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Objective(s): Morphine is widely used to treat chronic pain. However, its utility is hindered by the 
development of tolerance to its analgesic effects. Despite the renowned beneficial effects of 
physical exercise on cognitive functions and signs of morphine withdrawal in morphine-
dependent rats, little is known about the roles of voluntary and forced exercises in tolerance to 
analgesic effect of morphine in rats. 
Materials and Methods: In this study, rats were injected with 10 mg/kg of morphine, once daily, 
SC over a period of 8 days of either voluntary or treadmill exercise. Following these injections, 
the percent of maximum possible effect (%MPE) of morphine was measured on the 1st, 4th, and 8th 
days by hot plate test. 
Results: Both voluntary and forced exercises significantly increased pain threshold compared to 
the sedentary group (P<0.05). Voluntary and forced exercises also significantly increased potency 
of morphine compared to sedentary morphine group (P<0.05). Thus, we concluded that 
voluntary and forced exercises blocked the development of tolerance during 8 daily 
simultaneously treatments. When exercising rats were returned to sedentary conditions, 
sensitivity to the analgesic effects of morphine increased significantly and persisted during 
sedentary period in the exercising rats. In other words, %MPE of the exercising morphine-group 
increased significantly compared to saline group (P<0.05).  
Conclusion: Our results showed that voluntary and forced exercises may be possible methods for 
treating the development of tolerance to analgesic effect of morphine in rats. 
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Introduction 
Although opioids are highly effective for the 

treatment of pain, their long term use results in 
complex behavioral changes including tolerance, 
dependence, and sensitization (1- 2). Morphine 
tolerance remains a clinical problem because the 
progressively higher doses of morphine, which are 
required to relieve the pain, reduce safety and 
exacerbate morphine dependence (3). It is assumed 
that changes in synaptic plasticity occurre after long-
term morphine use (4). Previouse results have 
shown that during morphine tolerance-dependence, 
beta-endorphin and methionine-enkephalin levels 
decrease in discrete brain regions (5, 6) and plasma 
(7). Therefore, the reversal or prevention of the 
synaptic modifications could be a useful method for 
the treatment of morphine tolerance. In animal 
studies, both forced and voluntary exercises have 
stimulated the release of beta-endorphin and other 
endogenous opioid peptides that are believed to be 

 
responsible for increasing the nociceptive threshold 
(i.e. analgesia) by activating μ-opioid receptors 
peripherally and centrally, being reported after 
short- or long-lasting physical activities (8-14). 
Furthermore, it has been shown that beta-endorphin 
levels in plasma, pituitary, and whole brain were 
higher in exercising morphine-treated animals (15). 
Our previous studies have shown that physical 
activity through wheel running decreases the 
severity of naloxone-precipitated morphine 
withdrawal signs as well as the anxiogenic-like 
behaviors in both morphine-dependent and 
withdrawn rats (16, 17).  

However, other studies have found that access to 
a running wheel after chronic exercise reduces the 
potency and sensitivity to antinociceptive effects of 
morphine and other mu opioids (18-20), leading to 
the development of cross-tolerance to exogenously 
administered opioid agonists (18, 19).  
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Given the well-known beneficial effects of 
physical exercise on behavioral consequences of 
morphine-dependent and withdrawn rats, and since 
the analgesic effects of exercise is due to the release 
of endogenous opioids and significant changes at 
different levels of the brain, exercise may be a 
potential method for treating tolerance to morphine 
in rats. Thus, the aim of the present study was to 
investigate whether forced and voluntary exercises 
would prevent tolerance to the analgesic effects of 
morphine. 
 

Materials and Methods  
Animals  

Adult male Wistar rats (200–250 g) were used in 
this study. All rats were individually housed in cages 
for a 12 hr light/dark cycle at 24± 2°C and had access 
to food and water ad libitum. All procedures were 
conducted based on the ethical guidelines for the 
care and use of laboratory animals. 

