Iranian Journal of Basic Medical Sciences

ijbms.mums.ac.ir

Evaluation of Serum Interleukins-6, 8 and 10 Levels as Diagnostic Markers of Neonatal Infection and Possibility of Mortality

Hassan Boskabadi ¹, Gholamali Maamouri ¹, Jalil Tavakol Afshari ², Shahin Mafinejad ¹, Golkoo Hosseini ³, Hesam Mostafavi-Toroghi ³, HamidReza Saber ³, Majid Ghayour-Mobarhan ^{3*}, Gordon Ferns ⁴

- ¹ Department of Pediatrics, Ghaem Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- ² Immunology Research Center, Avicenna Research Institute. Mashhad University of Medical Sciences, Mashhad, Iran
- ³ Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- ⁴ Brighton & Sussex Medical School, Falmer, Brighton BN1 9PH, United Kingdom

ARTICLE INFO

Article type: Original article

Article history: Received: Jan 3, 2013 Accepted: Jul 2, 2013

Keywords: Infection Interleukin-6 Interleukin-8 Interleukin-10 Newborn Sepsis

ABSTRACT

Objective(s): Bacterial infection contributes substantially to neonatal morbidity and mortality. Early diagnosis of neonatal sepsis is difficult because clinical signs are nonspecific. We have evaluated serum IL-6, 8 and 10 as potential early diagnostic markers of neonatal infection and their relationship to mortality rate and poor prognosis.

Materials and Methods: A total of 84 infants, aged \geq 72 hr were enrolled in this prospective case-control trial. The case group (n=41) included babies with clinical and laboratory findings compatible with sepsis and/or positive blood or cerebrospinal fluid cultures. The control group (n=43) included healthy infants. IL-6, 8 and 10 were measured for all infants. Receiver-operating characteristic (ROC) curves were used for the determination of thresholds.

Results: Statistically significant differences were observed between control and case groups for serum median level of IL-6, 8 and 10 (P<0.001). IL-6 cut-off values of 10.85 Pg/ml for discriminating between cases and controls and 78.2 Pg/ml for predicting mortality are suggested. IL-8 at a cut-off value of 60.05 Pg/ml was valuable for differentiation of definite versus indefinite infection.

Conclusion: Evaluating the IL-6, 8 and 10 simultaneously, could improve the sensitivity and specificity of early diagnosis of the neonatal sepsis. Regarding our results, interleukin 6 had the greatest value for predicting infection and possible mortality, whereas IL-8 was valuable for diagnosing definitive infection.

► Please cite this paper as:

Boskabadi H, Maamouri Gh.A, Tavakol Afshari J, Mafinejad Sh, Hosseini G, Mostafavi-Toroghi H, Saber HR, Ghayour-Mobarhan M, Ferns G. Evaluation of Serum Interleukins-6, 8 and 10 Levels as Diagnostic Markers of Neonatal Infection and Possibility of Mortality. Iran J Basic Med Sci; 2013; 16:1232-1237.

Introduction

Neonatal sepsis is a life threatening condition that contributes significantly to morbidity and mortality in newborn infants (1). Early diagnosis of neonatal bacterial infections is difficult because clinical signs are often non-specific, variable and may initially be subtle. Early definitive diagnostic tests are not available (2-4). Isolation of microorganisms from body fluids such as blood, cerebrospinal fluid (CSF) and urine remains the gold standard method for diagnosis of neonatal infection, but microbiological culture is not available before at least 36-48 hr (5, 6). It is

recommended that neonates who develop signs of sepsis should start empirical antimicrobial therapy. Therefore, many infants without sepsis usually receive at least 2-3 days of (7).This problem causes hospitalization and considerable a burden, particularly in developing countries with poorly-equipped Neonatal Intensive Care (NICUs). Recently various hematological biochemical markers, for example immature/total neutrophil ratio, nucleated red blood cell, C-reactive protein (CRP), neutrophil CD64 and been cytokines have evaluated potential

