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Objective(s): Many patients die due to vascular, gastrointestinal lumen problems, and coronary heart 
diseases. Synthetic vessels that are made of biodegradable-nanofiber polymers have significant 
properties such as proper biodegradability and efficient physical properties such as high strength 
and flexibility. Some of the best options for supporting cells in soft tissue engineering and design 
are applications of thermoplastic polyurethane polymer in the venous tissue. In this study, the first 
nanoparticle-reinforced polymeric artificial prosthesis was designed and tested to be used in the 
human body.
Materials and Methods: In this study, artificial gastrointestinal lumen were fabricated and prepared 
using a 3D printer. To improve cell adhesion, wettability properties and mechanical stability of elastin 
biopolymer with magnetic nanoparticles (MNPs) as well as single-walled carbon nanotubes (SWCNT) 
were prepared as separate filaments. MNPs were made in 5–7 mm sizes and then examined for 
mechanical, biological, and hyperthermia properties. Then, the obtained results of the gastrointestinal 
lumen were simulated using the Abaqus software package with a three-branch. The results were 
evaluated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) for morphology and 
phase analysis. 
Results: The obtained results of the designed vessels showed remarkable improvement in mechanical 
properties of the SWCNT vessels and hyperthermia properties of the vessels containing the MNPs. The 
results of computational fluid dynamics (CFD) analysis showed that the artificial vessels had lower 
shear stress at the output. 
Conclusion: Five-mm MNP containing vessels showed noticeable chemical and biological properties 
along with ideal magnetic results in the treatment of thrombosis and vascular obstruction.
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Introduction
Tissue engineering is an interdisciplinary science, 

which is focused on developing and integrating chemistry, 
physics, mathematics, and biology with engineering 
and seeks to solve medical problems such as tissue 
loss and organ failure or provide solutions for them (1-
3).  Moreover, tissue engineering is a multidisciplinary 
field of principles and applications of engineering and 
biological sciences to understand the fundamental 
relationships between structure and function in natural 
and diseased tissues. This domain is a combination of 
cells, engineering, materials, physical, and chemical 
factors that aims to maintain tissue balance, improve 
target tissue function, or replace tissue biomarkers. For 
this reason, using stem-cells is seen in the discussion 

of regenerative medicine and tissue engineering (4-5). 
Most tissue engineering definitions cover a wide range 
of applications, which means applications that repair or 
replace part or all of the tissues (such as bone, cartilage, 
blood vessels, bladder, skin, muscle, etc.). Scientists 
have been able to cultivate cells outside the body for 
years; however, the technology of developing complex 
three dimensional (3D) cellular networks for replacing 
damaged tissues has recently been developed (6-7). 
In definition, constructing a tissue in an engineering 
manner requires designing an artificial vessel with 
the appropriate physical structure, which enables cell 
adhesion, migration, proliferation, differentiation, and 
ultimately growth and replacement with new tissue 
(8-10). According to the surgeons, biomaterials refer to 
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the four properties of biocompatibility and non-toxicity, 
resistance to infection, preservation of mechanical 
properties, and the ability to provide specific properties 
that are necessary for their application in the body (11-
13). Biocompatibility and non-toxicity are of interest 
in this regard. Most tissues require mechanical and 
structural properties to function properly. The term 
has also been coined to perform specific biochemical 
functions using cells in an artificial support system (for 
example, artificial heart, pancreas, or liver) (14-16). 
Recent advances in tissue engineering aim to overcome 
the limitations of conventional organ transplantation 
and material transplantation methods. In this context, 
there is a great potential in organ and artificial tissue 
construction so that transplanted tissue and organs can 
grow after transplantation in the recipient. With this 
method, there is a permanent solution to treat damaged 
tissues. Therefore, there is no need for complementary 
therapies and as a result, the cost of treatment is greatly 
reduced. So far, tissue engineering has been used to 
repair many tissues such as bone, cartilage, blood vessels, 
and skin (17-21). Hyperthermia was induced locally to 
treat cancer. Lack of heat distribution in all tumor cells, 
inadequate amount of heat produced, and unintended 
heat treatment of healthy cells are the major challenges 
of current hyperthermia methods. Nanoparticles 
promise the most effective treatment with the ability 
to specifically accumulate in tumor tissue as well as the 
ability to generate more heat. Metal nanoparticles and 
magnetic nanoparticles are among the most important 
nanoparticles used in hyperthermia that can be used to 
treat soft tumors (19-22). To achieve these conditions 
in tissue engineering, they use cells embedded in an 
artificial support system. Cells are often implanted or 
embedded in artificial structures that are able to mimic 
and support 3D tissue structures. This structure is called 
artificial blood vessel. Synthetic vessels are obtained by 
using biodegradable and biocompatible materials (23-
31). The artificial blood vessels (ABV) have porosity 
in their structure, which helps better cell adhesion 
and placement. The size and intensity of porosity can 
be controlled. It should be noted that the main part of 
the work is designing the characteristics of the ABVs, 
which determine the size of the holes, the intensity of 
the porosity, and the degree of degradability. Each tissue 
has its own biological and physical characteristics such 
as size and shape (32-45). Therefore, in practice, any 
artificial vessel must be capable of incorporating specific 
biological and mechanical effects to improve and alter 
cellular behavior. For this purpose, each artificial vessel 
is designed based on its target tissue characteristics. 
Selecting the type and texture of the artificial vessel 
is the most important part of the work so that the 
damaged tissue can eventually be replaced. To achieve 
this, artificial vessels must have a number of structural 
features. The main purpose of this study was to build a 
new ABV, which can be used in vascular problems like 
aneurysm, varicose veins, and coronary artery bypass 
grafts. In this study, two types of composite blood vessels 
are introduced using fused deposition modeling (FDM) 
and mechanical and biological evaluation performed on 
the samples. Then, computation fluid dynamic (CFD) is 
used to simulate the minimum and maximum values for 
the ABV.

