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Objective(s): Thymoquinone (TQ) is the main bioactive component of Nigella sativa L. and has 
anti-oxidant, anti-hepatotoxic, anti-cancer, anti-hypertensive, hypoglycemic, anti-inflammatory, 
and lipid-lowering properties. In this study, we investigated the protective properties of TQ on the 
cytochrome P450 enzyme system, peroxisome proliferator-activated receptors, and gene expressions 
involved in apoptosis, which are disrupted by valproic acid (VPA). 
Materials and Methods: The rats were put into control, VPA, and VPA+TQ groups. The weight of 
the body and liver were recorded. Liver tissue samples were evaluated for gene expressions (Bcl-2, 
p53, CYP2B1, CYP2B2, PPARα, and PPARγ), histopatology, and immunohistochemistry (CAS-3 and 
NOX-4). Additionally, serum was used to measure liver function parameters (ALT, AST, LDH, LDL, 
and HDL). 
Results: The VPA+TQ group had significantly lower expression of p53 (P<0.05), CYP2B1 (P<0.05), 
CYP2B2 (P<0.05), PPARα (P<0.05), and PPARγ (P<0.05) genes compared to the VPA groups, while 
Bcl-2 (P<0.05) gene expression increased. TQ decreased CAS-3 and NOX-4 levels. Also, TQ reduced 
ALT (P<0.05), AST (P<0.05), LDL (P<0.01), total bilirubin (P<0.05), and LDH (P<0.05) enzyme 
activity while increasing HDL (P<0.0001). TQ treatment improved fresh liver weight considerably 
(P<0.0001). 
Conclusion: TQ substantially protects liver tissue by modifying gene expression, lowering oxidative 
stress, and increasing liver function. It significantly counteracts VPA’s toxic effects, demonstrating its 
promise as a hepatoprotective agent in avoiding liver damage. 
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Introduction

                                   © 2025. This work is openly licensed via CC BY 4.0.
                                       This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses),                                                                                            
                                   which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Valproic acid (VPA) is a widely used medicine with 
a wide range of therapeutic applications, including 
epilepsy treatment, bipolar disorder management, 
and migraine prevention in diverse seizure types in 
neurological and psychiatric illnesses (1). However, it is 
well recognized that VPA has numerous adverse effects 
in addition to its therapeutic benefits. VPA is harmful 
to the liver and other organs (2) and causes numerous 
side effects, including alopecia, pancreatitis, abdominal 
discomfort, thrombocytopenia, coagulation problems, 
hyperammonemic encephalopathy, and rhabdomyolysis 
(3). Although VPA treatment is frequently associated with 
liver impairment, the mechanisms underlying VPA-induced 
hepatotoxicity remain unknown. 

The cytochrome P450 (CYP) enzyme superfamily makes 
the liver the primary site of drug metabolism  (4). Many 
subfamily enzymes within the CYP enzyme family can 

catalyze drugs and xenobiotic reactions (5). A wide range 
of medicines and substances can activate or inhibit CYP2B1 
and CYP2B2, both of which have low substrate specificity 
(6). Induction and inhibition of CYP, crucial elements in 
drug biotransformation, are valuable indicators for assessing 
chemical compounds’ potential toxicity (7). 

Peroxisome proliferator–activated receptors (PPARs), 
ligand-activated transcription factors from the nuclear 
receptor superfamily,  are involved in glucose and lipid 
metabolism. Therefore, they can be used as markers for both. 
The three PPAR isoforms, PPARα, PPARγ, and PPARβ/δ, 
have unique tissue distribution and functional roles (8). 
PPARs are found in the liver, heart, brain, skeletal muscle, 
kidney, and brown adipose tissue (9). PPARα reduces lipid 
levels and impacts fatty acid metabolism. PPARγ is involved 
in lipid biosynthesis, energy balance, and inflammatory 
regulation (10) and influences tumor growth, angiogenesis, 
cell differentiation, and apoptosis (11). PPARβ/δ modulates 
cholesterol and blood sugar levels and plays a role in fatty 
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acid oxidation in skeletal and cardiac muscles (12). 
p53 is a transcription factor that controls the expression 

of several genes related to apoptosis, tumor suppression, cell 
cycle arrest, and aging (13). The B-cell lymphoma gene-2 
(Bcl-2) gene family, which governs pro- and anti-apoptotic 
intracellular signals, is critical in controlling apoptosis (14). 
In response to numerous biological stresses, p53 causes 
DNA repair, aging, apoptosis, and cell cycle arrest (15), 
while Bcl-2 helps cells survive by preventing apoptosis (16).

