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Objective(s): Production of effective tuberculosis (TB) vaccine is necessity. However, the development 
of new subunit vaccines is faced with concerns about their weak immunogenicity. To overcome such 
problems, polymers-based vaccine delivery systems have been proposed to be used via various routes. 
The purpose of this study was to determine the potential of polymeric particles as future vaccine 
delivery systems/adjuvants for parenteral and non-parenteral immunization against TB. 
Materials and Methods: PubMed, Scopus, Science-Direct, and the ISI web of knowledge databases were 
searched for related keywords. A total of 420 articles, written up to June 25, 2016, were collected on the 
potential of polymeric particles as TB vaccine delivery systems after parenteral and non-parenteral 
immunization. Thirty-one relevant articles were selected by applying inclusion and exclusion criteria. 
Results: It was shown that the immunogenicity of TB vaccines had been improved by using 
biodegradable and non-biodegradable synthetic polymers as well as natural polymers and they are 
better able to enhance the humoral and cellular immune responses, compared to TB vaccines alone. The 
present study revealed that various polymeric particles, after M. tuberculosis challenge in animal models, 
provide long-lasting protection against TB. PLGA (poly (lactide-co-glycolide)) and chitosan polymers 
were widely used as TB vaccine delivery systems/adjuvants. 
Conclusion: It seems that PLGA and chitosan polymers are well-suited particles for the parenteral and 
non-parenteral administration of TB vaccines, respectively. Non-biodegradable synthetic polymers in 
comparison with biodegradable synthetic and natural polymers have been used less frequently. 
Therefore, further study on this category of polymers is required. 
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Introduction 
Among main intracellular pathogens, Mycobacterium 

tuberculosis (M. tuberculosis) is known as the cause of a 
terrible infectious disease with a high mortality rate all 
over the world (1, 2). Tuberculosis (TB) vaccination is 
the most important approach to long-term control of the 
disease (3). The BCG vaccine, which is a live attenuated 
strain of Mycobacterium bovis, bacillus Calmette-Guérin, 
is the only licensed and cost-effective vaccine but with 
limited and variable effects on specific individuals in 
prevention of active disease (0-85%) (3, 4). Therefore, 
the development of new vaccines is an urgent need. 
Currently, at least 15 TB vaccine candidates are located 
in various phases of clinical trials, which are classified 
into three main groups: 1) prime group, includes 
vaccines that are designed as a replacement for the 
current BCG vaccine, 2) prime-boost group, includes 
vaccines that act as boosters for the BCG vaccine and 3)  

immunotherapy group, includes therapeutic vaccines 
for effective treatment of various forms of TB disease as 
well as drug-resistant strains of M. tuberculosis (5). 
However, most of these vaccines are weak immunogens, 
and polymer-based particles as vaccine delivery 
systems/adjuvants could help to attain the following 
goals: 1) for optimal stimulation of innate and adaptive 
immune systems, 2) protection of antigens from in vivo 
enzymatic degradation, 3) effective antigen targeting to 
antigen-presenting cells (APCs) followed by its 
processing by both MHC-I and II routes and then 
induction of CD4+ and CD8+ T cells, 4) control of inducing 
cell-mediated responses (Th1 or Th2) by controlling the 
particle size, and 5) usage as an adjuvant (6-8). Among 
various biomaterials used in the development of protein, 
peptide, and DNA vaccines, polymers are of great 
importance due to some advantages including 
biocompatibility with synthetic polymers, lower toxicity, 
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biocompatibility, easy availability, and biodegrade-
ability of natural polymers (8-12). Polymers could be 
cate-gorized as 1) biodegradable synthetic polymers 
like PLGA (poly (lactide-co-glycolide)), PLA (poly 
(lactide)) (both are FDA approved) (8-11), poly (alkyl 
cyanoacrylates), poly (ɛ-caprolactone), and polyphos-
phates, 2) non-biodegradable synthetic polymers like 
polyvinylpyrrolidone, poloxamers, and poly (methyl 
methacrylates), and 3) natural polymers like proteins 
(albumin, collagen, and gelatin) and polysaccharides 
(chitosan/chitin and alginate) (13). In spite of the 
advantages of polymeric nanoparticles (NPs), they also 
have some disadvantages including toxicity, non-
degradability, complexity, and costly synthesis process 
for synthetic polymers, and more complicated 
structure, complexity, and expensive extraction 
process for natural polymers (12).  