Materials and Methods
In this study, an artificial vessel was made of 

biodegradable tubular materials that were distributed 
in a bio-nanocomposites substitute, which was a 
composite-base for fabrication of polyurethane 
thermoplastic experiment in this research. This 
was a self-restoring polymeric biocompatible base. 
Furthermore, the magnetic material (Fe3O4) in the 
bionic composite substrate in the magnetic field was 
investigated too. 

Fabrication of composite filler
Two types of thermoplastic polyurethane (TPU) 

based filaments with nanocomposite fillers were 
fabricated. The first filler was fabricated using 90 wt% 
TPU + 5 wt% elastin + 5 wt% single-walled carbon 
nanotube (SWCNT) composed with specific acetic acid 
solvent. The solution was homogenized and stirred for 
4 hr on a magnetic stirrer at 50 °C and 400 rpm. Also, 
similar to filler 1 preparation, A 5 wt% Fe3O4 (magnetite 
nanoparticles (MNPs)) was fabricated and stirred on 
the magnetic stirrer. Finally, both filler 1 solution and 
filler 2 solution were placed in an ultrasonic bath for 
3 hr. Both SWCNT and MNPs were purchased from the 
Merck Company. The final solution was then poured into 
an extruded mold and placed in the oven for 60 min at 
60–80 °C. Then, filler 1 was removed from the oven and 
placed at ambient temperature (20–25 °C) and roll the 
cooled fillers. For chemical and phase analysis, X-ray 
diffraction (XRD) and scanning electron microscopy 
(SEM) were used. 

Tensile strength evaluation
To obtain the value of the mechanical properties of the 

3D-printed artificial tissue, elastic modulus was used. The 
specimens were examined at the Amirkabir University of 
Technology using tensile tests (SANTAM, STM-50) with a 
tensile strength of 0.5 (mm/min). The specimens made of 
50 mm length and 18.85 mm cross-section were attached 
to the two ends of the tensile test machine. Figure 1 
shows the schematic preparation of artificial tissue 
using a 3D printing technique. Proportional to the cross-
sectional area of   the specimens, the distance between the 
two clamps was measured, which was the starting point 
of the stretch, and was eliminated for the calculations. 
Figure 2 shows the initial design of the artificial using the 
SolidWorks software package before applying it in the 
simplified 3D software. All 7 specimens were stretched 
until the vessel layers were ruptured. The output of the 
device, in the form of force and displacement data, were 
converted to stress and strain by holding the diameter 
and initial length of each specimen. Finally, using the 
elastic region gradient of the stress-strain diagram, the 
elastic modulus of each sample was obtained. According 
to the standards of American Society of Testing Materials, 
the tube must be taken to examine the mechanical 
properties of the bi-axial tension test. Table 1 indicates 
the mechanical properties of the artificial tissue for CFD 
simulation such as Poisson ratio, elastic modulus, and 
porosity value.

