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Objective(s): In this research, zeolite X and zeolite Y were used as vehicle to prepare intestine targeted 
oral delivery systems of indomethacin and ibuprofen.  
Materials and Methods: A soaking procedure was implemented to encapsulate indomethacin or 
ibuprofen within synthetic zeolites. Gravimetric methods and IR spectra of prepared formulations were 
used to assess drug loading efficiencies into zeolite structures. Scanning Electron Microscopy (SEM) 
was also utilized to determine morphologies changes in synthetic zeolites after drug loading. At the next 
stage, dissolution studies were used to predict the in vivo performance of prepared formulations at HCl 
0.1 N and PBS pH 6.5 as simulated gastric fluid (SGF) and simulated intestine fluid (SIF), respectively.  
Results: Drug loadings of prepared formulations was determined between 24-26 % w/w. Dissolution 
tests at SGF were shown that zeolites could retain acidic model drugs in their porous structures and can 
be able to limit their release into the stomach. On the other hand, all prepared formulations completely 
released model drugs during 3 hr in simulated intestine fluid. 
Conclusion: Obtained results indicated zeolites could potentially be able to release indomethacin and 
ibuprofen in a sustained and controlled manner and reduced adverse effects commonly accompanying 
oral administrations of NSAIDs. 
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Introduction 
Microporous materials, which have unique pore 

size, higher surface area and pore volume, have been 
widely employed as vehicles for controlled drug 
delivery.  

Drug delivery systems, such as porous silica 
materials, have exhibited good properties for 
application as drug delivery carriers and a great deal of 
research has been conducted to explore its potential. 

Faujasite is a mineral group in the zeolite family 
of silicate minerals. Zeolites are crystalline, micro 
porous, hydrated aluminosilicates that compose of 
extending three dimensional structure of [SiO4]4 and 
[AlO4]5 tetrahedra bonded to each other by the 
sharing of oxygen atoms (1). Generally, their 
structure can be considered as inorganic polymer 
built from tetrahedral TO4 units, where T is Si4+ or 
Al3+ ion and each O atom is shared between two T 
atoms (2). The faujasite framework consists of 

sodalite cages which are connected through 
hexagonal prisms (Figure 1). The pores are arranged 
perpendicular to each other. The pore, which is 
formed by a 12-membered ring, has a relatively large 
diameter of 7.4 Å. The inner cavity has a diameter of 
12 Å and is surrounded by 10 sodalite cages. 
Depending on the silica-to-alumina ratio of their 
framework, synthetic faujasite zeolites are divided 
into X and Y zeolites. In X zeolites ratio is between 2 
and 3, while in Y zeolites it is 3 or higher. The 
negative charges of the framework are balanced by 
the positive charges of cations (Na+, Ca+2, Mg2+) in 
non-framework positions.  

Nowadays, commercial synthetic zeolites are 
used more frequently than natural zeolites due to the 
purity of crystalline products and the identical 
particle sizes (3). 

The main advantages of synthetic zeolites in 
comparison to natural ones are that they can be
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Figure 1.  Crystal structure (a) and individual cage of zeolite 
 

engineered with extensive variety of chemical 
properties, much more thermal stability and various 
pore sizes (4). 

Because of the specified pore structure and pore 
geometry, zeolites can be implemented for size 
selective separation of molecules in chromatographic 
procedures (5-7).  

Existence of aluminum in zeolite structures 
enhances the defects in these materials and as a 
result, zeolites can be active catalysts for specific 
chemical reactions, such as hydrogenation (8). 

Moreover, zeolites could play an important role in 
regulation of the immune system as they act as 
nonspecific immune-modulator, same as super-
antigens, so they could be used as antibacterial 
agents or in the adjuvant treatment of cancer (9, 10).  

Zeolites use as a carrier for small drug molecules 
because of their biocompatibility, low toxicity and 
small pore size that could be matched to the size of 
drug molecules perfectly (11-13). 

Due to unique characteristics of porous carriers, 
they have been applied in development of novel drug 
delivery systems such as floating drug delivery 
system, sustained drug delivery system and 
encapsulation of drugs with low aqueous solubility 
(14-16). Zeolites have enormous amounts of pores 
that provide the entrapment of drugs. These 
properties allow them to encapsulate drugs with 
high efficiency and release them in a sustained and 
controllable manner (17, 18). 

There are numerous researches in order to 
explore biomedical applications of zeolites including 
imaging (19-23), wound treatment (24) and drug 
delivery (25-28).  

One of the outstanding pharmacological 
applications of zeolites and mesoporous silicates is 
the entrapment of ions such as Cu2+, Zn2+, Na+, K+ along 
with drug molecules within their pores to obtain a 
sustained release delivery system (29). In this regard, 
zeolite-based formulation of zinc and erythromycin has 
been used in the treatment of acne (30). 

