Echinacoside alleviates Ang II-induced cardiac fibrosis by enhancing the SIRT1/IL-11 pathway

Document Type : Original Article

Authors

Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Shanghai Health Medical College Affiliated Zhoupu Hospital Shanghai 201318, China

10.22038/ijbms.2024.79837.17296

Abstract

Objective(s): Echinacoside (ECH) is an anti-fibrotic phenylethanoid glycoside derived from the Cistanche plant that protects against cardiac dysfunction by mitigating apoptosis, oxidative stress, and fibrosis. Nevertheless, ECH’s precise function and mechanisms in addressing cardiac fibrosis are still not fully understood.
Materials and Methods: In our current investigation, we induced cardiac fibrosis in mice by administering Angiotensin II (Ang II) and subsequently assessed the effects of ECH treatment four weeks post-fibrosis induction. Additionally, in an in vitro setting, we exposed cardiac fibroblasts (CFs) to Ang II to prove the anti-fibrotic mechanisms of ECH.
Results: ECH treatment effectively reversed cardiac fibrosis in the mice model. ECH treatment significantly reduced the levels of fibrosis-related genes, such as α-SMA, Collagen I, and Collagen III (all, P<0.001). Moreover, it reduced the number of apoptotic cells and regulated the expression of apoptosis-related genes, such as BAX and BCL-2 (all, P<0.001). ECH treatment also positively affected serum levels of markers associated with cardiac fibrosis, including LDH, CK-MB, ANP, BNP, CTnl, and CTnT (all, P<0.001), in the in vivo experiments. In the in vitro studies, ECH pretreatment alleviated cardiac fibroblast apoptosis and reduced cell migration, collagen deposition, and MMP expression (all, P<0.001). In our in vivo and in vitro investigations, we observed that ECH treatment reversed the down-regulation of SIRT1 and up-regulation of IL-11 following cardiac fibrosis. The results suggest that the protective effects of ECH may involve regulating the SIRT1/IL-11 pathway.
Conclusion: ECH may protect against Ang II-induced cardiac fibrosis via the SIRT1/IL-11 pathway.

