1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71:209-249.
2. Chen ZD, Zhang PF, Xi HQ, Wei B, Chen L, Tang Y. Recent advances in the diagnosis, staging, treatment, and prognosis of advanced gastric cancer: A literature review. Front Med (Lausanne) 2021; 8:744839.
3. Petryszyn P, Chapelle N, Matysiak-Budnik T. Gastric cancer: Where are we heading? Dig Dis 2020; 38:280-285.
4. Shi P, Wan J, Song H, Ding X. The emerging role of circular RNAs in gastric cancer. Am J Cancer Res 2018; 8:1919-1932.
5. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: The rosetta stone of a hidden RNA language? Cell 2011; 146:353-358.
6. Ala U. Competing endogenous RNAs, non-coding RNAs and diseases: An intertwined story. Cells 2020; 9: 1574-1596.
7. Yan L, Yue C, Xu Y, Jiang X, Zhang L, Wu J. Identification of potential diagnostic and prognostic pseudogenes in hepatocellular carcinoma based on pseudogene-miRNA-mRNA competitive network. Med Sci Monit 2020; 26:e921895.
8. Sisu C. Pseudogenes as biomarkers and therapeutic targets in human cancers. Methods Mol Biol 2021; 2324:319-337.
9. Emadi-Baygi M, Sedighi R, Nourbakhsh N, Nikpour P. Pseudogenes in gastric cancer pathogenesis: A review article. Brief Funct Genomics 2017; 16:348-360.
10. Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Akbari Dilmaghani N. A review on the role of PTENP1 in human disorders with an especial focus on tumor suppressor role of this lncRNA. Cancer Cell Int 2022; 22:207-218.
11. Zhou Q, Shu X, Chai Y, Liu W, Li Z, Xi Y. The non-coding competing endogenous RNAs in acute myeloid leukemia: biological and clinical implications. Biomed Pharmacother 2023; 163:114807.
12. Piquer-Gil M, Domenech-Dauder S, Sepúlveda-Gómez M, Machí-Camacho C, Braza-Boïls A, Zorio E. Non coding RNAs as regulators of Wnt/β-catenin and Hippo pathways in arrhythmogenic cardiomyopathy. Biomedicines 2022; 10:2619-2637.
13. He J, Zhang F, Tay LWR, Boroda S, Nian W, Levental KR, et al. Lipin-1 regulation of phospholipid synthesis maintains endoplasmic reticulum homeostasis and is critical for triple-negative breast cancer cell survival. FASEB J 2017; 31:2893-2904.
14. Brohée L, Demine S, Willems J, Arnould T, Colige AC, Deroanne CF. Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment. Oncotarget 2015; 6:11264-11280.
15. Fan X, Weng Y, Bai Y, Wang Z, Wang S, Zhu J, et al. Lipin-1 determines lung cancer cell survival and chemotherapy sensitivity by regulation of endoplasmic reticulum homeostasis and autophagy. Cancer Med 2018; 7:2541-2554.
16. Un Nisa M, Gillani SQ, Nabi N, Sarwar Z, Reshi I, Bhat SA, et al. Lipin-1 stability and its adipogenesis functions are regulated in contrasting ways by AKT1 and LKB1. J Cell Commun Signal 2023; 17:689-704.
17. McGeary SE, Lin KS, Shi CY, Pham TM, Bisaria N, Kelley GM, et al. The biochemical basis of microRNA targeting efficacy. Science 2019; 366:eaav1741.
18. Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res 2020; 48:D127-D131.
19. Huang HY, Lin YCD, Li J, Huang KY, Shrestha S, Hong HC, et al. miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res 2020; 48:D148-D154.
20. Lin Y, Liu T, Cui T, Wang Z, Zhang Y, Tan P, et al. RNAInter in 2020: RNA interactome repository with increased coverage and annotation. Nucleic Acids Res 2020; 48:D189-D197.
21. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. CytoHubba: Identifying hub objects and sub-networks complex interactome. BMC Syst Biol 2014; 8:S11-S17.
22. Pratt D, Chen J, Welker D, Rivas R, Pillich R, Rynkov V, et al. NDEx the network data exchange. Cell Syst 2015; 1:302-305.
23. Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 2023; 51:D638-D646.
24. . Ge SX, Jung D, Yao R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020; 36:2628-2629.
25. Nourbakhsh N, Emadi-Baygi M, Salehi R, Nikpour P. Gene expression analysis of two epithelial-mesenchymal transition-related genes: long noncoding RNA-ATB and SETD8 in gastric cancer tissues. Adv Biomed Res 2018; 7:42-48.
26. Emadi-Baygi M, Nikpour P, Emadi-Andani E. SIX1 overexpression in diffuse-type and grade III gastric tumors: Features that are associated with poor prognosis. Adv Biomed Res 2015; 4:139-143.
27. Salehi-Mazandarani S, Nikpour P. Integrative analysis of a four-component competing endogenous RNA network reveals potential diagnostic and prognostic biomarkers in gastric cancer. 2023;12:238-266.
28. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001; 25:402-408.
29. Hu X, Yang L, Mo YY. Role of pseudogenes in tumorigenesis. Cancers (Basel) 2018; 10:256-269.
30. Zhang R, Guo Y, Ma Z, Ma G, Xue Q, Li F, et al. Long non-coding RNA PTENP1 functions as a ceRNA to modulate PTEN level by decoying miR-106b and miR-93 in gastric cancer. Oncotarget 2017; 8:26079-26089.
31. Li P, Ji W, Wei Z, Wang X, Qiao G, Gao C, et al. Comprehensive analysis to identify pseudogenes/lncRNAs-hsa-miR-200b-3p-COL5A2 network as a prognostic biomarker in gastric cancer. Hereditas 2022; 159:43-63.
32. Noorolyai S, Shajari N, Baghbani E, Sadreddini S, Baradaran B. The relation between PI3K/AKT signalling pathway and cancer. Gene 2019; 698:120-128.
33. Mosquera-Caro M. Identification validation and cloning of a novel gene (OPAL1) and association of genes highly predictive of outcome in pediatric acute lymphoblastic leukemia using gene expression profiling. Blood 2003; 102:4a.
34. Holleman A, den Boer ML, Cheok MH, Kazemier KM, Pei D, Downing JR, et al. Expression of the outcome predictor in acute leukemia 1 (OPAL1) gene is not an independent prognostic factor in patients treated according to COALL or St Jude protocols. Blood 2006; 108:1984-1990.
35. Monaco ME. Fatty acid metabolism in breast cancer subtypes. Oncotarget 2017; 8:29487-29500.
36. Gyamfi J, Kim J, Choi J. Cancer as a metabolic disorder. Int J Mol Sci 2022; 23:1155-1172.
37. Nie Y, Huang F, Lou L, Yan J. The obesity-related metabolic gene HSD17B8 protects against breast cancer: High RNA/protein expression means a better prognosis. Med Sci Monit 2022; 28:e934424.
38. Zhang A, Yang J, Ma C, Li F, Luo H. Development and validation of a robust ferroptosis-related prognostic signature in lung adenocarcinoma. Front Cell Dev Biol 2021; 9:616271.
39. Xiong Y, Si Y, Feng Y, Zhuo S, Cui B, Zhang Z. Prognostic value of lipid metabolism-related genes in head and neck squamous cell carcinoma. Immun Inflamm Dis 2021; 9:196-209.
40. Yousuf U, Sofi S, Makhdoomi A, Mir MA. Identification and analysis of dysregulated fatty acid metabolism genes in breast cancer subtypes. Med Oncol 2022; 39:256-270.