There is two main delivery routes for vaccine 
administration, non-parenteral (mucosal) vaccination 
via intranasal, oral, vaginal, and rectal routes, and 
parenteral via subcutaneous and intramuscular (14). 
To date, parenteral routes are the common delivery 
routes for TB vaccine candidates, and there is much 
less research on mucosal vaccination (14). Since                  
the respiratory mucosa is the site of TB entry, mucosal 
vaccination, especially the nasal route could provide 
good protection against TB (14). This could be 
performed by the production of neutralizing anti-
bodies like secretory IgA (sIgA), systemic IgG, and also 
activation of various CD4+ T cells such as Th1, Th2,                 
and Th17, and also CD8+ T cells (CTLs). These could 
strongly stimulate both mucosal and systemic immune 
responses (15, 16). Th1, Th17, and CTLs mediated 
immunity are essential for the host defense against 
intracellular pathogens that enter through various 
mucosal surfaces, whereas CD4+ Th2 cells are effective 
against extracellular organisms (16-18). Antibody 
responses via organism opsonization and conse-
quently the more efficient processing by dendritic cells 
(DCs) have synergistic effects on the immune system 
(19). Additionally, the nasal cavity possesses other 
advantages such as patient compliance, better 
epithelium permeability, and needle-free and self-
administration (14, 20). In the present review, the 
potential of various polymeric particles as future 
vaccine delivery systems/adjuvants for parenteral and 
mucosal immunization against TB has been 
investigated. 
 

Materials and Methods 
Literature search  

PubMed, Scopus, Science-Direct, and the ISI web 
of knowledge databases were searched to identify 
relevant studies up to June 25, 2016. Data                         
from published English language articles were 
obtained by using the medical terms including “M. 
tuberculosis vaccine’’ or “TB vaccine” and 
“polymeric NPs” or “polymeric microparticles” and 

“PLGA” and “PLA” and “poly (alkyl cyanoacrylates)” 
and “poly (ɛ-caprolactone)” and “polyphosphates” 
particles and “polyvinylpyrrolidone” and 
“poloxamers” and “poly (methyl methacrylates)” 
particles and “protein (albumin, collagen and 
gelatin)” particles and “polysaccharide 
(chitosan/chitin and alginate)” particles and 
“immunization” or “vaccine delivery”. Finally, a 
supplementary search in the Google Scholar search 
engine and hand searching of reference lists to find 
the excluded articles was conducted. 
 
Evaluation criteria 

In this systematic review, the main inclusion 
criteria for selection of relevant articles included: 1) 
published original articles written in English, 2) 
evaluation of various TB vaccines only based on 
different polymeric particles, 3) parenteral and 
mucosal administration of TB vaccines, and 4) 
assessment of different polymeric particles as 
adjuvants. Exclusion criteria included: 1) abstracts of 
articles, 2) review articles and books, 3) use of other 
particles as vaccine delivery systems/adjuvants, 4) 
assessment of vaccine delivery in other organisms, 5) 
duplicate studies, and 6) assessment of drug delivery 
in M. tuberculosis. 
 

 
 
 
 

Figure 1: Flowchart of literature search and inclusion and 
exclusion criteria 
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Table 1. Polymeric particles as tuberculosis vaccine delivery systems 
 

First author (Ref) Year Polymer 
Antigen 

(s) 
Adjuvant 

(s) 
Preparation 

method 
Size 

 

Zeta-
Potential 

(mV) 

Route 
of 

administration 
Animal 

Profile of immune responses 

Antibody        Cytokine       Challenge 

Rose et al (21) 
2015 

 
 

PLGA 
(75:25) 

 

MOMP 
 
 

DDA:TDB 
(CAF01) 

 

O/W 
 
 
 

<250 
nm 

 
 

>5 
 
 
 

Subcutaneous 
 
 
 

Female 
B6C3F1 

mice 
 

IgG1 
IgG2a 

IgA 
 

IFN-γ 
IL-17a 

IL-5 

NA 
 

Carletti et al 
(22) 