Furthermore, mechanical activated zeolite Y-
magnetite nanocomposites have been successfully 
loaded with doxorubicin for preparation of a 
sustained release system (31). 

Zeolite Y is also used to produce controllable 
release dosage of anthelminthics drugs (32) and 
sustained release capsules of ibuprofen (33). 

A CuX zeolite based formulation of 
cyclophosphamide has been developed for cancer 
chemotherapy (34) and as a result it was proved that 
zeolites could improve the essential biological and 
mechanical characteristics of drug delivery systems.  

In the wake of this burgeoning research, the aim of 
current study was to verify the possibility of exploiting 
synthetic zeolites as delivery systems for targeted 
release in the intestine. Zeolite X and zeolite Y were 
considered for the encapsulation of ibuprofen or 
indomethacin because of their pore structure. The 
choice of ibuprofen or indomethacin as a model drug, in 
this study, was explained by their short half-life, low 
water solubility and bioavailability, and their adverse 
effects which cause damage to stomach (35, 36).   

Therefore, ibuprofen or indomethacin was first 
encapsulated into zeolite X or Y, by a soaking 
procedure, and then its release was assessed at 
different pH conditions mimicking intestine fluids or 
gastric juice. 

 

Materials and Methods 
Materials 

Zeolite X and Y were supplied by SPAG, Iran. 
Ibuprofen and indomethacin was purchased from 
Merck, Germany. All chemicals and solvents were 
obtained from commercially available suppliers (Merck, 
Germany) and used without further purification. 

 
Drug loading 

Ibuprofen or indomethacin loading into the zeolites 
X and Y was achieved as follows: 20 g of zeolite X or Y 
were soaked, for two days, at room temperature, under 
continuous stirring, in a solution of 8 g of ibuprofen or 
indomethacin in methanol (300 ml). Finally, the solvent 
was removed by filtration using 0.22 µm polyester filter 
paper, and the samples were dried by rotatory 
evaporation under vacuum, at 30°C.  

The loading of drugs into the zeolites X or Y was 
determined by thermogravimetry analysis (TGA). 

TGA was performed using a TGA instrument 
(Mettler, Switzerland) at a heating rate of 10 C/min 
under a nitrogen purge of 40 ml/min, from 30 to 600oC. 

 
Characterization  

FTIR: Chemical analysis of zeolite samples were 
obtained with FTIR. About 10 mg of samples and 100 
mg of KBr were used to prepare a KBr plate. The 
mixture of KBr and samples were grinded 3-5 min. 
The die was putted together with the powder into 
the Qwik Handi-Press and the powder was pressed 
for 2 min to form a pellet. The sandwiched plates 
were placed in the spectrometer Perkin-Elmer Model 
1000 to record IR spectra.  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846463/#CIT15
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SEM: Scanning Electron Microscopy images 
(LEO1450VP, England) were used to take images of 
zeolite samples. The powder of zeolite samples were 
mounted on an aluminium base with adhesive 
carbon tape and coated with 2-5 nm gold under 
vacuum for 5 min to prevent charging and distortion 
prior to SEM-picture taking. 

XRD: XRD patterns of the samples were 
determined using a Phillips analytical x-ray B.V. 
(USA), consisting of a PW3710 diffractometer and an 
X-ray tube (30 mA and 40 kV) with a copper anode. 
The experiment was performed at a scanning rate of 
0.033 degrees per second at an angle of 2 and a 
range of 5–35 degrees. Nitrogen adsorption: Surface 
area (BET) was measured using N2 adsorption with 
Quantachrome Autosorb 1-MP. As-received zeolite 
samples were outgassed at 300°C prior to sorption 
measurements. Instead, after the encapsulation of 
drugs, samples were evacuated at 50°C before 
adsorption measurements, because melting point of 
the drugs, indomethacin and ibuprofen, were 75.89 
and 158°C respectively.  

 

Dissolution studies 
A flow through cell dissolution apparatus with six 

cells dissolution tester equipment (Pharma test, 
Germany) was used in all experiments.  

During the test, the 900 ml of dissolution 
mediums were stirred using USP apparatus I, at 100 
rpm and were warmed up to 37°C.  

The dissolution mediums were 0.1N HCl solution, 
pH 1.2 (simulated gastric juice) and phosphate buffer 
0.2 M, pH 6.8 (simulated intestine fluid).   

For each interval, samples (n=3) were collected 
from the vessels by a peristaltic pump (Alitea, Sweden) 
at the following times: 15, 30, 45 and 60 min. The 
concentration of each sample was determined using 
multi-cell transport spectrophotometer (Shimadzu, 
Japan) at 221 nm for ibuprofen and 319 nm for 
indomethacin.  

