ameliorating the α-syn level in the striatum cells. 

Conclusion
Taken together, TSC prevents motor-associated functions 

such as locomotor activity, balance, and coordination disorder, 
which are the Parkinson-like symptoms caused by BPA, by 
inhibiting the incidence of apoptosis and neural cell death in 
the striatum area of the rat’s brain via 1( Prevention of ROS 
overproduction) and 2( Inhibition of excessive expression of 
α-syn protein). Therefore, considering natural productions 
such as TSC as a therapeutic strategy for the treatment of 
Parkinson’s disease can be of interest to researchers.
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