Characterization of artificial tissue
XRD analysis

   To determine the phases present in the synthesized 
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powder and synthetic composite vessels, XRD and 
PHILIPS PW3040 tests (at Amirkabir University of 
Technology - Advanced Central Laboratory) were used, 
and the scanning angle (2θ) ranged from 10 to 90 ° 
beneath 40 kV and 30 mA.

SEM analysis
    In order to study the size and morphology of the 

pores and porosity in the artificial tissue, scanning 
electron microscopy (AIS2100, SERON TECHNOLOGIES 
Co., South Korea) was used (magnification  15 to 

300,000 times, resolution 3.54 nm, electron acceleration 
voltage  0.5 kV to 30 kHz, image; SEI, Secondary electron 
image; tungsten filament, detector; secondary electron 
detector, located at Amirkabir University of Technology) 
to enhance the electrical conductivity and resolution of 
the specimens and images, a thin layer of gold (Au) was 
sprayed on the specimens prior to the imaging.

Porosity evaluation
In this study, the artificial tissue was examined for 

porosity value using Image-J software and SEM images. 
The SEM images of the artificial tissue inserted into the 
Image software and the open porosity of the tissue were 
investigated (27, 28). 

Hyperthermia evaluation
Hyperthermia test was performed in ethanol solution 

as neutral fluid in the solenoid circuit for 0–15 sec 
at 38-42 °C. The obtained results were plotted as a 
temperature-time diagram. The obtained results were 
presented where the specimens must have average 
temperature variations in order to have a suitable 
thermal and heat effect on the artificial tissue. 

CFD analysis of blood flow 
In this study, the Abaqus software, as a powerful finite 

element software, has proven its ability to simulate and 
analyze fluid problems. The existence of computational 
fluid dynamics (CFD) solver allows the user to achieve 

 

  
Figure 1. Schematic overview of TPU-elastin-containing single-walled carbon nanotubes and magnetite nanoparticles
TPU:thermoplastic polyurethane; CFD: computational fluid dynamics

 

  

Figure 2. Schematic of the design and fabrication of a bi-nanocomposite 
artery made by 3D printing

Sample Poisson ratio Elastic modulus (MPa) Porosity (%) 
S1-TPU-ELN 0.29 22 25 
S2-MNPs- 0.29 25 26 
S3-MNPs-∆ 0.28 26 28 
S4-SWCNT- 0.31 32 29 
S5-SWCNT-∆ 0.31 33 33 
S6-7 mm 0.30 39 42 

 

Table 1. Mechanical properties of produced artificial tissue fabricated using 3D Printing

TPU:thermoplastic polyurethane; SWCNT: single-walled carbon nanotubes; MNPs: magnetic nanoparticles
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precise solutions to various problems in the field. A 
CFD simulation examines various fluid parameters 
such as velocity, pressure, density. The basic structure 
of heat and fluid transfer problems govern equations 
that are directly derived from the laws of survival of the 
physical properties of the fluid. Naiver-Stokes equations 
are regarded as the mathematical model for physical 
phenomena. The cases and parameters presented in 
blood mechanical properties were extracted from the 
article by Zhao et al. (23). The simulation assumed 
a blood fluid viscosity of 2.5 E-9 (MPa) and a blood 
density of 1 (Kg/mm3). The vessel was designed in three 
branches and blood was assumed to be a homogeneous 
fluid material. Due to the simulation process in the first 
stage, the flow was investigated as one input and three 
outputs. Abaqus analytical software used the General 
Flow solver to solve the process. The process timeout 
assumed 1 sec. The rate of blood inlet velocity was set 
to 0.1 (m/s) and the amplitude of the onset of flow was 
considered tabular and linear. To create a direct flow 
between the branches of the vessel, the output pressure 
was set at 0 MPa to move the blood in the vessel 
without applying opposite pressure. To create boundary 
conditions, the vessel walls were defined for non-slip 
software, and for the whole model, the flow rate for all 
speeds was set to 0 (mm/s) for the initial fluid input 
mode in which the vessel stenosis was considered TET 
structure. The vessel diameter was selected as 1 mm in 
diameter. The mesh length was set to 0.3 and after all 
initial analysis, steps were adjusted. The results of the 
analysis in the three-branch vessel showed the highest 
applied pressure of 2.187 E-8 MPa, which were regularly 
discharged from the three branches with different 
velocities and pressure.