 
Induction of analgesic tolerance 

Morphine sulphate (Temad Company, Iran) was 
dissolved in physiological saline. Rats were injected 
once a day for eight days with 10 mg/kg morphine 
(SC) as described previously (4). Control rats were 
treated similarly, except that only normal saline was 
used. All injections were performed in a volume of 
0.1 ml/100 g body weight.  

 
Voluntary exercise protocol 

Each of the exercising rats was given access to a 
cage that was equipped with a running wheel 
(diameter=34.5 Cm, width=9.5 Cm, Novidan Tab, 
Iran) that was freely rotating against a resistance of 
100 g. Each wheel was equipped with a magnetic 
switch connected to a separate counter, being 
located outside of the animal house and monitored 
the revolutions per hour. The number of revolutions 
for each wheel was recorded every day at 7 a.m. 
Every rat was required to run a minimum of 100 m 
each night (16, 17). The sedentary rats were 
confined to similar cages with no access to a wheel. 

This type of exercise, as a short exercise, closely 
mimics the choices of humans on exercising because 
animals were dictated regarding the time, speed, and 
distance of running throughout the experiment          
(21-22).  

 
Treadmill exercise protocol 

Rats in the exercise group were forced to run on 
a treadmill for 30 min once daily for 8 consecutive 
days. The exercise load for the exercise group was 
consisted of running at a speed of 2 m/min for the 
first 5 min, 5 m/min in the sec 5 min, and then at a 
speed of 8 m/min for the last 20 min, with 0° 
inclination as described previously. This type of 
exercise is a regular mild (a low intensity) treadmill 
exercise (11). Neither electrical shock nor physical 

prodding was used to motivate the animals. After 
every run, the treadmill was cleaned with 70% 
ethanol solution, wiped and air dried before the next 
set of four rats were put on the treadmill. 

 
Hot-plate test 

Antinociceptive responses were determined at 
54°C and defined as animal licking its back paw, as 
previously described (3). Rats were placed onto a 
hot-plate maintained at 37°C for 1 min. A cut-off time 
of 45seconds was imposed to prevent tissue damage. 
Response latencies are reported as percentage of 
maximal possible effect (%MPE) [(response latency-
baseline response latency)/(cut off latency-baseline 
response latency)×100]. 

 
Statistical analysis 

Data are expressed as mean±SEM, and were 
analyzed using two-way ANOVA, with repeated 
measures. Post hoc analyses included Tukey’s test. 
Statistical differences were considered significant at 
P<0.05. 

 
Experimental protocols 
Experiment 1  

This experiment examined the effects of 
voluntary and forced exercises on exercise-induced 
expression of analgesic tolerance. Rats were 
randomly assigned to three groups (n=8 rats per 
group): 1) Sedentary, no injection (Sed); 2) 
Voluntary exercise for 8 consecutive days without 
injection (V. Exc); 3) Treadmill exercise for 8 
consecutive days without injection (T. Exc). Baseline 
pain assessment was performed before exercise, and 
the exercise-induced antinociceptive response was 
assessed on the 1st, 4th and 8th day of exercise.  
 
Experiment 2 

This experiment examined the effects of 
voluntary and forced exercises on the expression of 
tolerance to morphine-induced antinociception. In 
this experiment, rats were randomly assigned to four 
groups (n=8 rats per group): Saline/Sedentary 
(Sal/Sed), Morphine/Sedentary (Mor/Sed), 
Morphine/Voluntary exercise (Mor/V. Exc), and 
Morphine/Treadmill exercise (Mor/T. Exc).  The 
exercising rats were allowed to exercise during the 
development of tolerance to morphine, which lasted 
8 days. Daily morphine injections in exercising rats 
were performed after counting the number of 
revolutions for each wheel or after running on the 
treadmill. A pain assessment was performed on days 
1, 4 and 8 of exercise once before and then 30 min 
after injection of morphine or saline. 

