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Metabolic syndrome (MetS) as a collection of obesity-associated disorders is associated with 
inflammation, oxidative stress, pro-thrombotic state, elevated risk of developing cardiovascular 
disease and type 2 diabetes. Adiponectin is one of the most abundant peptide hormones derived from 
adipose tissue. This protein plays a major role in glucose and lipid metabolism and prevents 
development of vascular changes. Anti-oxidative and anti-inflammatory effects are the other features 
of adiponectin. Hypoadiponectinemia is associated with hypertension and pro-thrombotic state. In this 
review, we discuss the crucial role of adiponectin in prevention of metabolic syndrome considering its 
effects on the components of this syndrome. Pharmacological interventions and lifestyle modification 
may increase plasma adiponectin level or tissue sensitivity which seems to be a promising target for 
prevention and therapeutic approaches of MetS and related diseases. 
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Introduction 
Metabolic syndrome (MetS), also known as synd-

rome X or insulin resistance syndrome, is a collection of 
obesity-associated disorders that comprises dyslipi-
demia (triglyceride (TG) >150 mg/dl, high-density 
lipoprotein (HDL) cholesterol <40 mg/dl in males              
and <50 in females), impaired fasting glucose               
(fasting glucose ≥100) and visceral adiposity (waist 
circumference >102 cm in men and >88 cm in woman) 
(1-3). Also, this syndrome is associated with prothrom- 
botic state (4), inflammation, oxidative stress (5), 
elevated risk of developing cardiovascular disease 
(CVD) like atherosclerosis (6) and type 2 diabetes 
(T2D) (4). MetS and atherosclerosis are the main 
causes of morbidity and mortality worldwide (7). 

In past, adipose tissue was considered only as   a 
storage depot of extra energy, but is now regarded              
to be a highly active endocrine gland secreting               
several bioactive molecules known as adipokines                  
or adipocytokines. One of the most abundant peptide  

 

hormones derived from adipose tissue is known                    
as a new adipokine with anti-atherogenic and                
anti-inflammatory features (8). In this review article, 
focusing on adiponectin effects on each component of 
MetS, its crucial roles in the prevention of this 
syndrome are reviewed. 
 
Adiponectin, structure and its receptors 

In human, adiponectin gene is located on 
chromosome 3q27 (9) and encodes a 244 amino 
acids protein (10, 11). This locus has been associated 
with diabetes and cardiovascular diseases (12). 
Primarily three isoforms are detected in plasma:                
a low molecular weight trimer (LMW), a medium 
molecular weight hexamer (MMW) and a high 
molecular weight (HMW) 12- to 18-mers (9, 13). 
HMW form may be the most active form of 
adiponectin (14). Also, HMW to total adiponectin 
ratio is more useful than total adiponectin in 
metabolic syndrome diagnosis (15). Adiponectin is 
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mainly produced in white adipose tissue (WAT)             
and particularly in mature adipocytes. Also, 
epicardial fat expresses adiponectin (7, 16). 
Adiponectin plasma levels are more nearly 
associated with the amount of visceral than total 
body fat (17). This specifically indicated a close 
relationship between visceral obesity and metabolic or 
cardiovascular diseases (15). Liver, cardiomyocytes, 
skeletal muscle, colon, salivary glands, placenta                    
and pituitary express adiponectin at lower levels (7). 
Adiponectin performs its physiological effects                
mainly via AdipoR1 and AdipoR2 receptors. Both 
receptors are ubiquitously expressed (7) especially in 
monocytes and macrophages (18). AdipoR1 is 
principally expressed in skeletal muscle (19), but it is 
also expressed in endothelial cells (20), cardiomyocytes 
(21) and pancreatic-β cells (22). AdipoR2 is primarily 
expressed in the liver (19) and partly in endothelial 
cells (23) and cardiomyocytes (24). In muscle and 
adipose tissue in hyperinsulinemic and hyperglycemic 
states, the expression of both receptors is meaningfully 
reduced (25). AdipoR1 and AdipoR2 effects are 
mediated through APPL1, an adaptor protein which has 
a prominent role in metabolic effects of adiponectin 
(26). In addition, APPL1 interactions with insulin-
signaling molecules indicated a molecular link between 
adiponectin and downstream insulin occurrence (27). 
The studies revealed that AdipoR1 and AdipoR2 may be 
firmly associated with activation of AMPK and PPAR-α 
signaling pathway in the liver, respectively (28). 
Activation of AMP-activated protein kinase (AMPK), 
PPAR-α and p38 mitogen-activated protein kinase 
(MAPK)-signaling pathways are involved in molecular 
signaling of adiponectin (29). 