**Corresponding author: Majid Ghayour-Mobarhan. Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-511-8829261; Fax: +98-511-8827040; email: ghayourm@mums.ac.ir

indicators for early identification of septic infants Cytokines are promising diagnostic markers and their levels are increased early in the infectious process (7, 10). Interleukins are proinflammatory cytokines predominantly produced activated macrophages monocytes, endothelial cells. Recent studies have reported serum interleukins are altered early in the course of neonatal bacterial infections (11). Finding a reliable laboratory test as a marker for immediate detection of infection with acceptable sensitivity and specificity has always been controversial among investigators. In previous reports IL-6, 8 and 10 were not evaluated simultaneously. In the current study, we sought to evaluate the serum levels of IL-6, 8 and 10 as early diagnostic markers in late neonatal infection (definitive infection and clinical sepsis) and their relationship to clinical outcomes. We also aimed to determine the specificity and sensitivity of interleukins (alone or in combination) in early detection of late neonatal infection, and suggest cut-off values for studied interleukins in order to detect infections and predict poor prognosis neonatal sepsis.

Materials and Methods

This was a prospective case-control study between 2006 and 2010. Neonatal Intensive Care Unit (NICU) and Emergency Department in Ghaem Hospital. Mashhad, Iran. Eighty four neonates aged 72 hr or more were eligible for the study and were all enrolled. The Ethics Committee of Mashhad University of Medical Sciences (MUMS) approved this study and all parents signed informed consent.

Neonates were categorized into two groups: cases and controls, on the basis of their clinical and laboratory manifestations. The case group (n=41) was divided into definitive infection and indefinite infection (clinical sepsis) subgroups. The definitive infection subgroup (n=22) was defined as having clinical and laboratory findings compatible with sepsis and positive blood or CSF cultures. The clinical sepsis subgroup included neonates with clinical and laboratory evidence of infection, and a negative blood and CSF culture. Clinical signs and symptoms of sepsis consisted of respiratory problems (tachypnea, grunting, intercostal retractions, apnea and need gastrointestinal ventilation). problems (feeding intolerance and abdominal distension), neurological manifestations (seizure and irritability), cardiovascular and blood pressure instability and general signs (fever, lethargy). findings Laboratory included leukocytosis (WBC>20000/ μ l), leukopenia (WBC<5000/ μ l), thrombocytopenia (Plt<150000/µl) and positive C-reactive protein (CRP>6 mg/dl). Neonates with at least two clinical signs and one positive laboratory finding were classified to the clinical sepsis subgroup (n=19). Exclusion criteria were malformations, congenital congenital infections associated with TORCH and not enough blood sampling. The control group (n=43) included healthy infants who had been referred to the clinic for thyroid screening test or physiologic hyperbilirubinemia at 3-5 days of life.

Complete data (birth weight, weight on admission, age, sex, gestational age, APGAR score and clinical signs), maternal data (age, complications related with pregnancy and labor, mode of delivery and parity) and risk factors for infection and laboratory values were collected and recorded for all neonates by a neonatal research fellow.

Before administration of antibiotics venipuncture, two milliliters of blood was taken during sepsis screening from neonates who were recruited to the study for IL-6, 8 and 10 determination and other laboratory tests. IL-6, -8, -10 enzyme-linked immunosorbent assay (ELISA) kits (Bender Med system GmbH) were used to estimate the serum level of IL-6, 8 and 10, and the collected data was analyzed by the logistic regression method. All samples were assayed in Blood culture, cerebrospinal fluid culture and urine culture were also performed.

Descriptive and analytic tests (Mann-Whitney test, the Student t-test and chi-square test) were performed using Statistical Package for Social Sciences (SPSS) software as appropriate. Statistical comparison between the groups (definitive infection group, clinical sepsis group and control group) was performed using one-way Analysis of Variance (ANOVA) and post hoc tests were used to determine the significance of difference between 3 groups. Sensitivity and specificity were calculated for IL-6, 8 and 10. Receiver-operating characteristic (ROC) were used for the determination of thresholds for the sepsis group versus healthy neonate group. Pvalue of < 0.05 was considered statistically significant.