2013 
PLGA 

(50:50) 
Apa TDM W/O/W NA NA 

Subcutaneous 
Intramuscular 

Female 
BALB/c 

mice 
NA NA 

M. tuberculosis 
H37Rv 

 

Shi et al (23) 2010 
PLGA 

(75:25) 
TB10.4- Ag85B MDP-BSA 

Emulsion 
/spray-drying 

3.0µm −25 Pulmonary NA NA IL-2 NA 

Bivas-Benitaa 
et  al (24) 

2009 
PLGA 

(53:47) 
Rv1733c PEI W/O/W 

235 - 
275 nm 

+38.8 - 
+64.3 

Intramuscular 
Intranasal 

Female 
BALB/c 

mice 
NA 

IFN-γ 
IL-12 
TNF-α 

NA 

Kirby et al (25) 2008 
PLGA 

(75:25) 
Ag85B-ESAT-6 

DDA:TDB 
(CAF01) 

DDA 
TDB 

 

W/O/W 
1.50± 

0.13 µm 
0-15 Subcutaneous 

Female 
C57BL/6j 

mice 
IgG1 IgG2b 

IFN-γ 
 

NA 

de Paula et al  
(26) 

2007 
PLGA 

(50:50) 
HSP65 TDM W/O/W <10 µm NA Intratracheal 

Female 
Hartley 

guinea pigs 
and Female 

BALB/c 
mice 

IgG2a 
 

IFN-γ 
 

M. tuberculosis 
H37Rv 

 

Lu et al (27) 2007 
PLGA 

(75:25) 
rAg85B 

MDP 
TDB 

Emulsion 
/spray-drying 

3.4-4.3 
µm 

NA NA NA NA IL-2 NA 

Ha et al (28) 2006 
PLGA 
(NA) 

rAg85A  ESAT-
6 

IL-12EM  
AS01B 
alum 

W/O/W NA NA Subcutaneous 
Female 

C57BL/6 
mice 

Total IgG 
IgG1 

IgG2a 

IFN-γ 
 

M. tuberculosis 
H37Rv 

 

Cai et al (29) 2005 
PLGA 

(50:50) 

Ag85B 
MPT-64 
MPT-83 

DDA W/O/W <5 µm NA Intramuscular 
Female 

C57BL/6 
mice 

IgG 
 

IFN-γ 
 

M. tuberculosis 
H37Rv 

 

Evans et al (30)  2004 
PLGA 

(50:50) 
Mtb8.4 

MPL 
RC-529 

Hydrophobic 
ion-pairing 
technique 

2 µm NA 
Intramuscular 
Subcutaneous 

 

Female 
C57Bl/6 

mice 

IgG 
IgG2a 

IFN-γ 
 

NA 

Lima et al (31) 2003 
PLGA 

(50:50) 
HSP65 TDM W/O/W <5 µm NA 

Intramuscular 
 

Female 
BALB/c 

mice 

IgG1 
IgG2a 

 

IFN-γ 
IL-10 
IL-4 

 

M. tuberculosis 
H37Rv 

 

Lima et al (32) 2001 
PLGA 

(50:50) 
NA TDM W/O/W NA NA 

Intraperitoneal 
Intratracheal 

Female 
BALB/c 

mice 
NA 

IL-6 TNF-α IL-
10 IFN-γ 

IL-12 
IL-4 

M. tuberculosis 
H37Rv 

 

Dhiman et al  
(33) 

1998 
PLGA 

(50:50) 
71-kDa cell 
wall protein 

FIA W/O/W 
<0.65 

µm 
NA 

Intramuscular 
Subcutaneous 

 
NA NA NA 

M. tuberculosis 
H37Rv 

 

Carpenter  
et al (34) 

2005 PLA ESAT-6 Alum W/O/W 
1.179 

μm±0.0
7 

NA 
Pulmonary 
Intranasal 

Intramuscular 

Female 
BALB/c 

mice 
IgG 

IFN-γ 
IL-4 

NA 

Venkataprasad 
et al (35) 

1999 

PLA 
PLGA 

(75:25, 
50:50) 

38 kDa protein NA W/O/W 

PLA 
(3-5 

µm) and 
PLG 

(0.3-0.8 
µm) 

NA 
Subcutaneous 

 