The third adiponectin receptor is T-cadherin, a 
glycosylphosphatidylinositol (GPI) which is anchored 
to the surface membrane and lacks cytoplasmic 
domain. This receptor is not effectively expressed in 
muscles and liver, but is expressed in vascular 
endothelial and smooth muscle cells (27, 30). 
 
The Effect of adiponectin on glucose metabolism 

AMPK, a stress-responsive kinase, has an important 
role in the regulation of cellular and whole body energy 
balance. AMPK has several functions such as inhibition 
of hepatic gluconeogenesis, increasing muscle glucose 
transport (31), phosphorylation  of phosphor-
fructokinase-2 (PFK-2) and increasing glycolytic 
glucose disposal (32). Adiponectin signaling causes an 
increase in the phosphorylation of P-38MAPK                    
and AMPK in skeletal muscle (33, 34), liver (27)                   
and adipocytes (35). Adiponectin knockout (KO)               
mice showed decreased expression of glucokinase, 
phosphofruktokinase and pyruvate dehydrogenase 
(important enzymes that control glycolysis), also 
isocitrate dehydrogenase which is a major enzyme of 
tricarboxilic acid (TCA) cycle (36).  

Adiponectin directly sensitizes body tissues to 
insulin. There is a significant inverse relationship of 
adiponectin and its receptors with insulin resistance. 
Hemoglobin A1c (HbA1C), an indicator of glycemic 
control, showed a negative correlation with serum 
adiponectin (8). Serum adiponectin level is a precise 
index that can predict insulin resistance in patients 
with T2D and may have an important role in               
the pathogenesis of diabetes (37, 38). Therefore, 
hypoadiponectinemia may place individuals at risk 
for developing diabetes (9)and MetS patients are at 
high risk for developing T2D (39).  
 
Adiponectin and lipid metabolism 

Proteins such as CD-36 (fatty acid transporter/-
scavenger receptor), acyl-coenzyme A (acyl-CoA) 
oxidase and uncoupling protein-2 are involved in 
fatty acid transport and oxidation. Adiponectin can 
stimulate these proteins in muscle and increase fat 
combustion and energy waste (19, 40). Liver lipid 
metabolism is regulated by AMPK activation, which 
is involved in the regulation of lipogenesis and 
cholesterol synthesis (41) and can be  directly 
activated by adiponectin (42). 

Expression of several genes which are involved in 
proximal and mitochondrial β-oxidation are 
regulated by PPAR-α (43, 44). Adiponectin induces 
PPAR-α transcriptional activity through AMPK and 
P38-MAPK activation (45). Adiponectin induces 
phosphorylation and inactivation of acetyl Co-A 
carboxylase (via AMPK activation) and enhances 
fatty acid oxidation rates (46). This suggested that 
adiponectin can initiate long and short-term 
stimulation of fatty acid oxidation (45). 

 Hepatocyte nuclear factors (Hnf1, Hnf3, Hnf4a, 
Hnf6) are principally involved in the regulation         
of liver complex function (47, 48) in which especially 
Hnf1a, Hnf6 and Hnf4a have central roles (49). Hnf4a 
regulates the expression of transcription factors such 
as Hnf1, a chief regulator in hepatocytes, SREBP1 and 
ChREBP1, these two factors participate in hepatic 
lipogenesis. The expression of Hnf4a is reduced in 
adiponectin KO mice (36). Adiponectin regulates the 
expression of several important hepatic metabolic 
genes through Hnf4a (36). Whilst AMPK activation 
suppresses the expression of SREBP1c; this 
transcription factor is involved in the expression of 
genes which encode proteins that are involved in 
liver fatty acid synthesis (42). 