 
Experiment 3 

The purpose of this experiment was to estimate 
whether there was sensitivity to analgesic effect of 
morphine in the sedentary period after 
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Figure 1. Effects of voluntary and forced exercises on exercise-induced expression of analgesic tolerance. Exercise-induced analgesia 
followed by running wheel or treadmill over 8 days showed no significant decrease. Data are expressed as mean±SEM. 
* P=0.049, # P=0.013 and *** P=0.0001 represent the significant difference between the V. Exc and Sed groups on the 1st, 4th and 8th days of 
exercise, respectively; ** P= 0.001, ^ P=0.041 and ^^^ P=0.0001 represent the significant difference between the T. Exc and Sed groups on 
the 1st, 4th and 8th days of exercise, respectively (ANOVA, Tukey’s test) 
 

disconnection of the 8-day voluntary and forced 
exercises. In this experiment, the exercising groups 
were allowed to do voluntary and forced exercises 
for 8 consecutive days. Afterward, the exercising rats 
in each group were divided into two groups being 
injected with either saline or morphine. Saline or 
morphine was administered daily for 8 days after the 
end of exercise in sedentary period.  In this 
experiment, rats were randomly assigned to four 
groups (n=8 rats per group): Voluntary 
exercise/saline injection in sedentary period 
(V.Exc/Sal), Voluntary exercise/morphine injection 
in sedentary period (V.Exc/Mor), Treadmill 
exercise/saline injection in sedentary period 
(T.Exc/Sal), and Treadmill exercise/morphine 
injection in sedentary period (T.Exc/Mor). Exercise-
induced antinociception baseline responses were 
performed on day 8. In order to assess sensitivity to 
the analgesic effect of morphine in exercising rats, 
assessment of pain was carried out on days 9, 12 and 
16 of the sedentary period, once before and then 30 
min after injection of saline or morphine.  

 

Results 
Experiment 1 

Tolerance to the analgesic effect of exercise 
following to running wheel or treadmill was not 
observed in exercising rats. 

The average distance run (m) for 8 days of 
voluntary exercise of the exercising rats was 
8977±307. Repeated measures ANOVA revealed 
significant effects of days (F7, 49=2.57, P=0.008). The 
amount of exercise was markedly increased as 
exercise days progressed (data are not shown).  

The exercising groups exhibited significantly 
greater response latency (%MPE) over 8 days of 
running than those of the sedentary control rats 
(P<0.05). Two-way ANOVA with repeated measures 
(day) for the response latency of 8 days of voluntary 
exercise revealed a significant effect of groups (F1, 21= 

15.39, P=0.0001) and effect of days (F2,42=4.07, 
P=0.028), and no significant interaction between 
both factors (F2,42=2, P=0.112) (Figure 1). 

Moreover, two-way ANOVA with repeated 
measures (day) for the response latency (%MPE) of 
8 days of forced exercise with treadmill revealed 
absence of a significant effect of days (F2,42=2.47, 
P=0.103) and a significant effect of groups 
(F1,21=24.09, P=0.0001), and a significant interaction 
between both factors (F2,42=5.03, P=0.042) (Figure 
1). Meanwhile, the response latency during running 
over 8 days of exercise did not differ significantly 
between the exercising groups.  

 
Experiment 2 

Both voluntary and forced exercises prevented 
the development of tolerance to morphine 
antinociception. 

The average distance run (m) for 8 days of 
voluntary exercise in the exercising rats was 
9028±323. ANOVA with repeated measures revealed 
considerable effects of days (F7, 49= 6.017, P=0.001) 
(data are not shown).  

Two-way ANOVA with repeated measures (day) 
for the response latency over 8 days of exercise 
revealed a significant effect of groups (F3, 28=12.52, 
P=0.0001) and effect of days (F2, 56=19.37, P=0.0001), 
and a significant interaction between both factors 
(F6, 56=8.49, i=0.0001) (Figure 2). 

