1. Hinderer S, Schenke-Layland K. Cardiac fibrosis a short review of causes and therapeutic strategies. Adv Drug Deliv Rev 2019; 146: 77-82.
2. Ma ZG, Yuan YP, Wu HM, Zhang X, Tang QZ. Cardiac fibrosis: New insights into the pathogenesis. Int J Biol Sci 2018; 14: 1645-1657.
3. Francisco J, Zhang Y, Jeong JI, Mizushima W, Ikeda Sh, Ivessa A, et al. Blockade of fibroblast YAP attenuates cardiac fibrosis and dysfunction through MRTF-A inhibition. JACC Basic Transl Sci 2020; 5: 931-945.
4. Ma Y, Iyer RP, Jung M, Czubryt MP, Lindsey ML. Cardiac fibroblast activation post-myocardial infarction: Current knowledge gaps. Physiol Behav 2017; 38: 448-58.
5. Frangogiannis NG. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med 2019; 65: 70-99.
6. Banerjee I, Fuseler JW, Intwala AR, Baudino TA. IL-6 loss causes ventricular dysfunction, fibrosis, reduced capillary density, and dramatically alters the cell populations of the developing and adult heart. Am J Physiol Heart Circ Physiol 2009; 296: 1694-704.
7. Gullestad L, Ueland T, Vinge LE, Yndestad A, Aukrust P. Inflammatory cytokines in heart failure: Mediators and markers. Cardiology 2012; 122: 23-35.
8. Broekmans K, Giesen J, Menges L, Koesling D, Russwurm M. Angiotensin II-induced cardiovascular fibrosis is attenuated by no-sensitive guanylyl cyclase1. Cells 2020; 9: 2436-2446.
9. Farngogiannis NG. Cardiac fibrosis. Cardiovascular Res 2021; 117: 1450-1488.
10. Mehta PK, Griendling KK. Angiotensin II cell signaling: Physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 2007; 292: C82-C97.
11. Wang X, Zhang J, Lu L, Zhou L. The longevity effect of echinacoside in Caenorhabditis elegans mediated through Daf-16. Biosci Biotechnol Biochem 2015; 79: 1676-1683.
12. Chen W, Lin HR, Wei CM, Luo XH, Sun ML, Yang ZZ, et al. Echinacoside, a phenylethanoid glycoside from cistanche deserticola, extends lifespan of Caenorhabditis elegans and protects from Aβ-induced toxicity. Biogerontology 2018; 19: 47-65.
13. Ma H, Liu Y, Tang L, Ding H, Bao X, Song F, et al. Echinacoside selectively rescues complex I inhibition-induced mitochondrial respiratory impairment via enhancing complex II activity. Neurochem Int 2019; 125: 136-143.
14. Wei W, Lan XB, Liu N, Yang JM, Du J, Ma L, et al. Echinacoside alleviates hypoxic-ischemic brain injury in neonatal rat by enhancing antioxidant capacity and inhibiting apoptosis. Neurochem Res 2019; 44, 1582-1592.
15. Wu L, Georgiev MI, Cao H, Nahar L, El-Seedi HR, Sarker SD, et al. Therapeutic potential of phenylethanoid glycosides: A systematic review. Med Res Rev 2020; 40: 2605-2649.
16. Ni Y, Deng J, Liu X, Li Q, Zhang J, Bai H, et al. Echinacoside reverses myocardial remodeling and improves heart function via regulating SIRT1/FOXO3a/MnSOD axis in HF rats induced by isoproterenol. J Cell Mol Med 2021; 25: 203‐216.
17. Ni Y, Zhang J, Zhu W, Duan Y, Bai HY, Luan Ch. Echinacoside inhibited cardiomyocyte pyroptosis and improved heart function of HF rats induced by isoproterenol via suppressing NADPH/ROS/ER stress. J Cell Mol Med 2022; 26: 5414-5425.
18. Wu Y, Liu X, Zhou Q, Huang Ch, Meng X, Xu F, et al. Silent information regulator 1 (SIRT1) ameliorates liver fibrosis via promoting activated stellate cell apoptosis and reversion. Toxicol Appl Pharmacol 2015; 289, 163-176.
19. Rizk SM, El-Maraghy SA, Nassar NN. A novel role for SIRT-1 in L-arginine protection against STZ induced myocardial fibrosis in rats. PloS One 2014; 9: 114560.
20. Li N, Zhou H, Ma ZG, Zhu JX, Liu Ch, Song P, et al. Geniposide alleviates isoproterenol-induced cardiac fibrosis partially via SIRT1 activation in vivo and in vitro. Front Pharmacol 2018; 9: 854-869.
21. Bugyei-Twum A, Ford C, Civitarese R, Seegobin J, Advani SL, Desjardins JF, et al. Sirtuin 1 activation attenuates cardiac fibrosis in a rodent pressure overload model by modifying Smad2/3 transactivation. Cardiovasc Res 2018; 114: 1629-1641.
22. Garbers C, Hermanns H, Schaper F, Müller-Newen G, Grötzinger J, Rose-John S et al. Plasticity and cross-talk of Interleukin 6-type cytokines. Cytokine Growth Factor Rev 2012; 23: 85-97.
23. Garbers C, Scheller J. Interleukin-6 and interleukin-11: Same same but different. Biol Chem 2013; 394:1145-1161.
24. Rose JS. Interleukin-6 Family Cytokines. Cold Spring Harb Perspect Biol 2017; 10: a028415-028431.
25. Ng B, Dong J, D’Agostino G, Viswanathan S, Widjaja AA, Lim WW, et al. Interleukin-11 is a therapeutic target in idiopathic pulmonary fibrosis. Sci Transl Med 2019; 11: 1-14.