The ATP binding cassette A1 (ABCA1) is a key 
participant in the reverse cholesterol process 
whereby it mediates cholesterol efflux directly to 
HDL particles (50). Adiponectin enhances Apo-A1 
and ABCA-1 expression in hepatocytes that are 
involved in HDL formation (51). Adiponectin 
meaningfully enhances mRNA  transcription of 
ABCA-1 in the liver (52). Hypoadiponectinemia may 
be associated with smaller low-density lipoprotein 
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(LDL) size, reduction of lipoprotein lipase (LPL) 
activity, decrease in HDL and increase in TG levels 
(53). Plasma adiponectin level has negative 
relevance with apolipoprotein B-100 and triglyceride 
in T2D patients (53). 
 
Anti-Inflammatory effects 

MetS patients often have a pro-inflammatory 
state, as displayed by increased levels of cytokines 
such as tumor necrosis factor alpha (TNF-α), IL-6 
and C-reactive protein (CRP) (4), an important 
marker for systemic inflammation (53). MetS is 
closely associated with systemic inflammation and it 
is suggested that CRP could be considered as an 
appropriate marker for MetS diagnosis  (54). 
However, liver is an important source of CRP, human 
adipose tissue can express CRP mRNA (55). Human 
studies reported an inverse association between 
adiponectin level and CRP (56), TNF-α and IL-6 (54). 
Also, there is a reverse association between 
adiponectin mRNA and CRP mRNA in human adipose 
tissue (55). It is suggested that adiponectin can 
control the expression of CRP in adipose tissue (57). 

Monocyte chemo-attractant protein-1 (MCP-1) has 
a great role in the recruitment of monocytes and 
regulation of migration and infiltration of monocyte/- 
macrophages (58), hence it induces inflammation and 
insulin resistance (14). It is reported that concurrent 
adipoR1 and adipoR2 disturbances caused an increase 
in MCP-1 expression in WAT. It seems that reduced 
adiponectin signaling increases inflammation in WAT 
(28). 

In macrophages, the production of pro-inflammatoy 
cytokines such as TNF-α and IL-6 is inhibited by 
chronic treatment with adiponectin which can be 
associated with nuclear factor kappa B (NF-kβ) and 
extracellular signal-regulated protein kinases 1 and              
2 (ERK1/2) activation by adiponectin (59-61). Also,    
this protein suppresses TNF-α mRNA expression in 
adipocytes (62). Following stimulation with 
adiponectin, human monocytes are primed into M2 
macrophages with anti-inflammatory properties (63). 

In vitro studies showed that adiponectin induces 
the production of anti-inflammatory cytokines such 
as interleukin 10 (IL-10), interleukin-1 receptor 
antagonist (IL-1RA) in primary human monocytes 
and monocyte-derived dendritic cells (Mo-DCs) and 
macrophages. Low circulating level of IL-10 is 
associated with metabolic syndrome in women (64). 

Perivascular adipose tissue has a significant role 
in vascular inflammation (65). The experiments 
suggested that MetS is associated with perivascular 
adipose inflammation and endothelial dysfunction 
due to reduced NO (66). Insulin resistance and 
hyperglycemia, as major factors involved in MetS, 
have negative effects on the synthesis and release of 
NO (67). NO has vasodilatory effect and it can 
decrease vascular permeability, reduce LDL 
oxidation rate and suppress vascular smooth muscle 

cell proliferation (68, 69). Adiponectin activates 
endothelial nitric oxide synthase (eNOS) in endothelial 
cells and stimulates NO production (61) via activation 
of AMPK signaling and phosphoinositide-3-kinase 
(PI3K)-Akt pathway (7, 64) and increases eNOS 
expression in endothelial cells. Adiponectin reverts the 
inhibition of eNOS activity by oxidized LDL (ox-LDL) 
(70) and hyperglycemia (71). Also, CRP has direct pro-
inflammatory effect on vessel wall (72, 73). An 
experiment using human recombinant CRP showed 
that this protein causes down-regulation of eNOS, up-
regulation of adhesion molecules and simplification of 
endothelial cell apoptosis and increases angiotensin 
type I receptor and neointima formation (73). As noted 
above, adiponectin has negative effect on CRP 
production. 