There was a difference in response latencies on 
the first day of testing between morphine and saline 
treated groups (P=0.0001), while there were no 
differences in response latencies on days 4 and 8 of 
testing between morphine and saline treated groups. 
In other words, analgesic tolerance in morphine 
treated rats developed over the eight-day test period. 
However, forced and voluntary exercises with daily 
injections of morphine simultaneously attenuated 
morphine analgesic tolerance compared to sedentary 
rats receiving morphine (F3, 28=12.52, P=0.0001).
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Figure 2. Voluntary and forced exercise can reverse opioid analgesic tolerance compared to sedentary group receiving morphine. 
Analgesic tolerance in morphine-received rats developed over the eight-day injection period. Voluntary and forced exercise group over 8 
days of running significantly increased response latencies compared to sedentary rats receiving morphine 
The data are expressed as mean±SEM.  *** P=0.0001 represents the significant difference between the Mor/Sed and Sal/Sed groups on the 
1st day of injection; ^ P=0.044 and * P=0.017 represent the significant difference between the Mor/V. Exc and the Mor/Sed on the 4th and 8th 
days of exercise, respectively; ^^ P=0.001 and # P=0.05 represent the significant difference between the Mor/T. Exc and the Mor/Sed on 
the 1st and 8th days of exercise, respectively (ANOVA, Tukey’s test) 
 

 

 
Figure 3. Assessment of morphine-induced sensitization in exercising rats during sedentary period. Exercising rats treated with morphine 
showed greater antinociception on days 9, 12 and 16 than rats being injected with saline; in other words, sensitivity to the analgesic effects 
of morphine was persisted at sedentary period in exercising rats, while the analgesic effect of exercise in the control group (receiving 
saline) terminated 4 days after cessation of exercise. There was no significant difference in the response latency between groups on day 8 
of exercise  
Data are expressed as mean±SEM.  * P=0.015, ** P=0.001 and # P=0.035 represents the significant difference between the V.Exc/Mor and 
V.Exc/Sal groups; ^ P=0.048, ^^ P=0.002 and $ P=0.05 represent the significant difference between the T.Exc/Mor and the T.Exc/Sal on the 
9st, 12th and 16th days of sedentary, respectively (ANOVA, Tukey’s test) 

 
Experiment 3  

Sensitivity to the analgesic effects of morphine in 
voluntary and forced exercises groups receiving 
morphine, persisted during sedentary period. 

The average distance run (m) for 8 days of 
voluntary exercise in the exercising rats (n=16) was 
9989±427. ANOVA with repeated measures revealed 
noticeable effects of days (F7,98=7.98, P=0.0001) 
(data are not shown).  

ANOVA with repeated measures (day) for the 
response latency over 8 days of sedentary revealed 
significant effect of groups (F3, 28 =18.103, P=0.0001) 
and days (F2,56=7.66, P=0.001), but no significant 
interaction between the two factors (F6,56=0.784, 
P=0.586) (Figure 3). Analgesic effect of exercise in 
rats receiving saline was prevented 4 days after 

cessation of exercise, while morphine-induced 
sensitization persisted during sedentary phase.  

 

Discussion 
No study with the same nature has been 

conducted thus far. This study provides novel 
evidence that voluntary and forced exercises can 
preserve morphine analgesic potency that is 
attenuated by chronic morphine administration.   
In this study, eight days of access to running wheels 
or treadmill was not shown to make tolerance to 
exercise-induced analgesia.   

Akin to previous studies (10, 23, 24), we found 
that voluntary or forced exercise alters nociceptive 
threshold. Animal models studies have shown that 
regular repeated aerobic exercise produces long-
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lasting antinociception in untreated animals (19,25-
26), as exercise alleviates inflammatory and chronic 
neuropathic pain (23, 27, 28) and chronic muscle 
pain (29). The mechanism of exercise-induced long-
term analgesia is not fully known. It may be 
explained in part as activating endogenous opioid-
mediated pain modulation systems (12), as most 
studies have shown that short-term (4 days) (30) or 
long term (13, 14, 31, 32) repeated exercise 
increases opioid concentrations of plasma and 
cerebrospinal fluid. Previous studies have shown 
that exercise stimulates the release of endogenous 
opioid peptides approximately 30 min after exercise 
which remains high for 2 days after the interruption 
of running (19). One feasible explanation for 
continues analgesic effects of exercise is possible 
involvement of nitric oxide (NO) (33), as levels of 
nitrate in plasma are increased after exercise (34). 
Overall, these studies have shown that voluntary or 
forced exercise-induced antinociception remains 
stable throughout running.  