Results
The obtained results showed that the samples have 

variable phase variations, which had a relationship 
with each other. Specimens made of polyurethane 
thermoplastic-elastin compound with different weight 
percentages of MNPs and SWCNT were produced. As 
shown in Figure 3, the XRD pattern peaks of MNPs without 
impurity were observed. Since the XRD patterns of the 

MNPs phases were very close together, the composite 
samples may be a combination of MNPs phases. Due to 
the high saturation magnetism of the sample containing 
MNPs and its wide peaks in the composite structure, 
it can be determined that the non-magnetic phases 
within the samples were very small. The morphology 
of the bionic-sedimentary samples made by fusion-
deposition by SEM is shown in Figure 4. These images 
show that the vessels made by the FDM method are 1 
to 2 mm in thickness. The vessels had interconnected 
surfaces with very low porosity, and these specimens 
had triangular and square structures. The specimens 
were prepared with a triangular structure, higher 
interconnectivity, and low porosity rate. The obtained 
results for porosity and fusion integrity of the filaments 
can reduce permeability and increase surface adhesion. 
Figure 4 (a-d) shows the SEM images of the samples 
containing thermoplastic base polymers and elastin, 
which were uniformly joined. The obtained results 
show the thickness of the artificial vessel, the surface of 
the specimen with high scaling, the fused surface of the 
specimen with triangular structure, and the thickness of 
the vessel, which was about 1000 microns, equivalent 
to 1 mm. Different weight composition of the MNPs 
materials and SWCNT are not visible in the microscopic 
images. Longitudinal uniaxial tests were performed 
to estimate and evaluate the mechanical properties 
(tensile strength) of the artificial vessel made by 3D 
printing. Then, the tensile strength and tensile modulus 
of these vessels were obtained, which was equivalent to 
the slope of the stress-strain curve. The mean thickness 
of the specimens was 5–7 mm. As shown in Figure 5, a 
100-micron precision 3D printer was used to make such 
artificial vessels. However, composite filaments were 
used instead of single filaments. Since the function of 
the prosthetic after implantation is highly dependent on 
its adaptation to normal tissue, controlling the structure 
and material arrangement of the 3D printer can increase 
the prosthetic adaptability to the actual vessel. Figure 
6 shows the stress-strain diagram of the longitudinal 
bending test for the specimens. The maximum elastic 
modulus was extracted from the area with maximum 
stress-strain before failure. Alteration of mechanical 

 

  
Figure 3. X-ray diffraction of (a) magnetic nanoparticles, (b) elastin 
powder, and (c) single-walled carbon nanotubes in pure form
MNPs: magnetic nanoparticles; ELN: Elastin; SWCNT: single-walled 
carbon nanotubes

 

  
Figure 4. SEM images (a) Artificial vein thickness, (b) Highly scaled 
sample surface, (c) Triangular melt sample surface, and (d) Vessel 
thickness of approximately 1000 microns equivalent to 1 mm of specimen
SEM: scanning electron microscopy
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properties of the vessels is an important factor in 
determining and evaluating changes in cardiovascular 
features due to age and disease from atherosclerosis 
investigation. The applications of this artificial tissue are 
in vascular grafts, angioplasty, and bypass surgery (46-
56). Moreover, designing artificial tissues and biological 
systems of vascular elongation in tissue engineering are 
highly dependent on the mechanical properties of these 
tissues. Figure 7 show that SWCNT has approximately 
3-fold yield stress. However, as shown in Figure 7, the 
yield stress of the sample containing MNPs is lower than 
that of the SWCNT sample. Normally, human veins have a 
peripheral tensile strength of about 25.3 MPa to 29 MPa. 
The tensile strength of this artificial vessel composite 
is one of the most important features when evaluating 
the efficacy and quality for soft tissue replacement. 
Mechanical performance is the most important factor in 

maintaining and stabilizing ABV after being implanted in 
the in vitro environment because as soon as the natural 
vessel is replaced. This new tissue is affected by different 
loads from different directions and as these mechanical 
loads are not tolerated, the tissue may encounter 
ruptures after a short time. This strength is related to 
several factors such as the matrix of the material and 
matrix strength, type of reinforcing, mineral particles, 
size, interaction between the organic component and 
mineral sediments, and the ratio of these components 
in a composite. Tensile testing can determine the 
initial strength of ABV to some extent. However, ABV is 
placed in the inner environment due to deposition on 
the surface and mineralize the surface over time. This 
tensile strength of ABV is related to several factors 
such as the matrix material and the type of reinforcing, 
mineral particles, and the size of nanomaterials. Tensile 
testing can partially determine the initial strength of 
the artificial veins. However, artificial arteries become 
stronger over time due to deposition on the surface 
and mineralization of the surface as time passes. In the 
elastic zone that has a direct strain proportional to the 
stress with increasing stress, the strain also increases 
linearly. The area of   compression occurs after the initial 
drop in the stress value. The elastic modulus (slope 