Drug toxicity is a widespread issue nowadays, and in 
some circumstances, natural products are recommended 
as a supplement to traditional care. This study used 
thymoquinone (TQ), a natural substance, to lower VPA 
toxicity while maintaining its therapeutic efficacy. TQ is 
a bioactive component of Nigella sativa essential oil (17). 
TQ is derived from black cumin seed and has anti-oxidant, 
antihyperlipidemic, antimicrobial, anti-diabetic, anti-
inflammatory, antihistamine, anticancer (18, 19), antiviral 
(20), gastroprotective, and hepatoprotective properties (21). 

In this study, we aimed to evaluate the potential role 
of TQ in mitigating the adverse effects of VPA on the 
CYPs, which are essential for liver metabolism, as well as 
PPARs, apoptosis-related genes, biochemical markers, and 
histopathological parameters.

Materials and Methods
Chemicals

VPA, TQ (purity > 98%), and the other chemicals utilized 
in the study were obtained from Sigma Aldrich Chemical 
Co. (St. Louis, MO). 

Animals
Our experimental study was approved by the Fırat 

University Faculty of Medicine Ethics Committee (Protocol 
no. 2016/41). We received a total of 21, 3–4-month-old 
male Sprague-Dawley rats weighing 200–300 g from Fırat 
University Experimental Animal Research Center. The rats 
were kept at 21 °C with a 12 hr light:12 hr dark cycle and 
free access to food and water. All experimental protocols 
followed the National Institutes of Health Guidelines for the 
Care and Use of Laboratory Animals (NIH Publications No. 
8023, revised 1978) and ARRIVE Guidelines.

Experimental design
The 21 rats were randomly assigned to three groups of 

seven: the control group received saline solution, the VPA 
group received 500 mg/kg VPA, and the VPA + TQ group 
received 500 mg/kg VPA plus 50 mg/kg TQ. VPA and TQ 
were given orally once daily for 14 days. VPA (22) and 
TQ (23) dosages were determined using prior reports. On 
day 15, rats were sacrificed after receiving intramuscular 
injections of ketamine (30 mg/kg IM) and xylazine (5 mg/
kg IM), and an intracardiac blood sample was collected 
using a syringe to evaluate liver enzyme activity. Serum 
samples were separated by centrifugation at 5,000 x g for 
15 min and stored at -80 °C for biochemical analysis. The 
liver tissue was removed and weighed, then separated into 
two sections. One component was kept at −80 °C until gene 
expression analysis was performed. The remaining half was 
fixed in 10% neutral formalin for histological analysis. 

Liver function assessment
Serum alanine aminotransferase (ALT) (U/l), aspartate 

aminotransferase (AST) (U/l), and lactate dehydrogenase 

(LDH) (U/l) enzyme activities, as well as high-density 
lipoprotein cholesterol (HDL) (mg/dl), low-density 
lipoprotein cholesterol (LDL) (mg/dl), and total bilirubin 
(TB) (mmol/l) levels were used to assess liver damage. The 
measurements were made using a spectrophotometric 
approach in the 340–380 nm wavelength range with an 
Abbott Labs Architect C16000 system (Abbott GmbH & Co., 
Wiesbaden, Germany) and commercial Abbott kits (24, 25). 