Simple model independent approach that uses a 
difference factor (f1) and a similarity factor (f2) was 

used to compare dissolution profiles (37). The 
difference factor (f1) calculates the percent of the 
difference between the two curves at each time point 
and is a measure of the relative error between the 
two curves by following equation 1: 

 

 

                      (1) 

 

Table 1. Drug loading contents and specific surface area in zeolite X 
and Zeolite Y 
 

Where n is the number of time points, Rt is the 
dissolution value of the reference formulation at time 
t and Tt is the dissolution value of the test 
formulation at time t. The similarity factor (f2) is a 
measurement of the similarity in the percent (%) 
dissolution between the curves (equation 2): 

 
 

     (2)  
 
 

 
 
For curves to be considered similar, f1 values should 

be close to 0 and f2 values should be close to 100. 
Usually, f1 values up to 15 (0–15) and f2 values greater 
than 50 (50–100), which means an average difference 
of no more than 10% at the sample time points, 
confirms similarity of the two curves and consequently 
of the performance of the test and reference products. 

 

Results  
Characterization 

FTIR: Demonstration of ibuprofen or 
indomethacin loading was indicated by FTIR 
experiments. Adsorption bands in the range of 3750–
3000 cm−1 are due to the stretching vibrational 
frequency of the silanol groups. Some characteristic 
adsorption peaks such as carbonyl peak of ibuprofen 
or indomethacin, indicated by arrows in Figure 3 and 
4 were observed both in ibuprofen or indomethacin 
zeolite samples, verifying that the model drugs were 
successfully encapsulated into the zeolites. 

 
 
 
 

 

  
 
 

 
 
Figure 2. indomethacin (left)  and ibuprofen (right) molecules 

Samples Drug loading  
(%, TGA) 

Specific surface 
area (SBET, m2/g)  

Zeolite Y  713.33 
Ibuprofen +zeolite Y 26.32 450.90 
Indomethacin +zeolite Y 25.75 622.2 
Zeolite 13X  452.21 
Ibuprofen +zeolite 13X 25.28 420.21 
Indomethacin +zeolite 13X 24.54 388.70 
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SEM: Figure 5 represent the scanning electron 
micrograph for indomethacin loaded zeolite X.   

Samples prepared from zeolite X formulations 
containing indomethacin were nearly spherical. 
However, the control samples prepared from zeolites X 
were polygonal.  

The spherical shapes of drug loaded zeolites 
demonstrated successful encapsulation of model drug 
into pores and surface of microporous zeolite particles. 

XRD: The representative powder X-ray diffraction 
(pXRD) patterns of zeolite X and Y before and after drug 
(indomethacin and ibuprofen) loading are shown in 
Figures 6 and 7. Characteristic pXRD peaks 
corresponding to zeolite X and Y were observed. The 
pXRD patterns after drug loading were similar to the 
parent zeolite powder X-ray diffraction patterns 
indicating that the zeolite X and Y framework structure 
did not change. However, there was an overall 
reduction in intensity of the peaks after loading 
indicating a slight decrease in the crystallinity after 
drug adsorption.  

 

Loading of drug 
The actual loading of ibuprofen or indomethacin  

into the zeolites X or Y was determined by 
thermogravimetry analysis (TGA). As shown in Table 1, 
the loading fractions in all cases were estimated from 
the ratio of the weight loss between 250 and 600oC to 
the total initial weight. The weight loss due to drug 
uptake was  25.28% and 24.54% for zeolite 13x 
+ibuprofen and zeolite 13x+indomethacin and 25.75%  
and 26.32% for zeolite Y+indomethacin and zeolite 
Y+ibuprofen, respectively. TGA thermo grams zeolite 
13x +ibuprofen, zeolite 13x+indomethacin, zeolite 
Y+indomethacin and zeolite Y+ibuprofen have been 
shown in Figures 6 and 7. 

Nitrogen adsorption:   A decrease in the surface 
areas after drug loading in zeolite samples was 
observed, confirming that the drug was loaded in the 
pores of the zeolites (Table 1).   
 

Drug delivery profiles 
The dissolution profiles of the formulations in 

simulated gastric juice and simulated intestine fluid are 
shown in Figure 9 and 10, respectively. Figure 9 shows 
the time dependent release rates of zeolites 
formulations of ibuprofen or indomethacin in 
comparison with the free drug in simulated gastric juice 
at pH 1.2.  

As shown in Figure 10 after 180 min, when the pH 
value was 6.8, zeolites X and Y were almost deprived of 
ibuprofen or indomethacin. 