 

  

 

  

Figure 5. SEM images (a) Artificial vessel thickness, (b) Low-scaled 
sample surface, (c) Triangular melted specimen surface made by 3D 
printing of different surfaces after immersion in simulated body solution
SEM: scanning electron microscopy

Figure 6. Stress-elongation diagram of the prepared vessel (a) 
Raw TPU material and (b) composite triangular-shaped specimen 
containing prepared MNPs 
TPU:thermoplastic polyurethane; MNPs: magnetic nanoparticles 

 

  Figure 7. Elastic modulus of the prepared sample containing MNPs 
and SWCNT with different diameters
MNPs: magnetic nanoparticles; SWCNT: single-walled carbon 
nanotubes

 

  
Figure 8. Porosity analysis of artificial tissue using Image-J software 
and SEM images
SEM: scanning electron microscopy
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of the initial linear part of the graph) and the tensile 
strength (maximum stress) of the specimens are shown 
in Figure 7. 

Discussion
Figure 8 shows the porosity evaluation, as shown 

by increasing the SWCNT the porosity percentage 
increased and its pore size decreased. Increasing and 
decreasing the amount of SWCNT increased tensile 
strength and porosity. The cause of this phenomenon 
can be attributed to the special properties of carbon 
fibers in the presence of any matrix material.  Proper 
insights into the molecular mechanisms can also lead 
to understanding hyperthermia-related therapies 
such as temperature-sensitive nanomaterials or 
drug delivery sensitiveness beside temperature. To 
investigate the magnetic and hyperthermia behavior 
of 3D nanocomposite artificial arteries, the sample 
containing magnetic nanoparticles with triangular and 

 

  Figure 9. Results of a 100 kHz hyperthermia test at -15 °C for 15–10 
sec in ethanol solution in a solenoid loop for triangular and square 
samples containing MNPs
MNPs: magnetic nanoparticles

 

  
Figure 10. CFD analysis of veins in the Abaqus software with the blue 
dots
CFD: computational fluid dynamics

 

Figure 11. CFD analysis of veins in the Abaqus software with the blue 
dots as one of the outputs is open
CFD: computational fluid dynamics
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square structures are shown in Figure 9. According to 
Figure 9, triangular-shaped specimens exhibit better 
hyperthermia properties in saturated magnetic signals. 
The magnetic properties of sample 1 and sample 3 
indicate a lack of unsuitability and survivability, also 
indicating ferromagnetic properties. The mechanical 
energy was generated by ultrasound through friction, 
which then was converted to thermal energy. Figure 9 
illustrates the function of hyperthermia to eliminate 
annoying tissue in the blood vessel. The simulation 
according to the results of the analysis of blood flow 
through an artificial tissue is presented in Figure 10. 
The following images illustrate the pressure contour in 
the CFD analysis of the blood flow in the vein by Abaqus 
in the CFD environment. In the initial CFD study, all 
outputs were open and the highest pressure and stress 
was obtained in the marked area as shown in Figure 10. 

Figure 11 shows CFD simulation of the tissue with 
open and closed branches along with the results of 
pressure-based blood velocity analysis in the turbulent 
area. Figure 11 shows that due to the steeper slope of 
output 3 of the tissue in the pressure-velocity diagram, 
a relative increase can be seen in maximum pressure in 
the occipital region and a relative decrease in the flow 
velocity corresponding to the maximum pressure in the 
occipital region compared with output 1.

Conclusion
In this study, for the first time, a synthetic polymer 

reinforced with SWCNT and MNPs was fabricated for 
application in the human body. Artificial tissues are 
made of biodegradable polymer nanofibers with notable 
physical properties such as efficient tensile strength and 
proper flexibility. The results of the investigated tissue 
showed significantly improved mechanical properties. 
Furthermore, changing the size of the vessels increased 
mechanical properties such as elastic modulus and 
tensile strength. The obtained results indicated that 
the elastic modulus increased from 25 MPa to 26 MPa. 
These samples had the lowest amount of weight loss, pH 
changes, and slight changes in the SBF and PBS solution. 
The results of the CFD analysis showed that the artificial 
tissue had lower shear stress at the output. Finally, a 
vessel containing 5-mm MNPs can be presented as a 
suitable choice with appropriate chemical and biological 
properties for treating tissue disease in atherosclerosis 
and gastrointestinal lumen for children.
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