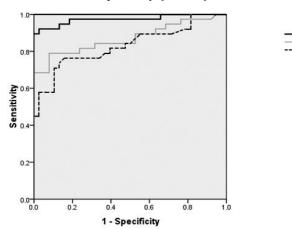
Results

Complete data was obtained for 84 infants who were categorized into case (n=41) and control (n=43) groups respectively. No significant differences (P>0.05) were found between cases and controls in gender, birth weight, gestational age, age on admission and APGAR score (Table 1). Regarding the short half-life of serum

Table 1. Newborn characteristics among subgroups

	Case gro	Case group		
	Definitive infection	Clinical sepsis	Control group	<i>P</i> -value
Number of participants	22	19	43	0.721
Gestational age (weeks)±SD ^a	35.6±3.76	35.89±4.01	36.12±3.38	0.785
Birth weight (g)±SD	2250±701	2230±730	2212±680	0.843
Age (day)±SD	9.84±6.48	9.89±6.07	8.93±7	0.173
APGAR score (5 min)±SD	8.4±1.5	8.5±1.24	8.62	0.567

Data is presented as mean (SD); *Standard Deviation; *P-value of comparing case and control groups by t-test


interleukins, the effect of delivery factors and asphyxia was negligible due to participation of babies aged 3 days and older.

Among the definitive infection subgroup. positive blood cultures were reported in 20 cases; five as Gram negative bacilli, seven as Klebsiella pneumonia, six as Escherichia coli, and two as staphylococcus epidermis. CSF culture was positive four infants. The mortality rate approximately 17% for the case group.

Significant differences were observed between control and case groups in median serum IL-6, 8 and 10 concentrations (Table 2).

The median serum IL-6 levels of case and control groups were 105.9 Pg/ml (32.5-259.5 Pg/ml, CI 95%) and 4.5 Pg/ml (2.15-7.0 Pg/ml, CI 95%), respectively (Table 2).

Serum IL-6 at a cut-off value of 10.85 Pg/ml had a sensitivity of 92.5%, specificity of 96.6%, positive predictive value (PPV) of 97%, negative predictive value (NPV) of 93 for discriminating cases from controls (Table 3 and Figure 1). The median IL-6 level of surviving newborns versus non-surviving cases was 8.3 (Pg/ml) vs. 339.4 (Pg/ml) (P<0.001). For predicting mortality, serum IL-6 at a cut-off value of 78.2 Pg/ml had sensitivity, specificity, PPV and NPV of 85%, 76%, 25% and 98%, respectively (Table 3).

Figure 1. ROC curves indicating sensitivity and specificity cut-offs of IL-6, 8 and 10 for predicting case and control subjects. IL-6 at a cut off value of $10.85 \, Pg/ml$ and IL-8 at a cut off value of $64.05 \, Pg/ml$

ROC: Receiver-operating characteristic IL: Interleukin

The median serum levels of IL-8 for neonates with definite infection (positive culture) versus neonates without definite infection were 440.7 Pg/ml (268.1-636.1 Pg/ml, CI 95%) vs. 21.1 Pg/ml (12-281 Pg/ml, CI 95%), respectively (P<0.001). IL-8 at a cut-off value of 60.05 Pg/ml was valuable for differentiation of definite versus indefinite infection. Sensitivity, specificity, PPV and NPV for IL-8 were 93.7%, 65%, 44%, 97%, respectively, at this cut-off (Table 3 and Figure 1).

The median serum level of IL-10 was found to be significantly higher among the case group compared with the control group (66.5 vs. 6.0 Pg/ml; P< 0.001) (Table 2). In addition, by evaluation and considering all 3 ILs in combination among newborns, sensitivity and specificity for discrimination between case and control groups were found to be 89% and 100% respectively.

Discussion

The results of our study indicated that the levels of all measured interleukins were higher in neonates with sepsis compared with healthy neonates. Also serum IL-6 was higher among neonates who died versus survivors. Median serum concentrations of ILs showed increasing pattern from control to clinical definite sepsis and infection groups, respectively.