Female 
C57BL/10 

mice 
NA 

IFN-γ 
IL-4 

NA 

Todoroff  
et al (36) 

2013 
Poloxamer 

407 
Ag85A 

CpG 
oligonucle

otide 
NA 27 nm NA 

Pulmonary 
(Intratracheal) 

Female 
BALB/c 

mice 

IgG, IgG1, 
and IgG2a 

IFN-γ TNF-α 
IL-2 

IL-17a 
NA 
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Abbreviations: O/W: Oil-in-water single emulsion, W/O/W: Double emulsion/solvent evaporation, MOMP: Major outer-membrane protein, 
Apa: Alanine-proline antigen, MDP: Muramyl dipeptide, BSA: Bovine serum albumin, AS01B: Composed of MPL and QS21 (saponin 
molecule), RC-529 adjuvant: A synthetic ω-amin-oalkyl-2-amino-2-deoxy-4-phosphono-ᵦ-d-glucopyranoside (AGP) which is structurally 
related to the major hexaacyl component of MPL adjuvant, FIA: Freund's incomplete adjuvant, ID93: Fusion protein containing M. 
tuberculosis genes Rv3619, Rv1813, Rv3620, and Rv2608, GLA-SE: A mixture of squalene, DMPC (1,2-dimyristoyl-sn-glycero-3-
phosphocholine), poloxamer 188, glycerol, and ammonium phosphate buffer, Esat-6/3e-FL: Esat-6 three T cell epitopes (Esat-6/3e) and 
fms-like tyrosine kinase 3 ligand (FL) genes, pHSP65pep: pECANS plasmid with four epitopes cast in the gene backbone of HSP65, namely 
ESAT-664-76, Ag85A124–135, CFP-1055–69, and Ag85B141–153, TPP: Tripolyphosphate, AMM: Ag85B–MPT64190–198–Mtb8.4, Fe3O4-Glu-PEI: Fe3O4-
Glutamic acid-Polyethyleneimine, NA: Not available 
 
 

Continued Table 1. 

Orr et al (37) 2014 NA ID93 GLA-SE NA 
< 120 

nm 
-13 

Intramuscular 
 

Female 
C57Bl/6 

mice 

IgG1 
IgG2c 

IFN-γ TNF-α 
IL-2 

M. tuberculosis 
H37Rv 

Yeboah et al (38) 2009 Albumin 
Dead whole 

cells and whole 
cell lysate 

NA 
Spray-drying 

method 

3.52±0.1
3  µm  

6.61±0.7
0 µm 

-13.05 
±19.18 
-40.28 
±7.86 

Oral Rat 
IgG 
IgA 

NA NA 

Meerak et al (39) 2013 Chitosan Ag85B NA 
Coacervation 

method 
100–

200 nm 
NA 

Subcutaneous 
Intranasal 

 

Female 
BALB/c 
inbred 

total IgG 
IgG2a 

IFN-γ 
IL-2 
IL-4 

NA 

Feng et al (40) 2013 Chitosan Esat-6/3e-FL NA 
Ionic crosslink 

and 
coacervation 

311.2±3
4 nm 

30.6 mV 
Intramuscular 

Intranasal 
 

Female 
C57Bl/6 

mice 
NA 

IFN-γ 
IL-12 
IL-10 
IL-4 

M. tuberculosis 
H37Rv 

Ai et al (41) 2013 Chitosan pHSP65pep NA 
Coacervation 

method 
350 -

400 nm 
NA 

Intranasal 
Intradermal 

Female 
BALB/c 

mice 

IgA 
IgG 

IgG1 IgG2a 
IFN-γ M. bovis 

Verma et al (42) 2013 
Chitosan-

TPP 
CFP-10 
CFP-21 

 
Ionotropic 

gelation 
250 -

300 nm 
41 ±5.29 NA NA NA 

IFN-γ 
IL-4 

NA 

Caetano et al 
(43) 

2013 
Chitosan/Al
ginate/TPP 

BCG NA 
Ionotropic 

gelation 

33.865 
µm 

±5.347 

+10.91 ± 
3.55 

Intranasal 
Subcutaneous 

Female 
BALB/c 

mice 

IgG 
IgG 1 IgG2a 

IgA 
NA NA 

Zhu et al (44) 2007 
Chitosan 

 
AMM IFA 

Precipitation/
coacervation 

method 

5.78 ± 
0.65 µm 

32.77 ± 
1.51 

Subcutaneous 
 

Female 
C57Bl/6 

mice 

IgG1 
IgG2a 

IFN-γ 
IL-4 

NA 

Bivas-Benita   
et al (45) 