Keywords

Main Subjects


1. Hinderer S, Schenke-Layland K. Cardiac fibrosis a short review of causes and therapeutic strategies. Adv Drug Deliv Rev 2019; 146: 77-82.
2. Ma ZG, Yuan YP, Wu HM, Zhang X, Tang QZ. Cardiac fibrosis: New insights into the pathogenesis. Int J Biol Sci 2018; 14: 1645-1657. 
3. Francisco J, Zhang Y, Jeong JI, Mizushima W, Ikeda Sh, Ivessa A, et al. Blockade of fibroblast YAP attenuates cardiac fibrosis and dysfunction through MRTF-A inhibition. JACC Basic Transl Sci 2020; 5: 931-945. 
4. Ma Y, Iyer RP, Jung M, Czubryt MP, Lindsey ML. Cardiac fibroblast activation post-myocardial infarction: Current knowledge gaps. Physiol Behav 2017; 38: 448-58. 
5. Frangogiannis NG. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med 2019; 65: 70-99.
6. Banerjee I, Fuseler JW, Intwala AR, Baudino TA. IL-6 loss causes ventricular dysfunction, fibrosis, reduced capillary density, and dramatically alters the cell populations of the developing and adult heart. Am J Physiol Heart Circ Physiol 2009; 296: 1694-704.
7. Gullestad L, Ueland T, Vinge LE, Yndestad A, Aukrust P. Inflammatory cytokines in heart failure: Mediators and markers. Cardiology 2012; 122: 23-35.
8. Broekmans K, Giesen J, Menges L, Koesling D, Russwurm M. Angiotensin II-induced cardiovascular fibrosis is attenuated by no-sensitive guanylyl cyclase1. Cells 2020; 9: 2436-2446. 
9. Farngogiannis NG. Cardiac fibrosis. Cardiovascular Res 2021; 117: 1450-1488. 
10. Mehta PK, Griendling KK. Angiotensin II cell signaling: Physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 2007; 292: C82-C97.
11. Wang X, Zhang J, Lu L, Zhou L. The longevity effect of echinacoside in Caenorhabditis elegans mediated through Daf-16. Biosci Biotechnol Biochem 2015; 79: 1676-1683.
12. Chen W, Lin HR, Wei CM, Luo XH, Sun ML, Yang ZZ, et al. Echinacoside, a phenylethanoid glycoside from cistanche deserticola, extends lifespan of Caenorhabditis elegans and protects from Aβ-induced toxicity. Biogerontology 2018; 19: 47-65.
13. Ma H, Liu Y, Tang L, Ding H, Bao X, Song F, et al. Echinacoside selectively rescues complex I inhibition-induced mitochondrial respiratory impairment via enhancing complex II activity. Neurochem Int 2019; 125: 136-143.
14. Wei W, Lan XB, Liu N, Yang JM, Du J, Ma L, et al. Echinacoside alleviates hypoxic-ischemic brain injury in neonatal rat by enhancing antioxidant capacity and inhibiting apoptosis. Neurochem Res 2019; 44, 1582-1592.
15. Wu L, Georgiev MI, Cao H, Nahar L, El-Seedi HR, Sarker SD, et al. Therapeutic potential of phenylethanoid glycosides: A systematic review. Med Res Rev 2020; 40: 2605-2649.
16. Ni Y, Deng J, Liu X, Li Q, Zhang J, Bai H,  et al. Echinacoside reverses myocardial remodeling and improves heart function via regulating SIRT1/FOXO3a/MnSOD axis in HF rats induced by isoproterenol. J Cell Mol Med 2021; 25: 203‐216.  
17. Ni Y, Zhang J, Zhu W, Duan Y, Bai HY, Luan Ch. Echinacoside inhibited cardiomyocyte pyroptosis and improved heart function of HF rats induced by isoproterenol via suppressing NADPH/ROS/ER stress. J Cell Mol Med 2022; 26: 5414-5425.
18. Wu Y, Liu X, Zhou Q, Huang Ch, Meng X, Xu F, et al. Silent information regulator 1 (SIRT1) ameliorates liver fibrosis via promoting activated stellate cell apoptosis and reversion. Toxicol Appl Pharmacol 2015; 289, 163-176.
19. Rizk SM, El-Maraghy SA, Nassar NN. A novel role for SIRT-1 in L-arginine protection against STZ induced myocardial fibrosis in rats. PloS One 2014; 9: 114560.
20. Li N, Zhou H, Ma ZG, Zhu JX, Liu Ch,  Song P, et al. Geniposide alleviates isoproterenol-induced cardiac fibrosis partially via SIRT1 activation in vivo and in vitro. Front Pharmacol 2018; 9: 854-869.
21. Bugyei-Twum A, Ford C, Civitarese R, Seegobin J, Advani SL, Desjardins JF, et al. Sirtuin 1 activation attenuates cardiac fibrosis in a rodent pressure overload model by modifying Smad2/3 transactivation. Cardiovasc Res 2018; 114: 1629-1641.
22. Garbers C, Hermanns H, Schaper F, Müller-Newen G, Grötzinger J, Rose-John S et al. Plasticity and cross-talk of Interleukin 6-type cytokines. Cytokine Growth Factor Rev 2012; 23: 85-97. 