Real-time PCR 
Frozen tissue specimens were defrosted at +4 °C. Thirty 

milligrams of liver tissue from all rats were homogenized 
(Bioprep-24, Hangzhou Allsheng Instruments Co., Ltd., 
Hangzhou, China) in 500 µl of tissue lysis solution for one 
minute. Total RNA was extracted utilizing the ExiPrepTM 
Tissue Total RNA isolation kit (K-3325; Bioneer Inc., 
Oakland, CA, USA).

The RNA purity was assessed at 260–280 nm and 230–
260 nm absorption wavelengths utilizing a NanoDrop 
spectrophotometer (Denovix DS-11; Denovix Inc., 
Wilmington, USA).  RNA samples were subsequently 
transformed into cDNA with AccuPower® RT PreMix (K-
2041; Bioneer Inc., Oakland, CA, USA), following the 
manufacturer’s guidelines. The GAPDH gene was amplified 
to serve as an internal control. The mRNA expression 
levels of CYP2B1, CYP2B2, PPARα, PPARγ, Bcl-2, and p53 
genes were assessed using the ExiCyclerTM96 Real-Time 
Quantitative PCR system (Bioneer Inc., Oakland, CA, USA) 
with the following protocol: thermal cycling at 95 ⁰C for 
five minutes, succeeded by 45 cycles at 95 °C for 15 sec, and 
subsequently at 60 °C for 25 sec (25). The primer sequences 
for CYP2B1, CYP2B2, PPARα, PPARγ, Bcl-2, and p53 (S-
1001; Bioneer Inc.) are presented in Table 1. Gene expression 
levels were quantified utilizing the 2-ΔΔCt methodology (26). 

Histopathological examinations
Tissues preserved in 10% neutral formalin were 

rinsed with running water to eliminate surplus formalin, 
subsequently dehydrated with graded alcohols, clarified 
with xylene, and finally embedded in paraffin. Subsequently, 
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Table 1. Nucleotid sequences of primers
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they were sectioned at 3–4 μm using a rotary microtome 
(RM2125RTS; Leica, Nussloch, Germany) and adhered to 
slides with gelatin. Sections underwent deparaffinization, 
rehydration through graded alcohols, and subsequent 
staining with hematoxylin and eosin (H&E) for histological 
assessment (27). Histopathological alterations were 
evaluated for vacuolar degeneration in hepatocytes, 
mononuclear cell infiltration in the portal region and 
parenchyma, sinusoidal dilation, and vascular congestion. 
A modified semiquantitative scale was employed for 
assessment as follows: 0, no damage; 1, mild damage; 2, 
moderate damage; 3, severe damage (28). Samples were 
evaluated and imaged using an imaging-assisted binocular 
light microscope (Eclipse Ni-U; Nikon, Tokyo, Japan).

Immunohistochemistry
Caspase-3 (CAS-3) and NADPH oxidase-4 (NOX-4) 

receptor activity was detected using immunostaining. Following 
deparaffinization and rehydration of the sections, they were 
subjected to treatment with 3% hydrogen peroxide (ScyTek 
Laboratories, Logan, UT, USA) and Super Block (ScyTek 
Laboratories) and subsequently incubated with primary 
antibodies for two hours. Primary antibodies sourced from 
Abcam (Cambridge, England) comprised anti-CAS-3 (06-735) 
at a dilution of 1:200 and anti-NOX-4 (ABC459) at a dilution 
of 1:50. Biotinylated goat anti-polyvalent (Abcam, Cambridge, 
England) served as the secondary antibody to interact with 
the primary antibodies. Horseradish peroxidase-conjugated 
streptavidin (ScyTek Laboratories) was utilized to bind with 
biotin, followed by the application of 3.3′-diaminobenzidine 
solution (ScyTek Laboratories) to colorize the receptor 
region. Subsequently, the sections were counterstained with 
Harris’ hematoxylin. The immunoreactivity of the histological 
preparations was semiquantified according to the degree 
of staining as follows: -, no staining; +, weak staining; ++, 
moderate staining; +++, intense staining.  Ultimately, slides 
were seen employing imaging-assisted light microscopy 
(Eclipse Ni-U; Nikon) (28).