Almost 10 percent of newborns are evaluated for infection within the first month of life and more than 90% of them receive antibiotics (12) that may be unnecessary. A reliable method for ruling out sepsis would be useful in the clinical setting as antibiotics could be withheld (11, 13).

The role of IL-6 for early diagnosis of neonatal infection

IL-6 is a sensitive marker in the early phase of infection. However it cannot be used as a reliable marker in the later stages of disease, due to its short half-life (7, 11, 14). The current study shows that the median serum level of higher in cases with sepsis is comparison with control healthy infants. Previous studies have shown that newborns

Table 2. Median level of ILa-6, 8 and 10 in the case and the control groups

Marker	Case group Median (interquartile range)	Control group Median (interquartile range)	P-Value	
IL-8 (Pg/ml)	335.7(69.8-614.7)	18.3(8-21.1)	< 0.001	
IL-6 (Pg/ml) IL-10 (Pg/ml)	105.9(32.5-251.5) 66.5(10.3-200)	4.5(2.1-7) 6.0(4.2-8.5)	<0.001 <0.001	

IL: Interleukin

Values are expressed as mean±SD (for normally distributed data) or median and interquartile range (for non-normally distributed data).

Comparison between the case and the control groups were made using paired t-test or Wilcoxon test for normally and non-normally distributed data, respectively

display higher percentages of IL-6 and IL-8 than adults (15). There is a sharp rise in IL-6 concentration following exposure to bacterial products (16). IL-6 has also the highest sensitivity (89%) and negative predictive value (91%) at the infection compared with biochemical markers, including CRP, TNF, and E-(17).Consistent with our findings. Maamouri et al Reported a higher mean serum level of IL-6 in clinical sepsis compared with control group (185 vs. 5 Pg/ml) (18). In a study by Krueger et al, infants were classified into infection, possible infection documented healthy groups and mean serum IL-6 levels were found to be 1920, 50 and 8 Pg/ml, respectively (19). In another study by Romagnoli et al, higher serum IL-6 and 10 levels were associated with neonatal sepsis (20).

Association between serum level of IL-8 and neonatal sepsis

In this study serum IL-8 was demonstrated to be more efficient in the diagnosis of definite infection in comparison with IL-6 and 10. Increasing the cut off for serum IL-8 to more than 64 Pg/ml, predicted definite infection with sensitivity and specificity of 94% and 65%, Edgar al respectively. et demonstrated significant rises of IL-6 and 8 among cases with positive blood culture (21). Other investigators have reported elevated serum IL-8 levels in early and late neonatal sepsis to have a sensitivity and specificity of 80-91% and 76-100%, respectively (22).Boskabadi *et* reported IL-8 concentration to be 3.3 times higher in mortal cases compared with surviving ones (23). In a study by Franz et al, combination of IL-8 and CRP showed a sensitivity and specificity of 91% and 73%, respectively, for early diagnosis of neonatal sepsis. They have also reported that premature infants who succumbed due to a culture proven sepsis had extremely high levels of circulatory IL-8, greater than 10000 Pg/ml (24). Chemokines and pro-inflammatory cytokines are essential for host defense against microbial infection but excessive influx of activated pro-inflammatory mediators can contribute to deleterious results, leading to widespread small-vessel damage, multi-organ dysfunction and death (25).

Association between serum level of IL-10 and neonatal sepsis

Boskabadi *et al* have reported that quantitative measurements of IL-10 could assist neonatologists in predicting the severity of infection. They concluded that IL-10 at a cut off value of 14 Pg/ml is a valuable tool for this purpose (26). Although mean IL-10 concentration was higher in our case group, threshold values defined by the ROC curve were not as valuable as IL-6 and 8 for prediction and diagnosis of neonatal infection.

It seems that measurement of serum IL-6, 8, and 10 in newborns in whom there is a suspicion of sepsis, using the cut-off values reported in this study may predict neonatal sepsis and prevent overt hospitalization and antibiotics prescription. The results showed that among these markers, interleukin 6 had the greatest predictive value for determining ill newborns (case group) and predicting mortality rate, while IL-8 was more valuable for diagnosing definitive infection.