Also, this study showed that the concurrence of 
voluntary or forced daily exercises with morphine 
administration delays tolerance to morphine 
analgesic effects.  

This finding seems to be contrast with previous 
studies stating that during chronic exercise (6 weeks), 
decreases in sensitivity to the antinociceptive effects of 
morphine and other mu opioids may reflect the 
development of cross tolerance between beta-
endorphin release during exercise and exogenously 
injected morphine (18, 19), or reflect a compensatory 
down-regulation of opioid receptors (35) during 
exercise. Such discrepancy is probably due to 6 weeks 
exercise condition prior to analgesic assessment of 
morphine, while in our study, rats were given free 
access to 8-day exercise simultaneously with morphine 
administration.   

This is in contrast with earlier studies which 
demonstrated that after 10 days of forced exercise, 
pain threshold in exercise morphine-addicted group 
was decreased compared to non-exercise group. This 
could be due to the forced running paradigm which 
is associated with a certain level of stress and the 
type of treatment (36).  

This finding is consistent with our previous 
results showing that the exercising groups were 
exposed to voluntary exercise during the 
development of dependence on morphine (10 days), 
diminished the severity of the morphine dependency 
(16). In addition, it may be explained that running 
reduces the craving for morphine in rats (37), as well 
as morphine rewarding effects in the conditioned 
place preference procedure (20). However, these 
studies did not mention reduction of morphine 
analgesic. Another possibility is that an exercise-
induced increase in BDNF concentrations may lead 
to increased concentrations of endogenous opioids 
(12), and it has been shown that BDNF-induced 

analgesia was reversible by naloxone (38, 39). 
Furthermore, it has been shown that the increase in 
BDNF was accompanied by an augmentation in brain 
serotonergic activity (40). There are probably 
multiple analgesia systems, including opioid and 
non-opioid systems following exercise (10).  

Thus, the present study showed that free access 
to voluntary or forced exercise during the 
development of tolerance to morphine does not 
decrease sensitivity to antinociceptive effects of 
morphine over 8 days of running. It also revealed the 
absence of a significant effect of days on the response 
latency in exercising rats. 

In this study, sensitivity to analgesic effects of 
morphine remained relatively stable at sedentary 
conditions in exercising rats. 

Our results showed that the analgesic effect of 
exercise on the exercising rats receiving saline was 
eliminated 4 days after cessation of exercise, while 
exercising rats treated with morphine demonstrated 
greater antinociception on days 9, 12 and 16 than 
rats injected with saline.  

The response latency in exercising rats treated 
with morphine at day 16 after exercise was %14.9 
and %17.9 in voluntary and forced exercise group, 
respectively, which was much higher than the 
sedentary rats receiving morphine in Experiment 2 
(%6.9). It reflects the stability of sensitivity to 
analgesic effects of morphine after cessation of 
exercise training.  

This finding has been confirmed by human and 
animal model studies, which have shown that beta-
endorphin levels in the cerebrospinal fluid remained 
high for approximately 1-2 days after running was 
terminated (19, 31, 41). Thus, it is believed that 
higher levels of beta-endorphin increase the 
nociceptive threshold after training (9, 10). Siuciak    
et al (40) found that increase in serum BDNF levels 
after exercise may be important for the stability of 
sensitivities to the analgesic effects of morphine after 
exercise.  Because injecting BDNF to the rat brain 
produced analgesia 24 hr after injection that reached 
its maximum levels by day 5 and remained constant 
for at least an additional 6 days, suggesting no 
development of tolerance (40). 

 

Conclusion 
Either voluntary or forced exercise prevents the 

development of tolerance to morphine 
antinociception. Moreover, exercise induces the 
stability of sensitivity to analgesic effects of 
morphine. Thus, physical activity may be a possible 
method for treating the development of tolerance to 
analgesic effect of morphine in rats. 
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