In summary, Adiponectin suppresses endothelial 
cell activation and monocyte attachment and inhibits 
interplay between leukocyte and endothelial cells (67). 

 
Anti-oxidative effect of Adiponectin 

MetS patients have increased oxidation damage in 
the form of elevated malondialdehyde (a product of 
lipid peroxidation), protein carbonyls and xanthine 
oxidase activity. On the other hand, in these patients 
antioxidant defense, vitamin C and E concentrations, 
superoxide dismutase activity (74, 75), and 
adiponectin level have decreased (76). Animal 
models indicated that oxidative stress promoted 
insulin resistance (77). It should be noted that ROS 
have important role in oxidative stress (78). Human 
studies showed that plasma adiponectin level had 
inverse association with oxidative stress markers e.g. 
plasma thiobarbituric acid reactive substance 
(TBARS) and urinary 8-epi-prostaglandin-F2α (8-
epi-PGF2α) (79). Also, another study indicated that 
in MetS patients, adiponectin has positive association 
with reduced glutathione (GSH) (80). The production 
of ROS generated by high glucose (81), ox-LDL (82) 
(by cAMP/PKA activation) (83) and palmitate (84), is 
inhibited by adiponectin in endothelial cells. 
Decreased adiponectin levels are indicators of 
increased oxidative state in the arterial wall and are 
associated with high ox-LDL levels in patients with 
type 2 diabetes mellitus and coronary artery disease 
(85). The studies suggested that adiponectin 
suppresses vascular endothelial growth factor 
(VEGF)-induced ROS production which -when 
considered with anti-inflammatory effect of 
adiponectin- denoted an important antioxidant role 
of adiponectin in the vasculature (83). As mentioned 
above, adiponectin has negative effect on the 
production of CRP, a protein that stimulates ROS 
production (73). Homocysteine has pro-oxidant 
activity (86) and there is an inverse association 
between adiponectin and homocysteine levels in 
MetS patients (87). Therefore, hypoadiponectinemia 
has been closely associated with oxidative stress in 
these patients. 
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Figure 1. The suppression of prothrombotic state by adiponectin 
NO: nitric oxide; sCD40L: soluble form of CD40 Ligand; PAI-1: Plasminogen activator inhibitor type-1 
 

 
Adiponectin and hypertension 

Hypertension is a significant health problem 
worldwide and affects more than 20% of the adult 
population (88). This disorder is regarded as an 
important feature of MetS (89). Arterial stiffness is 
associated with hypertension development (90) and 
MetS (89). Hyperglycemia, a significant constituent of 
MetS, enhances arterial stiffness (91). Increased 
collagen deposition is correlated with intensified 
arterial stiffness. Collagen deposition in hypertension is 
related to serum level of procollagen type I 
carboxyterminal propeptide (PICP) (92). Serum 
adiponectin level has an important negative association 
with PICP (93). Hypoadiponectinemia is a determinant 
of elevated peripheral stiffness (94). Low levels of 
adiponectin can predispose to hypertension through 
several mechanisms like insulin sensitizing, 
involvement in fatty acid metabolisms and 
vasoprotective effects (95).  

Renin-angiotensin system (RAS) has an important 
role in the regulation of blood pressure and 
cardiovascular function. This system is activated in 
MetS and leads to elevation of angiotensin II levels, 
arterial wall inflammation, oxidative stress and 
development of atherosclerosis (96, 97). New finding 
indicated that elevating adiponectin level may be an 
efficient strategy to suppresses RAS activation related 
disorders in MetS (52). 