26. Ye J, Wang Z, Ye D, Wang Y, Wang M, Ji Q, et al. Increased interleukin-11 levels are correlated with cardiac events in patients with chronic heart failure. Mediators Inflamm 2019; 2019: 1575410-1575417.
27. Schafer S, Viswanathan S, Widjaja AA, Lim WW, Moreno-Moral A, DeLaughter DM, et al. IL11 is a crucial determinant of cardiovascular fibrosis. Nature 2017; 552: 110-115.
28. Chen Y, Wang L, Huang S, Ke J, Wang Q, Zhou Zh, et al. Lutein attenuates angiotensin II-induced cardiac remodeling by inhibiting AP-1/IL-11 signaling. Redox Biol 2021; 44: 102020-102035.
29. Liu Z, Zhang M, Wu J, Zhou P, Liu Y, Wu Y, et al. Serum CD121a (interleukin 1 receptor, type I): A potential novel inflammatory marker for coronary heart disease. PLoS One 2015; 10: e0131086-0131096.
30. Obana M, Maeda M, Takeda K, Hayama A, Mohri T, Yamashita T, et al. Therapeutic activation of signal transducer and activator of transcription 3 by interleukin-11 ameliorates cardiac fibrosis after myocardial infarction. Circulation 2010; 121: 684-691.
31. Obana N, Miyamoto K, Murasawa S, Iwakura T, Hayama A, Yamashita T, et al. Therapeutic administration of IL-11 exhibits the postconditioning effects against ischemia-reperfusion injury via STAT3 in the heart. Am J Physiol Heart Circ Physiol 2012; 303: 569-577.
32. National Research Council. Guide for the care and Use of Laboratory animals. 8th edition. Washington (DC): National Academies Press (US); 2011.
33. Bi HL, Zhang YL, Yang J, Shu Q, Yang XL, Yan X, et al. Inhibition of UCHL1 by LDN-57444 attenuates Ang II-Induced atrial fibrillation in mice. Hypertens Res 2020; 43: 168-177.
34. Lyu L, Chen J, Wang W, Yan T, Lin J, Gao H et al. Scoparone alleviates Ang II-induced pathological myocardial hypertrophy in mice by inhibiting oxidative stress. J Cell Mol Med 2021; 25: 3136-3148.
35. Wang S, Bai J, Che Y, Qu W, Li J. Fucoidan inhibits apoptosis and improves cardiac remodeling by inhibiting p53 transcriptional activation through USP22/Sirt 1. Front Pharmacol 2023; 14: 1164333-1164342.
36. Ren KW, Yu XH, Gu YH, Xie X, Wang Y, Wang SH et al. Cardiac-specific knockdown of Bhlhe40 attenuates angiotensin II (Ang II)-Induced atrial fibrillation in mice. Front Cardiovasc Med 2022; 9: 957903-957916.
37. Sun J, Wang R, Chao T, Peng J, Wang Ch, Chen K, et al. Ginsenoside Re inhibits myocardial fibrosis by regulating miR-489/myd88/NF-κB pathway. J Ginseng Res 2023; 47: 218-227.
38. Wu Y, Luo J, Song X, Gu W, Wang S, Hao SH, et al. Irisin attenuates angiotensin II-induced atrial fibrillation and atrial fibrosis via LOXL2 and TGFβ1/Smad2/3 signaling pathways. Iran J Basic Med Sci 2023; 26: 717-724.
39. Bao MW, Cai Z, Zhang XJ, Li L, Liu X, Wan N, et al. Dickkopf-3 protects against cardiac dysfunction and ventricular remodeling following myocardial infarction. Basic Res Cardiol 2015; 110: 25.
40. Cheng S, Vasan RS. Advances in the epidemiology of heart failure and left ventricular remodeling. Circulation 2011; 124: E516-E519.
41. Ducharme A, Frantz S, Aikawa M, M Lindsey, L E Rohde, Schoen FJ, et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest 2000; 106: 55-62.
42. Rajappa M, Sharma A. Biomarkers of cardiac injury: An update. Angiology 2005; 56: 677-691.
43. Nyarko OO, Sucharov CC. The secretome as a biomarker and functional agent in heart failure. J Cardiovasc Aging 2023; 3: 27-45.
44. Lin Q, Chen XY, Zhang J, Yuan YL, Zhao W, Wei B, et al. Upregulation of SIRT1 contributes to the cardioprotective effect of Rutin against myocardial ischemia-reperfusion injury in rats. J Func Foods 2018; 46: 227-236.
45. Cook SA, Sebastian SS. Hiding in plain sight: Interleukin-11 emerges as a master regulator of fibrosis, tissue integrity, and stromal inflammation. Annu Rev Med 2020; 27: 263-276.
46. Lal H, Ahmad F, Zhou J, Yu JE, Vagnozzi RJ, Guo Y, et al. Cardiac fibroblast glycogen synthase kinase-3β regulates ventricular remodeling and dysfunction in ischemic heart. Circulation 2014; 130: 419-430.
47. Działo E, Czepiel M, Tkacz K, Siedlar M, Kania G, Błyszczuk P. WNT/β-catenin signaling promotes TGF-β-mediated activation of human cardiac fibroblasts by enhancing IL-11 production. Int J Mol Sci 2021; 22: 10072-10087.