2004 Chitosan 

DNA vaccine 
encoding eight 
HLA-A*0201-
restricted T-
cell epitopes 

NA 
Complexation-
coacervation 

method 

376±59 
nm 

21±4 
Pulmonary 

Intramuscular 

Female 
HLA-A2 

transgenic 
mice 

NA IFN-γ NA 

Dobakhti  
et al (46) 

2009 NA BCG 
Sodium 
alginate 

NA NA NA 
Subcutaneous 

 

Female 
BALB/c 

mice 

Total IgG 
IgG2a 
IgG1 

IFN-γ M. bovis 

Ajdary et al (47)  2007 
Sodium 
alginate 

BCG NA NA 11.5 μm NA 
Subcutaneous 

Oral 
 

Female 
BALB/c 

mice 

Total IgG 
IgG2a 
IgG1 

IFN-γ 
IL-4 

M. bovis 

Dobakhti 
et al (48) 

2006 
Calcium 
alginate 

BCG NA 
Internal 

emulsification 
method 

11 μm NA 
Subcutaneous 

Oral 
 

Female 
BALB/c 

mice 

Total IgG 
IgG2a 
IgG1 

NA NA 

Wilkinson  
et al (49) 

2000 Polystyrene Ag85A, B and C NA NA 2 μm NA NA NA NA IFN-γ NA 

 Yu et al (50) 2012 
Fe3O4-Glu-

polyethylene
imine 

Ag85A-ESAT-
6-IL-21 

NA NA NA +36 mV 
Intramuscular 
Subcutaneous 

Male 
C57BL/6 

mice 
NA IFN-γ 

M. tuberculosis 
H37Rv 

Ballester 
et al (51) 

2011 

Pluronic-
stabilized 

polypropyle
ne sulfide 

Ag85B CpG 

Emulsion 
polymerizatio
n and surface 
functionalized 

30 nm NA 
Intradermal 
Pulmonary 

Female 
C57BL/6 

mice 
NA 

IFN-γ 
TNF-α 

IL-6 
IL-1β 

IL-17a 
IL-2 

M. tuberculosis 
Erdman strain 

http://www.sciencedirect.com/science/article/pii/S1549963412000913
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Results  
A total of 420 original articles were collected from 

different studies using systematic search in databases 
(Figure 1). Searching was limited to polymeric particles 
and their roles as vaccine delivery systems/adjuvants 
for parenteral and mucosal immunization against TB 
written up to June 25, 2016. All obtained studies in the 
present paper were reviewed to extract the following 
data: 1) year of study, 2) type of polymer and 
adjuvant, 3) antigen(s), 4) size, zeta-potential, and 
preparation method of particles, 5) route of 
administration, 6) animal, and 7) profile of immune 
responses. Thirty-one selected articles were classified 
into three groups based on the inclusion and 
exclusion criteria. 
 
Biodegradable synthetic polymers  

Among biodegradable synthetic polymers (PLGA, 
PLA, poly (alkyl cyanoacrylates), poly (ɛ-capro-
lactone), and polyphosphates), PLGA polymers are 
the most widely used as TB vaccine delivery 
systems/adjuvants. This systematic review includes 
14 studies on PLGA polymers. It is evident that PLGA 
(50:50) is the most frequently used polymer. All 
studies have used the double emulsion/solvent 
evaporation method (W/O/W) to prepare PLGA 
polymers. After administration through various 
routes, PLGA polymers induced high levels of 
antibody and Th1, Th2, and Th17 immune responses. 
The impact of different adjuvants such as cationic lipid, 
DDA (dimethyldioctadecylammonium bromide), TDB 
(trehalose 6, 6'-dibehenate), PEI (polyethyleneimine), 
TDM (trehalose dimycolate), and lipid adjuvants, such as 
MPL (monophosphoryl lipid A), either separately or 
in combination, on the particle size, zeta-potential, 
and profile of immune responses were reviewed 
(Table 1).  