Statistical analysis
Statistical analysis was performed using Statistical 

Package 25.0 (SPSS, Chicago, IL, USA) and GraphPad 
Prism, version 9 software (GraphPad Software Inc., La Jolla, 
CA, USA). Data are presented as means ± SEM.  One-way 
ANOVA with LSD was employed to evaluate data from 
group comparisons of parametric values for liver weight 
and genetic and biochemical markers. The Mann-Whitney 
U test was utilized to compare the histopathological 
and immunohistochemical results among groups (29). 
Differences were considered significant at P˂0.05. 

Results
Effects of VPA and TQ on liver weight

A notable reduction in the fresh liver weight to body 

weight ratio was seen in the VPA + TQ group relative to the 
VPA group (P˂0.0001) (Table 2).

Effects of VPA and TQ on liver enzyme activities and 
biochemical marker levels

The activity of ALT, AST, and LDH enzymes, along with 
the serum levels of LDL, HDL, and TB are presented in 
Figure 1. ALT (P˂0.01), AST (P˂0.05), LDH (P˂0.01), LDL 
(P˂0.01), and TB (P˂0.001) levels were considerably elevated 
in the VPA group relative to the control group, but HDL 
(P˂0.001) levels were dramatically diminished. Conversely, 
enzyme activities of ALT (P˂0.05), AST (P˂0.05), and LDH 
(P˂0.05), as well as LDL (P˂0.01) and TB (P˂0.05), were 
significantly reduced in the VPA + TQ group compared 
to the VPA group, whereas HDL (P˂0.0001) levels were 
dramatically elevated (Figure 1).

Effects of VPA and TQ on the expression of CYP2B1 and 
CYP2B2 genes

Figure 2 illustrates the impact of TQ treatment on the 
mRNA expression levels of the CYP2B1 and CYP2B2 genes 
across all groups subsequent to VPA administration. The 
expressions of CYP2B1 (P˂0.05) and CYP2B2 (P˂0.01) 
genes were considerably elevated in the VPA group relative 
to the control group. The VPA + TQ group had a markedly 
reduced expression of CYP2B1 (P˂0.05) and CYP2B2 
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Table 2. Comparison of fresh liver weight and fresh liver weight/body weight ratio between groups

Data are means ± SEM for seven rats. aSignificantly different from control. bSignificantly different from VPA group. cSignificantly different from VPA + TQ group. P<0.05. 
VPA: valproic acid; TQ: thymoquinone

Figure 1. Effects of VPA and TQ on liver function markers in rats
A: ALT, B: AST, C: LDH, D: Total bilirubin, E: HDL, F: LDL. VPA: valproic acid; TQ: 
thymoquinone; ALT: alanine transaminase; AST: aspartate transaminase; HDL: high-
density lipoprotein; LDH: lactate dehydrogenase; LDL: low-density lipoprotein; TB: 
total bilirubin. ****P˂0.0001, ***P˂0.001, **P˂0.01, *P˂0.05.
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(P˂0.05) genes in comparison to the VPA group (Figure 2). 

Effects of VPA and TQ on the expression of PPARα and 
PPARγ genes

Figure 3 illustrates the impact of TQ treatment on the 
mRNA expression levels of PPARα and PPARγ genes 
across all groups subsequent to VPA administration. Gene 
expressions of PPARα (P˂0.05) and PPARγ (P˂0.05) were 
considerably elevated in the VPA group relative to the 
control group. The VPA + TQ group exhibited a notable 
enhancement in the expression of PPARα (P˂0.05) and 
PPARγ (P˂0.05) genes relative to the VPA group.

Effects of VPA and TQ on the expression of Bcl-2 and p53 
genes

Figure 4 illustrates the impact of TQ treatment on the 
mRNA expression levels of the Bcl-2 and p53 genes across 
all groups subsequent to VPA administration. In the VPA 

group, Bcl-2 gene expression dramatically decreased 
(P<0.05) relative to the control group, whereas p53 gene 
expression significantly increased (P<0.05) compared to 
the control group. The VPA + TQ group demonstrated 
a significantly elevated Bcl-2 gene expression (P<0.05) 
compared to the VPA group. The VPA + TQ group exhibited 
a significant reduction in p53 gene expression (P<0.05) 
relative to the VPA group (Figure 4). 