Table 3. Sensitivity, specificity, positive predictive value and negative predictive value of interleukins

Diagnostic test and cut-off	Sensitivity	Specificity	Positive predictive value	Negative predictive value
value	(%)	(%)	(%)	(%)
ILa-6 >10.85 (Pg/ ml)	92.5	97.6	97.3	93.1
Case vs. control				
IL-6 >78.2 (Pg/ ml)	85	76	25	98
Mortality vs. alive				
IL-8 >64.05 (Pg/ ml)	93.7	65	44	97
Definitive sepsis vs. indefinite				

^a IL: Interleukin

We observed a sensitivity of 89% and specificity of 100% considering all 3 ILs in combination for identifying infected neonates, indicating that sensitivity and specificity can significantly be improved by using cut off values for IL-6, 8 and 10 together. Further studies with large sample size in subgroups of suspected infective infants and comparison of sensitivity and specificity of these markers in various cut-off values with traditional markers such as CRP and neutrophil CD64 are encouraged.

In this study we had limitations such as small sample size. Also evaluation of Group B Streptococcus on mothers was not possible due to lack of facilities.

Conclusion

A significant increase in serum levels of IL-6, 8 and 10 provides a valuable marker for early diagnosis of sepsis and predicting outcome. IL-6 appears to be a better marker of sepsis and mortality in comparison with IL-8 and 10. Serum level of IL-8 is more associated with definite infection (positive cultures) compared with the other interleukins studied.

Acknowledgment

This study was part of the student thesis No. 85059 which has been kindly supported by Mashhad University of Medical Sciences, Mashhad, Iran, Vice Chancellor for Research and Neonatal Research Center, whom we thank a lot.

We hereby thank the staff of NICU and pediatric ward of Ghaem Hospital for their friendly cooperation as well.

References

- 1. Remington J, Klein J. Current concepts of infections of the fetus and newborn infant. In: JS R, JO K, editors. Infectious Diseases of the Fetus and Newborn Infants. Philadelphia: PA: WB Saunders; 1995. p. 1-19.
- 2. Stoll BJ, Gordon T, Korones SB, Shankaran S, Tyson JE, Bauer CR, *et al.* Early-onset sepsis in very low birth weight neonates: a report from the National Institute of Child Health and Human Development Neonatal Research Network. J Pediatr 1996; 129:72-80.
- 3. Verboon-Maciolek MA, Thijsen SF, Hemels MA, Menses M, van Loon AM, Krediet TG, *et al.* Inflammatory mediators for the diagnosis and treatment of sepsis in early infancy. Pediatr Res 2006; 59:457-461.
- 4. Adib M, Bakhshiani Z, Navaei F, Saheb Fosoul F, Fouladi S, Kazemzadeh H. Procalcitonin: a reliable marker for the diagnosis of neonatal sepsis. Iran J Basic Med Sci 2012; 15:777-782.
- 5. Fanaroff A, Martin R. Neonatal perinatal medicine. 8th ed. Mosby; 2006.p.791-799.
- 6. MacDonald M, Seshia M, Mullet M. Avery's Neonatology, Neonatal pathophysiology and