So far, just two studies have investigated the 
application of PLA polymers as vaccine delivery 
systems for TB subunit vaccines. Data shows that the 
microencapsulated antigen was highly immunogenic 
and nasal delivery of the microencapsulated TB 
antigen generated specific cellular immune responses 
(Table 1). 

However, no study on the application of other 
biodegradable synthetic polymers, poly (alkyl cyano-
acrylates), poly (ɛ-caprolactone), or polyphosphates, as TB 
vaccine delivery systems/adjuvants was found for the 
present systematic review.   
 
Non-biodegradable synthetic polymers 

Our study shows the higher capacity of poloxamer 
polymers amongst other non-biodegradable synthetic 
polymers, like polyvinylpyrrolidone and poly (methyl 
methacrylates), in the induction of protective 
immunity against M. tuberculosis. It has been shown 
that after pulmonary delivery of the TB antigen with 
poloxamer polymers, as single adjuvants or combined 

with other adjuvants; these polymers have good 
potentials in stimulation of humoral and cell-
mediated immune responses. However, no study was 
found on polyvinylpyrrolidone or poly (methyl 
methacrylates) to better compare the non-
biodegradable synthetic polymers as adjuvants, nano-
, or micro-carriers for TB vaccines. 
 
Natural polymers 
Studies on albumin, collagen, and gelatin as natural 
polymers were not found except one on the albumin 
polymer. It has been reported that albumin polymers 
can induce antigen-specific mucosal and systemic 
immune responses. To date, there are no studies on 
collagen and gelatin as TB vaccine carriers. Ten 
studies on chitosan/chitin and alginate (natural 
polysaccharide polymers) were found. Chitosan 
polymers are widely used as TB vaccine delivery 
systems/adjuvants. It was shown that chitosan can 
induce increased levels of antibody and IFN-γ 
secretion against TB antigens. 
 

Discussion 
Main prevention strategies against TB are 

prophylactic and post-exposure vaccination. 
Prophylactic vaccines may be used either for 
replacing BCG, like live mycobacterial vaccines, or as 
a booster for BCG, like subunit vaccines. Post-
exposure vaccines are used for elimination of the 
disease in latently-infected individuals and to prevent 
disease reactivation (52). Ag85A, Ag85B, Ag85C, 
TB10.4, MPT-64, MPT-83, ESAT-6, CFP-10, Mtb8.4, 
and hsp65 are among main TB antigens that are used 
as DNA or subunit vaccines, either alone or as a fusion 
protein. These antigens could induce specific 
antibodies and cell-mediated immune responses 
(Table 1). These are mostly expressed in the early 
phase of infection by the replicating bacteria, 
however, to induce a broad spectrum of immune 
responses, antigens expressed in latency phase of 
non-replicating bacteria are also important, because 
they are often hidden from the immune system (53). 
This review suggests that ideal vaccination approach 
against both acute and latent TB infections is using 
both early and late stage antigens of M. tuberculosis 
(multistage booster vaccines).  

TB DNA and subunit vaccines have high safety 
profiles and have shown promising results in animal 
models, however, in human clinical trials, they were 
poor immunogens (8, 24). To overcome this problem, 
polymer-based particles have been used as 
adjuvant/delivery systems to potentiate the immune 
responses. Among them, PLGA particles were mostly 
used for delivery of prophylactic TB vaccines (Table 
1). The PLGA (50:50) copolymer as compared with 
the various polymer compositions (like 75:25 and 
53:47), was the most frequently used PLGA polymer. 
The PLGA (75:25) as an intermediate copolymer has 
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more efficient protein release (due to faster 
degradation) than the PLA homopolymer and more 
prolonged release profile in comparison with the 
PLGA (50:50) copolymer (25). As presented in Table 
1, using cationic lipids as adjuvants in combination 
with PLGA polymers could affect the size, zeta-
potential, polydispersity index (PDI), entrapment 
efficiency, in vitro release profile, and also elicit 
simultaneously humoral and cell-mediated immune 
responses (8, 25). The cationic lipids skew the 
immune response towards the Th1 branch of 
immunity and IgG2a production, which is important 
for immunization against TB. In the presence of 
cationic lipids, reduction in particle size and PDI, 
change of zeta potential from negative to positive, and 
the decrease in antigen entrapment were observed. 
Similar results have been shown by Wedlock et al and 
Jensen et al (54, 55). As shown in Table 1, encouraging 
results have been observed after administration of 
PLGA-based TB vaccines via various routes. Several 
studies have shown that the PLGA polymer is well-
tolerated in the most common injection sites, i.e., 
subcutaneous and intramuscular spaces (56). Due to 
biocompatibility, adjuvanticity, and prolonged 
release profile of PLGA particles, mucosal (nasal, oral, 
and pulmonary) administration of PLGA-based 
vaccines have shown promising results (25).  