The relationship of oxidative stress and inflamm-
ation (both are involved in MetS) with hypertension is 
well recognized (98). As noted above, adiponectin has 
antioxidative and anti-inflammatory effects. Cross-
sectional studies revealed that hypoadiponectinemia 
may be an independent risk factor for hypertension 
(99, 100).  
 
Adiponectin and prothrombotic state in 
metabolic syndrome 

Several studies indicated the association between 
MetS and higher risk of pro-thrombotic state              

which includes elevated plasmatic coagulation, 
decreased fibrinolysis, reduced endothelial thrombo 
resistance and platelet hyperactivity (101, 102). Pro-
thrombotic markers have positive correlations with 
various component of MetS (103). P-selectin, an integral 
membrane glycoprotein, and sCD40L, a soluble form of 
CD40 Ligand, are markers of platelets activation. MetS 
patients have higher levels of these markers than control 
subjects (104, 105). It should be noted that continual 
platelet activation is important for progression of acute 
vascular events (106). AdipoR1/R2 is expressed on 
platelets and adiponectin reduces platelet aggregation 
and sCD40L release from platelet. (107). It is indicated a 
proagregatory platelet phenotype in adiponectin-null 
mice (108). Also, adiponectin acts as anti-thrombotic 
agent via NO which inhibits platelet aggregation and 
adhesion to vascular walls (68, 71). 

Plasminogen activator inhibitor type-1 (PAI-1) 
antigen, a single chain glycoprotein with pro-
inflammatory effect, has an important function in the 
fibrinolysis (109). PAI-1 is closely associated with MetS 
(110, 111) and atherosclerosis development (112). It has 
been suggested that in overweight hypertensive patients, 
adiponectin is independently and negatively associated 
with PAI-1 antigen, (113) (Figure 1). 
 
Adiponectin and atherosclerosis 

MetS  is an important predictor of CVD (114). 
Particularly, MetS has independent association with 
atherosclerosis (115). Hypoadiponectinemia is 
correlated with elevated risk factors of atherosclerotic 
cardiovascular disease. Plasma adiponectin level is 
associated with atherosclerosis markers such as 
inflammation, oxidative stress, and endothelial 
dysfunction (116). Adiponectin functions as a 
molecular regulator of atherosclerosis. Lipid laden 
macrophages or foam cells illustrating early 
atherosclerotic lesions. Adiponectin inhibits foam cell 
formation by weakening the attachment of monocytes 
to endothelial cells via inhibiting synthesis of adhesion 
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Figure 2. MetS has independent association with Atherosclerosis. Adiponectin reduces the progression of atherosclerosis through several 
mechanisms. 
TIMP-1: tissue inhibitor of metalloproteinase-1; ACAT-1: acyl-CoA:cholesterol acyltransferase-1; MCP-1: Monocyte chemo attractant 
protein-1;  IL-: interleukin-; NO: nitric oxide; CRP: C-reactive protein; TNF-α: tumor necrosis factor alpha;  HDL: high-density lipoprotein 
 
 

molecules such as intercellular adhesion molecule 
(ICAM), vascular cell adhesion molecule (VCAM) and             
E-selectin (12). Also, adiponectin represses the                      
class A macrophage scavenger receptor (SR-A) 
expressing (117), down-regulates acyl-CoA:cholesterol 
acyltransferase-1 (ACAT-1) (118) and induces IL-10 
secretion from macrophages (119). Matrix 
metalloproteinase (MMP) enzymes which are involved 
in degradation of supportive collagen and fibrous cap 
thinning can increase the risk of plaque rupture and 
eventual thrombosis (120). Adiponectin enhances the 
expression of tissue inhibitor of metalloproteinase-1 
(TIMP-1) in human monocytes-derived macrophages, 
which results in plaque stabilization (121) (Figure 2). 
Adiponectin null mice showed increased thrombus 
formation and platelet aggregation at locations of 
vascular damage (108). Besides, apolipoprotein E-null 
(apoE-null) mice overexpressing adiponectin had fewer 
atherosclerotic lesion than control apoE-null mice 
(122). 