Histopathological findings
The control group exhibited nearly normal liver histology 

(Figure 5A). In the VPA group, we observed many instances 
of vacuolar degeneration in hepatocytes, mononuclear cell 
infiltration in the parenchyma and portal region, sinusoidal 
dilation, and moderate vascular congestion (Figure 5C, 
D). Histopathological alterations, including degeneration, 
infiltration, and vascular dilation, were less prevalent in the 
VPA + TQ group (Figure 5B). 

Immunohistochemistry
Figure 6 encapsulates the immunoreactivity results 

for CAS-3 and NOX-4. The control group displayed no 
antibodies for CAS-3 and NOX-4 in liver tissue (Figure 6A, 

Figure 2. Effects of VPA and TQ on CYP2B1 and CYP2B2 mRNA 
expressions in rat liver
Data are means ± SEM for CYP2B1 and CYP2B2 mRNA expressions compared 
to the expression of the GAPDH housekeeping gene.  VPA: valproic acid; TQ: 
thymoquinone; CYP2B1: cytochrome P450 2B1; CYP2B2: cytochrome P450 2B2. 
**P˂0.01, *P˂0.05.

Figure 3. Effects of VPA and TQ on PPARα and PPARγ mRNA expressions 
in rat liver
Data are means ± SEM for PPARα and PPARγ mRNA expressions compared 
to the expression of the GAPDH housekeeping gene. VPA: valproic acid; TQ: 
thymoquinone; PPARα: peroxisome proliferator-activated receptor α; PPARγ: 
peroxisome proliferator-activated receptor γ. *P˂0.05.  

Figure 4. Effects of VPA and TQ on Bcl-2 and p53 mRNA expression in 
rat liver
Data are means ± SEM for Bcl-2 and p53 mRNA expressions compared to expression 
of the GAPDH housekeeping gene. VPA: valproic acid; TQ: thymoquinone; Bcl-2: B 
cell lymphoma-2; p53: tumor suppressor. *P˂0.05.

Figure 5. Rat liver tissue section
A: Histological appareance of the liver tissue in control group, B: Mild histopathological 
changes with restoration of normal histological structures of the liver tissue in VPA 
+ TQ group, C-D: Vacuolar degeneration in hepatocyte (yellow arrow), mononuclear 
cell infiltration in parenchyma and portal area (purple arrow), sinusoidal dilation 
(black arrow), vascular congestion (red arrow) in VPA group. VPA: valproic acid; TQ: 
thymoquinone. H E staining. Scale bar =100 µm. × 200.
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6D). Pronounced CAS-3 positivity was noted in the VPA 
group, whereas NOX-4 immunoreactivity was moderate 
(Figure 6B, 6E). In the VPA + TQ group, immunoreactivity 
for CAS-3 and NOX-4 was diminished (Figure 6C, 6F). 

Discussion
VPA, an anti-epileptic drug, is used clinically to treat 

diseases such as epilepsy and psychiatric disorders (30). 
In studies conducted on this subject, including long-term 
VPA use, it was found that liver functions were impaired. 
Moreover, damages resulting from VPA use include hepatic 
encephalopathy, chronic liver failure, hyperammonemia, 
and Reye-like syndrome (31). It is known that the primary 
source of hepatotoxicity caused by VPA in the liver is 
oxidative stress. The factors leading to this situation include 
decreased anti-oxidants, depletion of mitochondrial DNA, 
hypermethylation, oxidative phosphorylation disorder, and 
decreased ATP synthesis (32). In patients receiving VPA 
treatment, reducing side effects and providing alternatives 
that support the treatment can increase the chance of 
success. In addition, supportive herbal products can help 
these patients enhance their quality of life, mitigate adverse 
effects, and strengthen their immune systems. In this 
context, the use of herbal compounds is increasing along 
with VPA treatment (33, 34). It is known that the natural 
compound TQ is among the most suitable alternatives in 
this regard.