PLA particles can be built with the same method as 
PLGA particles and induced robust Th1-type 
responses (IFN-γ) against TB (Table 1). However, the 
main disadvantages of PLA polymers are the 
possibility of denaturation of encapsulated protein 
and also change in immunogenicity of loaded antigens 
during particle formulation and in the release period 
(35). To preserve the antigens’ integrity, antigens 
could be adsorbed onto the PLA or PLGA particles.  

Other biodegradable synthetic polymers, such as 
poly (ɛ-caprolactone), are also suitable for 
preparation of vaccine delivery systems (56). 
However, these polymers have not been tried for 
delivery of TB vaccines.  

Non-biodegradable synthetic polymers compared 
to biodegradable synthetic and natural polymers have 
been less frequently used as carrier/adjuvant for TB 
vaccines. However, as discussed in the Todoroff et al 
study, Poloxamer 407 (a non-biodegradable synthetic 
polymer) combined with a CpG oligonucleotide, 
induced immune responses against the M. 
tuberculosis antigen (Ag85A) (Table 1) (36). 

It is suggested that natural polymers due to milder 
preparation process, lower prices, and their adjuvant 
potential are attractive materials for replacement 
with biodegradable synthetic polymers (56). The 
protective and immunogenic efficacy of the vaccines 
based on the natural polymers has been shown in 
many studies. Yeboah et al and Dobakhti et al have 
shown that oral delivery of albumin and alginate 
microspheres loaded with TB vaccines could induce 

mucosal and systemic immune responses (38, 46). As 
Table 1 represents, alginate-based TB vaccines have 
been administered subcutaneously and orally. 
According to these studies, alginates may be 
appropriate for utilization in oral vaccination and will 
protect encapsulated BCG against degradation in the 
stomach and induce strong Th1 immune responses 
against TB (46-48, 56). Several studies have indicated 
that chitosan-based vaccines can significantly 
promote Th1 and CTL immune responses and prevent 
TB infection (39-45). According to the different 
studies shown in Table 1, due to antigen depot, 
efficient uptake by membrane epithelium, and 
mucoadhesive and adjuvant properties of these 
biodegradable particulate delivery systems, they are 
ideal intranasal vaccine delivery systems/adjuvants 
against TB. As mentioned in Table 1, polymer-based 
TB vaccines have shown promising results in pre-
clinical studies and were able to protect animal 
models against challenge with the virulent M. 
tuberculosis H37Rv strain, however, none of these 
vaccines entered clinical trials. Due to the results 
obtained in this study, we are optimistic about 
introduction of polymer-based TB vaccines to the 
clinical trial pipeline as potential antigen delivery 
systems/adjuvants for parenteral and non-parenteral 
immunization. 
 

Conclusion  
In summary, the present systematic review 

reveals that to develop a new TB vaccine, more 
attention to antigens expressed in early and latency 
phase of M. tuberculosis infection is needed. On the 
other hand, for improving the weak immunogenicity 
of these antigens, co-delivery of TB vaccines with 
polymeric particles could be beneficial in reduction of 
obstacles against development of new and more 
efficient TB vaccines. The present study revealed that 
various polymeric particles could be used as carriers 
for parenteral and mucosal administration of TB 
vaccine candidates. Among the polymers reviewed, 
PLGA and chitosan polymers are the most 
outstanding ones that show promising results, after 
subcutaneous and mucosal administration, 
respectively. Non-biodegradable synthetic polymers 
in comparison with biodegradable synthetic and 
natural polymers have been used less frequently. 
Therefore, further study on this category of polymers 
is required. 
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