 
Adiponectin and lifestyle modification 

It has been indicated that lifestyle modification 
has important effects on MetS as it reduces the 
intensity of related abnormalities (123). Obesity is 

closely associated with an increase in adipocytes size 
and number (124).  Furthermore animal studies 
indicated that enlarged adipocyte cells in obese mice 
caused similar condition with T2D and insulin 
resistance (125). A negative correlation has been 
reported between adipocyte size and adiponectin 
level (126). Adiponectin plasma level decreases with 
weight gain and increases with weight loss (127, 
128) and has inverse correlation with body mass 
index (BMI), intra-abdominal fat and insulin 
resistance (129). In coronary artery disease, 
considerable weight reduction is correlated with 
elevation of HMW adiponectin (130). It was shown 
that acute weight loss (4-6 weeks) did not change 
adiponectin level (131).  

Diet-induced weight loss increased different 
forms of adiponectin (HMW,MMW and LMW) in 
plasma (132). Also, dietary changes affects 
adiponectin level as it was seen in animal studies 
that fish oil (rich in n-3 fatty acids) incrementally 
raised adiponectin level in a dose dependent manner. 
Fish oil induces adiponectin gene expression in 
epididymal fat in a PPAR-γ dependent fashion (133). 
Also, low glycemic load and fiber rich diets may 
increase plasma adiponectin level in diabetic 
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patients (134). However, it has been reported that 
there is no association between total energy intake, 
protein, fat or carbohydrate intake and adiponectin 
levels (135).  

Exercise training or increased physical activity, 
especially with reduction in fat mass, increased 
adiponectin in adipose tissue and decreased 
production of inflammatory cytokines (136, 137). 

Visceral adipose tissue (VAT) secretes high levels 
of PAI-1 and accumulation of VAT is associated             
with hypo-secretion of adiponectin (138). Regular 
exercise training can reduce VAT with minimum 
change in weight (139, 140). It has been shown that 
12 weeks of aerobic exercise training in older obese 
adults, independent of dietary glycemic index, 
significantly increased HMW adiponectin secretion 
that is inversely correlated with reduction in VAT. It 
was concluded that VAT is a key factor in the 
regulation of HMW adiponectin (141). 

Acute sessions of low or moderate exercise do not 
affect adiponectin levels in healthy lean subjects 
(142-144), even a decrease in adiponectin levels was 
seen in young athletes after acute strenuous rowing. 
However, adiponectin levels do not change in 
response to low and moderate running or cycling 
(145). But in case of obese individuals, a recent study 
demonstrated that in inactive, abdominally obese 
men, acute and short-term (one week) aerobic 
exercise training significantly increased plasma 
adiponectin levels independent of intensity (146). 
Also, seven consecutive days of vigorous aerobic 
exercise improves insulin sensitivity, fat oxidation 
and HMW adiponectin, independent of changes in 
body weight and composition (147). The effect of 
various intensities of acute exercise on changes in 
total adiponectin level and its oligomers in middle-
aged abdominally obese men has been studied. 
Moderate-intensity exercise has no effect on total 
adiponectin level but high-intensity exercise 
decreases it without changing HMW form and mainly 
by reduction of MMW and LMW form (148).  The 
researchers indicated that epinephrine may partially 
regulate the decrease in total and MLMW 
adiponectin levels during high-intensity exercise 
(148).  

Chronic exercise training can improve MetS by 
several mechanisms as it increases insulin 
sensitivity, reduces body weight and improves 
fitness levels. Also, it can increase adiponectin 
resting levels and expression of adiponectin mRNA 
and AdipoR1/R2 mRNA in skeletal muscle (145, 149, 
150 ). The studies showed 12 weeks of regular 
aerobic training decreases the potential risk of 
coronary heart disease by increasing adiponectin 
levels and decreasing inflammatory markers in non-
athlete obese men (151). 

