1. Feigin VL, Krishnamurthi RV, Parmar P, Norrving B, Mensah GA, Bennett DA, et al. Update on the global burden of ischemic and hemorrhagic stroke in 1990-2013: the GBD 2013 study. Neuroepidemiology 2015;45:161–176.
2. Wang W, Jiang B, Sun H, Ru X, Sun D, Wang L, et al. Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480 687 adults. Circ 2017; 135:759-771.
3. Hankey GJ. Stroke. Lancet 2017; 389:641-654.
4. Alawieh A, Elvington A, Zhu H, Yu J, Kindy MS, Atkinson C, et al. Modulation of post-stroke degenerative and regenerative processes and subacute protection by site-targeted inhibition of the alternative pathway of complement. J Neuroinflammation 2015;12:247-263.
5. Ham PB, Raju R. Mitochondrial function in hypoxic ischemic injury and influence of aging. Prog Neurobiol 2017;157:92–116.
6. Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron 2010;67:181–198.
7. Yang JL, Mukda S, Chen SD. Diverse roles of mitochondria in ischemic stroke. Redox Biol 2018;16:263–275.
8. Niizuma K, Yoshioka H, Chen H, Kim GS, Jung JE, Katsu M,, et al. Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta 2010;1802:92–99.
9. Gu Z, Nakamura T, Lipton SA. Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases. Mol Neurobiol 2010;41:55–72.
10. Leist M, Single B, Castoldi AF, Kühnle S, Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 1997;185:1481–1486.
11. Crompton M. Mitochondrial intermembrane junctional complexes and their role in cell death. J Physiol 2000;529 Pt 1(Pt 1):11–21.
12. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, et al. Cytochrome c and datp-dependent formation of apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997;91:479–489.
13. Culmsee C, Zhu C, Landshamer S, Becattini B, Wagner E, Pellecchia M, et al. Apoptosis-inducing factor triggered by poly(ADP-ribose) polymerase and Bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia. J Neurosci 2005;25:10262–10272.
14. Plesnila N, Zhu C, Culmsee C, Groger M, Moskowitz MA, Blomgren K. Nuclear translocation of apoptosis-inducing factor after focal cerebral ischemia. J Cereb Blood Flow Metab 2004;24:458–466.
15. Demetgül C, Beyazit N. Synthesis, characterization and antioxidant activity of chitosan-chromone derivatives. Carb polymers 2018;181: 812-817.
16. Li W, Li J, Shen H, Cheng J, Li Z, Xu X. Synthesis, nematicidal activity and docking study of novel chromone derivatives containing substituted pyrazole Chin Chem Lett 2018;29: 911-914.
17. Wang G, Chen M, Wang J, Pen Y, Li L, Xie ZZ, et al. Synthesis, biological evaluation and molecular docking studies of chromone hydrazone derivatives as α-glucosidase inhibitors. Bioorg Med Chem Lett 2017;27: 2957-2961.
18. Ungwitayatorn J, Wiwat C, Samee W, Nunthanavanit P, Phosrithong N. Synthesis, in vitro evaluation, and docking studies of novel chromone derivatives as HIV-1 protease inhibitor. J Mol Str 2011; 1001: 152-161.
19. Li F, Wu JJ, Wang J, Yang X-L, Cai P, Liu Q-H, et al. Synthesis and pharmacological evaluation of novel chromone derivatives as balanced multifunctional agents against Alzheimer’s disease. Bioorg Med Chem 2017;25:3815-3826.
20. Voronkov AV, Pozdnyakov DI, Rukovitsyna VM, Veselova OF, Olokhova EA. Сhromone-3-aldehyde derivatives improve muscle function by suppressing the formation of apoptosis-inducing factor Pharmacologyonline 2019;1;429-437.
21. Voronkov AV, Pozdnyakov DI, RukovitsynaVM, Veselova OF, Olokhova EA, Oganesyan ET. Antiradical and chelating properties of chromon-3- aldehyde derivatives. Eksp & Klin Farm. 2019; 82: 32-35.
22. Rukovitsina VM, Pozdnyakov DI. Chromon-3-aldehyde derivatives possessing anti-ischemic activity. Belikov Meetings. Book of abstracts. RIA-CMW inc; 2018. p 53-56. (in Russian).
23. Pozdnyakov DI, Nygaryan SA, Voronkov AV, Sosnovskaya AV, Sherechkova EI. Ethylmethylhydroxypyridine succinate, acetylcysteine and choline alphoscerate improve mitochondrial function under condition of cerebral ischemia in rat. Bangladesh J Pharmacol 2019; 14: 152-158.