 

Discussion 
Ibuprofen and indomethacin are used as analgesic 

and anti-inflammatory; their molecular size are about 
10 x 4.5Ao and 13.5 x 5.5Ao, respectively (Figure 2).  Due 
to their size, they can be best model for studying drug 
adsorption into pores of microporous zeolites with 

pore diameters of less than 2 nm (20 Å) (see Figure 1). 
Reduction in the surface areas after drug loading 
confirmed this theory. There was not found any 
significant difference between drug loadings (24-26%). 
This may be due to similarity between structures of 
drugs and also zeolites x and y. During 60 min at pH 
1.2, very small quantity of drugs (ibuprophene-
zeolite X=1.77%, ibuprophen-zeolite Y= 2.41%; 
indomethacin-zeolite X= 2.27%, indomethacin 
zeolite Y= 3.29%) was released.  
 

Figure 3. IR spectra of (A) Indomethacin, (B) Indomethacin+zeolite 
X, (C) Indomethacin+zeolite Y 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. IR spectra of (A) Ibuprofen; (B) Ibuprofen +zeolite X; (C) 
ibuprofen +zeolite Y 
 

 

Figure 5. SEM images of Zeolite X (The right); Indomethacin 
loaded zeolite X; (The left)  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586828/figure/F3/
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(a) zeolite Y 

 

 
 
 
(b) zeolite Y + Ibuprofen 

 

 
 
(c) zeolite Y+ Indomethacin 
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Figure 6. XRD patterns of zeolite with drugs 
 
 

 

 
 
(a)zeolite 13X 

 

 
 
(b) zeolite 13X + Ibuprofen 

 

 
 
c) zeolite 13X+ Indomethacin 
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Figure 7. XRD patterns of zeolite 13X with drugs 
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(a) zeolite Y+ Ibuprofen 
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(b) zeolite Y + Indomethacin 
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(c) zeolite 13 x + Ibuprofen 
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Figure 8. TGA thermograms  for different zeolite drug combinations  
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Figure 9. Drug release profiles of prepared formulations in simulated gastric juice 
 
 
 

 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 10. Drug release profiles of prepared formulations in simulated intestine fluid 
 
 

An explanation for this phenomenon could be 
that the formation of neutral charge at active sites of 
zeolites under acidic condition, promoted better 
entrapments of drugs in zeolites active sites.  

At pH 6.8 (simulated intestine fluid), both model 
drugs have negative charge and are most in an ionic  
form with high solubility which cause dissociate 
from the active sites of zeolites as a result of an 
electrostatic repulsion and solubility enhancement of 
drugs in ionic form. Since, pKa of indomethacin is 
more acidic, it is probable that ionic form of 
ibuprofen in the intestine should be more than 
indomethacin, therefore ibuprofen exhibited higher 
dissolution rate from matrixes at pH 6.8 (simulated 
intestine fluid). This feature demonstrates that the 
grade of dissociation of drug is determinant for the 
interaction with zeolite.  

The f1 and f2 factors calculated from release 
profiles at pH 1.2 and pH 6.8 for all prepared 
formulations (Table 2 and 3) indicated that all 
formulations containing model drugs, exhibited 
significant differences from control samples (drugs 
without zeolites). 
 

Conclusion 
Synthetic zeolites were studied to verify their ability 
to encapsulate and release anti-inflammatory drugs 
 
 Table 2. Difference factor (f1) of dissolution profiles of matrices in 
simulated gastric juice (n=3) 
 

Matrices  f1 
Ibuprofen+zeolite X versus control 82.84 
Ibuprofen+zeolite Y versus control 76.58 
Indomethacin+zeolite X versus control 80.18 
Indomethacin+zeolite Y versus control 69.90 

 

Table 3. Difference factor (f1) of dissolution profiles of matrices in 
simulated intestine fluid (n=3) 
 

Matrices  f1 
Ibuprofen+zeolite X versus control 53.37 
Ibuprofen+zeolite Y versus control 64.18 
Indomethacin+zeolite X versus control 57 
Indomethacin+zeolite Y versus control 65.89 

 
such as ibuprofen and indomethacin. Obtained results 
demonstrated that zeolite X and Y exceptionally 
potential to produce capable oral drug delivery systems 
for ibuprofen and indomethacin. In current research a 
simple soaking procedure was able to entrap 24-26% 
of model drugs in zeolite X and Y.  

Drug loading was indeed confirmed by IR spectra. 
We found that less than 10% of the drug was 
released at the gastric level, a result that clearly 
indicates the effectiveness of this system in reducing 
the adverse effects commonly accompanying oral 
administrations of NSAIDs. 
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