- management of the newborn. 6th ed. Philadelphia: LippincottWilliams&Wilkins; 2005.p.1236-1251.
- 7. Ng PC, Cheng SH, Chui KM, Fok TF, Wong MY, Wong W, *et al.* Diagnosis of late onset neonatal sepsis with cytokines, adhesion molecule, and C-reactive protein in preterm very low birthweight infants. Arch Dis Child Fetal Neonatal Ed 1997; 77:F221-227.
- 8. Berger C, Uehlinger J, Ghelfi D, Blau N, Fanconi S. Comparison of C-reactive protein and white blood cell count with differential in neonates at risk for septicaemia. Eur J Pediatr 1995; 154:138-144.
- 9. Boskabadi H, Maamouri G, Sadeghian MH, Ghayour-Mobarhan M, Heidarzade M, Shakeri MT, Ferns G.Early diagnosis of perinatal asphyxia by nucleated red blood cell count: a case-control study. Arch Iran Med. 2010 Jul;13(4):275-81.
- 10. Gonzalez BE, Mercado CK, Johnson L, Brodsky NL, Bhandari V. Early markers of late-onset sepsis in premature neonates: clinical, hematological and cytokine profile. J Perinat Med 2003; 31:60-68.
- 11. Ng PC. Diagnostic markers of infection in neonates. Arch Dis Child Fetal Neonatal Ed 2004; 89:F229-235.
- 12. Murray BE. Can antibiotic resistance be controlled? N Engl J Med 1994; 330:1229-1230.
- 13. Ng PC, Cheng SH, Chui KM, Fok TF, Wong MY, Wong W, *et al.* Diagnosis of late onset neonatal sepsis with cytokines, adhesion molecule, and C-reactive protein in preterm very low birthweight infants. Arch Dis Child Fetal Neonatal 1997; 77:221-227.
- 14. Bhartiya D, Kapadia C, Sanghvi K, Singh H, Kelkar R, Merchant R. Preliminary studies on IL-6 levels in healthy and septic Indian neonates. Indian Pediatr 2000: 37:1361-1367.
- 15. Schultz C, Rott C, Temming P, Schlenke P, Moller JC, Bucsky P. Enhanced interleukin-6 and interleukin-8 synthesis in term and preterm infants. Pediatr Res 2002; 51:317-322.
- 16. Mehr S, Doyle LW. Cytokines as markers of bacterial sepsis in newborn infants: a review. Pediatr Infect Dis | 2000; 19:879-887.
- 17. Buck C, Bundschu J, Gallati H, Bartmann P, Pohlandt F. Interleukin-6: a sensitive parameter for the early diagnosis of neonatal bacterial infection. Pediatrics 1994; 93:54-58.
- 18. Maamouri G, Boskabadi H, Tavakkolafshari J, Shakeri M. Evaluation Quantities Interleukin 6 in diagnosis of Neonatal sepsis. Med J Mashad Univ Med Sci 2006; 93:253-260.
- 19. Krueger M, Nauck MS, Sang S, Hentschel R, Wieland H, Berner R. Cord blood levels of interleukin-6 and interleukin-8 for the immediate diagnosis of early-onset infection in premature infants. Biol Neonate 2001; 80:118-123.
- 20. Romagnoli C, Frezza S, Cingolani A, De Luca A, Puopolo M, De Carolis MP, *et al.* Plasma levels of interleukin-6 and interleukin-10 in preterm neonates evaluated for sepsis. Eur J Pediatr 2001; 160:345-350.
- 21. Edgar JD, Wilson DC, McMillan SA, Crockard AD, Halliday MI, Gardiner KR, *et al.* Predictive value of soluble immunological mediators in neonatal infection. Clin Sci 1994; 87:165-171.
- 22. Kocabas E, Sarikcioglu A, Aksaray N, Seydaoglu G, Seyhun Y, Yaman A. Role of procalcitonin, C-reactive

- protein, interleukin-6, interleukin-8 and tumor necrosis factor-alpha in the diagnosis of neonatal sepsis. Turk J Pediatr 2007; 49:7-20.
- 23. Boskabadi H, Maamouri G, Afshari JT, Ghayour-Mobarhan M, Shakeri MT. Serum interleukin 8 level as a diagnostic marker in late neonatal sepsis. Iran J Pediatr 2010; 20:41-47.
- 24. Franz AR, Steinbach G, Kron M, Pohlandt F. Reduction of unnecessary antibiotic therapy in newborn infants using interleukin-8 and C-reactive protein as markers of bacterial infections. Pediatrics 1999; 104:447-453.
- 25. Schollin J. Interleukin-8 in neonatal sepsis. Acta Pediatr 2001; 90:961-962.
- 26. Boskabadi H, Maamouri GA, Ghayour-Mobarhan M, Tavakkol Afshari J, Shakeri MT, Ferns GAA. Early diagnosis of late neonatal sepsis by measuring interleukin 10: A case control study. J Neonatol 2011; 25:82-86.