A number of adverse effects occur in epileptic and 
psychiatric patients treated with VPA, including significant 
weight gain and elevated body mass index (35). It has been 
determined that these patients who gain weight as a result of 
this treatment have insulin resistance and leptin resistance 
problems. Moreover, some studies have reported that these 
patients also have hyperinsulinemia and hyperleptinemia 
(36). It has been shown that liver size can change when 
exposed to xenobiotics or injury, and PPARα, in particular, 
can induce liver growth (37). Our findings are consistent 
with these reports, supporting the observed effects of VPA 
and TQ on weight gain and liver size. 

As it is widely known, serum levels of ALT, AST, HDL, 
LDH, LDL, and TB are important indicators of liver damage. 

In our study, the VPA group also showed significantly elevated 
ALT, AST, LDH, LDL, and TB parameters, consistent with 
an earlier report (38). According to the data on this subject 
in the literature, there may be many reasons for the high 
levels of enzymes and TB detected in serum. These reasons 
include enzyme leakage from the cytosol into the serum as a 
result of cell membrane damage and necrosis in hepatocytes 
(39). In addition, an increase in ALT and AST enzyme levels 
in the serum has been interpreted as indicative of potential 
hepatotoxic effects of VPA. The dual administration of TQ 
and VPA resulted in substantial reductions in the levels of 
these enzymes. This phenomenon can be ascribed to TQ’s 
ability to maintain cell membranes, inhibiting enzyme 
passage into the serum. Additionally, we observed a 
significant increase in serum LDL levels and a drop in HDL 
levels in the VPA group. TQ may offer protection against 
VPA-induced liver injury due to its reactive oxygen species 
(ROS) scavenging and lipid-lowering properties (40). The 
findings we acquired demonstrate that TQ therapy may be 
beneficial in mitigating the hepatotoxicity that arises.

VPA therapy elevated the expression of CYP2B1 and 
CYP2B2 genes. The liver is essential for metabolic activities, 
rendering it susceptible to damage. Researchers have 
demonstrated that this state is frequently induced by the 
activation of several cytochromes, notably CYP2B1 and 
CYP2B2 (41). Our findings align with research indicating 
that CYP2B1/B2 upregulation leads to oxidative stress 
and apoptosis due to insufficient intracellular anti-oxidant 
defenses, resulting in liver injury (42, 43). The activity of 
anti-oxidant enzymes is essential for cellular detoxification 
from xenobiotics, deleterious substances, and oxidative 
stress (44). Consequently, our research used TQ, an anti-
oxidant, in conjunction with VPA. The VPA + TQ group 
demonstrated markedly reduced expression of CYP2B1 and 
CYP2B2 genes compared to the VPA group.

PPARs are transcription factors that regulate various 
biological processes, including general energy homeostasis, 
lipid and glucose metabolism, and inflammation. They are 
regarded as novel therapeutic targets for understanding 
adipogenesis and metabolic disorder treatments (45). Our 
study results indicate a considerable rise in the expression 

Figure 6. Immunoreactivity of CAS-3 and NOX-4
CAS-3 immunostaining; A: No staining in control group, B: Intense immunostaining in VPA group, C: Weak staining in TQ treated group. NOX-4 immunostaining; D: No staining 
in control group, E: Moderate staining in VPA group, F: Weak staining in TQ treated group. VPA: valproic acid; TQ: thymoquinone; CAS-3: Caspase 3; NOX-4: NADPH oxidase-4. 
Scale bar = 100 µm. x 200.
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of PPARα and PPARγ genes.  Our findings are consistent 
with studies showing that VPA disrupts lipid metabolism in 
the liver by interacting with PPARs, causes abnormal lipid 
retention in hepatocytes, and eventually leads to liver injury 
due to lipid accumulation (46, 47). A study demonstrated 
that oxidative stress, apoptosis, and inflammation caused 
by lipid metabolism disturbance exacerbate liver damage 
by promoting lipid peroxidation (48). Our findings are 
consistent with the study results showing that TQ interacts 
with amino acids in the ligand-binding pocket of PPARs and 
mitigates hepatotoxicity via regulating PPARα and PPARγ 
(49).  Our study indicates that, despite the hepatotoxic 
effects of VPA, TQ mitigates lipid peroxidation by 
alleviating oxidative stress due to its anti-oxidant qualities 
and diminishes liver damage through its modulatory effects 
on PPARs that govern lipid metabolism.