Different results may be attributed to the nature 
of exercise program i.e. type (endurance, resistance, 

combined), intensity (high, moderate, low), duration 
(short- vs. long-term),  and subject status (healthy vs. 
patient; trained vs. untrained; overweight and obese 
vs. lean) while the form of measured adiponectin 
(total or multimers) is another issue (152). However, 
it seems that overweight and obese individuals may 
benefit more than normal-weight persons from 
exercise training. Hence, further and better 
controlled studies are required. 

Smoking has an important role in health status. 
Hypoadiponectinemia is associated with smoking 
habits (153- 155). An important dose-response 
association was detected between the number of 
cigarettes and plasma adiponectin level (153). 
Hypoadiponectinemia in smokers may be associated 
with smoking not to concurrent presence of insulin 
resistance (156). Nicotine enhances inflammation 
and directly affects human adipose tissue (157). In 
vitro studies in mice 3T3-L1 showed that nicotine 
and H2O2 decreased mRNA expression and secretion 
of adiponectin in a dose-dependent fashion (158). 

Lifestyle controls synthesis and secretion of 
adiponectin via several mechanisms: PPAR-γ and 
AMPK activation, post-translational modification, 
modification of adipose tissue morphology, 
infiltration of macrophages and inflammation (159). 

 
Adiponectin and pharmacological intervention 

PPAR γ agonists such as TZDs (thiazolidine-
diones) enhance insulin sensitivity. In vivo and              
in vitro studies showed that TZDs can normalize or 
increase adiponectin mRNA expression and 
adiponectin secretion in a dose-time dependent 
fashion (160). Natural compounds may increase 
adiponectin level (161). Recent studies indicated that 
Zataria multiflora can increase adiponectin level, 
which may be due to increase in PPAR γ protein 
(162). A recent study showed that using aged garlic 
extract for 12 weeks can increase adiponectin level 
in MetS patients (163). Also,  resveratral, a natural 
polyphenol, can regulate adiponectin expression and 
multimerization in adipocytes. This is caused by 
activation of FOX1, a transcription factor involved in 
the regulation of adiponectin gene expression and 
AMPK signaling pathways (164). It seems that the 
expression of AdipoR1 and AdipoR2 in skeletal 
muscle and adipose tissue are increased by PPAR-γ 
agonists and this may activate adiponectin 
intracellular signaling pathway (9). Also, another 
study showed that dual PPAR α/γ agonists like MK-
0767 increases plasma adiponectin level in healthy 
subjects (165). Troglitazone therapy for 3 months 
up-regulates adiponectin synthesis and secretion in 
obese T2D patients (166). An in vitro study indicated 
that PPAR-α agonists enhance insulin sensitivity and 
increase serum total adiponectin (167). Fenofibrate 
increases HMW adiponectin in hypertriglyceridemic 
patients (168). RAS blockers such as ACEIs 
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(angiotensin converting-enzyme inhibitors) and 
ARBs (angiotensin II receptor blockers) increase 
adiponectin level in MetS patients (169). Also, 
temocapril (an ACEI) or candesartan (an ARB) 
increases adiponectin level in insulin-resistant 
essential hypertensives and losartan (an ARB) 
increases adiponectin level in type-1 diabetes or 
hypertensive patients (53). 
 
Conclusion 

MetS is considered as an important world health 
problem, which has close association with T2D and 
CVD. A large body of evidence suggested that 
adiponectin has an important role in the prevention of 
MetS. Adiponectin is known as an anti-inflammatory, 
antioxidative, anti-atherogenic adipokine and it has 
insulin sensitizing effect. Several clinical and 
experimental studies have emphasized these biological 
functions. It is suggested that pharmacological 
approaches and lifestyle modification may increase 
plasma adiponectin level or tissue sensitivity which 
could be a promising target for prevention and 
treatment of MetS and related diseases. 
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