24. Tamura A, Graham DI, McCulloch J, Teasdale GM. Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1981;1:53–60.
25. McGraw KP, Pashayan AG, Wendel OT. Brain Infarction in Mongolian gerbil worsened in the treatment of phenoxybenzamine. Stroke 1976; 7: 485- 488
26. Pozdnyakov DI., Voronkov AV., Miroshnichenko KA., Adzhiahmetova SL., Chervonnaya NM., Rukovitcina VM. Pyrimidine-4H-1OH derivatives restore mitochondrial function in experimental chronic traumatic encephalopathy. Pharmacologyonline2019;3:36-45
27. Patel SP, Sullivan PG, Pandya JD, Goldstein GA, VanRooyen JL, Yonutas HM, et al. N-acetylcysteine amide preserves mitochondrial bioenergetics and improves functional recovery following spinal trauma. Exp Neurol. 2014;257:95-105.
28. He F. Bradford Protein Assay Bio-101: e45.
29. Zhyliuk V, Mamchur V, Pavlov S. Role of functional state of neuronal mitochondria of cerebral cortex in mechanisms of nootropic activity of neuroprotectors in rats with alloxan hyperglycemia Eksp & Klin Farm. 2015;78. 10-4.
30. Dixon WJ. Staircase Bioassay: The Up-and-Down Method. Neurosci. Biobehav Rev1991; 15, 47-50.
31. Globally Harmonized System of Classification and Labelling of Chemicals (GHS) Part 3 Health Hazards, United Nations, 2017.
32. Liu F, Lu J, Manaenko A, Tang J, Hu Q. Mitochondria in ischemic stroke: new insight and implications. Aging Dis 2018;9:924–937.
33. Chandel NS. Evolution of mitochondria as signaling organelles. Cell Metab 2015;22:204–206.
34. Viscomi C, Bottani E, Zeviani M. Emerging concepts in the therapy of mitochondrial disease. Biochim Biophys Acta 2015;1847:544–557.
35. Heller A, Brockhoff G, Goepferich A. Targeting drugs to mitochondria. Eur J Pharm Biopharm 2012;82:1–18.
36. Zhao K, Zhao GM, Wu D, Soong Y, Birk AV, Schiller PW, et al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem2004;279: 34682-34690.
37. Borchert A, Wilichowski E, Hanefeld F. Supplementation with creatine monohydrate in children with mitochondrial encephalomyopathies. Muscle Nerve 1999;22:1299–1300.
38. Widmeier E. Treatment with 2, 4-Dihydroxybenzoic Acid Prevents FSGS Progression and Renal Fibrosis in Podocyte-Specific Coq6 Knockout Mice. J Am Soc Nephrol 2019;30:393-405.
39. Kanabus M, Heales SJ, Rahman S. Development of pharmacological strategies for mitochondrial disorders. Br J Pharmacol 2014;171:1798–1817.
40. Lu N, Wang B, Deng X, Zhao H, Wang Y, Li D. Autophagy occurs within an hour of adenosine triphosphate treatment after nerve cell damage: the neuroprotective effects of adenosine triphosphate against apoptosis. Neural Regen Res 2014;9:1599–1605.
41. Yadav N, Kumar S, Marlowe T, Chaudhary AK, Kumar R, Wang J, et al. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents. Cell Death Dis 2015;6:e1969.
42. Rottenberg H, Hoek JB. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore. Aging Cell 2017;16:943–955.
43. Hurst S, Hoek J, Sheu SS. Mitochondrial Ca2+ and regulation of the permeability transition pore. J Bioenerg Biomembr 2017;49:27–47.
44. Panneer Selvam S, Roth BM, Nganga R, Kim J, Cooley MA, Helke K, et al. Balance between senescence and apoptosis is regulated by telomere damage-induced association between p16 and caspase-3. J Biol Chem 2018;293:9784–9800.
45. Milasta S, Dillon CP, Sturm OE, Verbist KC, Brewer TL, Qarato G. et al. Apoptosis-Inducing-Factor-Dependent Mitochondrial Function Is Required for T Cell but Not B Cell Function. Immunity 2016;44:88–102.
46. Voronkov AV, Pozdnyakov DI, Rukovitsina VM, Oganesyan ET. Antioxidant activity of new chromon-3-aldehyde derivatives under conditions of muscular dysfunction. Issues of Bio Med and Pharm Chem 2018;21: 38-42.
47. Kawase M, Tanaka T, Kan H, Tani S, Nakashima H, Sakagami H. Biological activity of 3-formylchromones and related compounds. In Vivo2007 ;21:829-834.
48. Sakagami H, Shimada C, Kanda Y, Amano O, Sugimoto M, Ota S, et al. Effects of 3-styrylchromones on metabolic profiles and cell death in oral squamous cell carcinoma cells. Toxicol Rep 2015;2:1281–1290.
49. Zhang Y, Zheng K, Yan H, Jin G, Shao C, Zhou X, et al. Growth inhibition and apoptosis induced by 6-fluoro-3-formylchromone in hepatocellular. BMC Gastroenterol 2014;14:62-66.