We assessed the impact of VPA and TQ therapy on p53, 
Bcl-2, CAS-3, and NOX-4 levels. VPA therapy reduced Bcl-
2 gene expression while elevating p53, CAS-3, and NOX-
4 expression levels. The findings of studies indicating that 
elevated p53 expression reduced Bcl-2 expression and 
induced apoptotic cell death due to hypoxia and DNA damage 
align with our results (50, 51). Our results align with the 
data indicating that oxidative stress induced by VPA therapy 
elevates apoptosis and reduces Bcl-2 gene expression levels 
(52). In our study, CAS-3 immunoreactivity, an indicator 
of apoptosis in hepatic tissues, was missing in the control 
group, but intense immunostaining was noted in the VPA 
group. The elevation of CAS-3 activity in normal hepatic 
tissues and the initiation of apoptosis can be ascribed to 
VPA treatment. NOX-4 is involved in the regulation of ROS 
generation and DNA damage (53). The substantial elevation 
of NOX-4 levels in the VPA group suggests that VPA induces 
oxidative stress in the liver. This results in the suppression 
of cell growth and irreversible apoptosis, accompanied by 
elevated p53 expression (54). Our findings suggest that 
VPA induced tissue damage by instigating oxidative harm 
and initiating inflammatory and apoptotic processes (55). 
Consistent with our findings, a prior study noted the direct 
relocation of p53 to mitochondria, cytochrome c release, 
reductions in Bcl-2 levels, and elevations in CAS-3 activation 
subsequent to DNA damage (56). Our findings align with 
literature research indicating heightened oxidative stress 
due to elevated NOX-4 expression. Apoptosis induction is 
evidenced by elevated cytochrome c release resulting from 
diminished Bcl-2 expression (57). In conclusion, our data 
indicate that oxidative stress caused by VPA might trigger a 
cascade of detrimental events, resulting in cell death.

Our work demonstrates that the reduction in p53 
gene expression, the considerable decrease in CAS-3 and 
NOX-4 levels, and the notable enhancement in Bcl-2 gene 
expression in the VPA + TQ group validate the efficacy of 
TQ. The weak CAS-3 immunostaining observed in the TQ-
treated group suggests that TQ treatment inhibits apoptosis 
by averting the elevation of CAS-3 levels in normal hepatic 
tissue impacted by VPA. Moreover, TQ’s suppression of 
NOX-4 levels may be ascribed to the attenuation of VPA-
induced oxidative stress and apoptosis. Based on the data 
collected, it can be concluded that TQ administration in our 
study diminishes apoptosis and oxidative stress, consistent 
with other research (58).

Our study’s main VPA-induced histopathological 
changes were vacuolar degeneration in hepatocytes, 
mononuclear cell infiltration in the parenchyma and portal 

area, sinusoidal dilation, and vascular occlusion. The data 
we obtained are also compatible with the literature on this 
subject (59, 60). In our study, the significant improvements 
in histopathological changes in the VPA + TQ group confirm 
that TQ application is effective. In addition, studies on this 
subject confirm that TQ provides significant improvement 
in hepatotoxicity (61). In light of all these findings, it can be 
stated that TQ has a hepatoprotective effect against VPA-
induced liver injury.

Conclusion
TQ is interpretable as hepatoprotective against oxidative 

stress due to its many features, particularly its anti-
oxidant capabilities. Our research encompasses genetic, 
biochemical, and histological evidence substantiating this 
TQ concept. Consequently, it has been established that TQ 
may offer protection against VPA-induced hepatotoxicity.
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