23. Garbers C, Scheller J. Interleukin-6 and interleukin-11: Same same but different. Biol Chem 2013; 394:1145-1161.
24. Rose JS. Interleukin-6 Family Cytokines. Cold Spring Harb Perspect Biol 2017; 10: a028415-028431.
25. Ng B, Dong J, D’Agostino G, Viswanathan S, Widjaja AA, Lim WW, et al. Interleukin-11 is a therapeutic target in idiopathic pulmonary fibrosis. Sci Transl Med 2019; 11: 1-14.
26. Ye J, Wang Z, Ye D, Wang Y, Wang M, Ji Q, et al. Increased interleukin-11 levels are correlated with cardiac events in patients with chronic heart failure. Mediators Inflamm 2019; 2019: 1575410-1575417.
27. Schafer S, Viswanathan S, Widjaja AA, Lim WW, Moreno-Moral A, DeLaughter DM, et al. IL11 is a crucial determinant of cardiovascular fibrosis. Nature 2017; 552: 110-115.
28. Chen Y, Wang L, Huang S, Ke J, Wang Q, Zhou Zh, et al. Lutein attenuates angiotensin II-induced cardiac remodeling by inhibiting AP-1/IL-11 signaling. Redox Biol 2021; 44: 102020-102035.
29. Liu Z, Zhang M, Wu J, Zhou P, Liu Y, Wu Y, et al. Serum CD121a (interleukin 1 receptor, type I): A potential novel inflammatory marker for coronary heart disease. PLoS One 2015; 10: e0131086-0131096.
30. Obana M, Maeda M, Takeda K, Hayama A, Mohri T, Yamashita T, et al. Therapeutic activation of signal transducer and activator of transcription 3 by interleukin-11 ameliorates cardiac fibrosis after myocardial infarction. Circulation 2010; 121: 684-691.
31. Obana N, Miyamoto K, Murasawa S, Iwakura T, Hayama A, Yamashita T, et al. Therapeutic administration of IL-11 exhibits the postconditioning effects against ischemia-reperfusion injury via STAT3 in the heart. Am J Physiol Heart Circ Physiol 2012; 303: 569-577.
32. National Research Council. Guide for the care and Use of Laboratory animals. 8th edition. Washington (DC): National Academies Press (US); 2011.
33. Bi HL, Zhang YL, Yang J, Shu Q, Yang XL, Yan X, et al. Inhibition of UCHL1 by LDN-57444 attenuates Ang II-Induced atrial fibrillation in mice. Hypertens Res 2020; 43: 168-177.
34. Lyu L, Chen J, Wang W, Yan T, Lin J, Gao H et al. Scoparone alleviates Ang II-induced pathological myocardial hypertrophy in mice by inhibiting oxidative stress. J Cell Mol Med 2021; 25: 3136-3148.
35. Wang S, Bai J, Che Y, Qu W, Li J. Fucoidan inhibits apoptosis and improves cardiac remodeling by inhibiting p53 transcriptional activation through USP22/Sirt 1. Front Pharmacol 2023; 14: 1164333-1164342.
36. Ren KW, Yu XH, Gu YH, Xie X, Wang Y, Wang SH et al. Cardiac-specific knockdown of Bhlhe40 attenuates angiotensin II (Ang II)-Induced atrial fibrillation in mice. Front Cardiovasc Med 2022; 9: 957903-957916.
37. Sun J, Wang R, Chao T, Peng J, Wang Ch, Chen K, et al. Ginsenoside Re inhibits myocardial fibrosis by regulating miR-489/myd88/NF-κB pathway. J Ginseng Res 2023; 47: 218-227.
38. Wu Y, Luo J, Song X, Gu W, Wang S, Hao SH, et al. Irisin attenuates angiotensin II-induced atrial fibrillation and atrial fibrosis via LOXL2 and TGFβ1/Smad2/3 signaling pathways. Iran J Basic Med Sci 2023; 26: 717-724.
39. Bao MW, Cai Z, Zhang XJ, Li L, Liu X, Wan N, et al. Dickkopf-3 protects against cardiac dysfunction and ventricular remodeling following myocardial infarction. Basic Res Cardiol 2015; 110: 25.
40. Cheng S, Vasan RS. Advances in the epidemiology of heart failure and left ventricular remodeling. Circulation 2011; 124: E516-E519. 
41. Ducharme A, Frantz S, Aikawa M, M Lindsey, L E Rohde, Schoen FJ, et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest 2000; 106: 55-62.
42. Rajappa M, Sharma A. Biomarkers of cardiac injury: An update. Angiology 2005; 56: 677-691.
43. Nyarko OO, Sucharov CC. The secretome as a biomarker and functional agent in heart failure. J Cardiovasc Aging 2023; 3: 27-45.
44. Lin Q, Chen XY, Zhang J, Yuan YL, Zhao W, Wei B, et al. Upregulation of SIRT1 contributes to the cardioprotective effect of Rutin against myocardial ischemia-reperfusion injury in rats. J Func Foods 2018; 46: 227-236.
45. Cook SA, Sebastian SS. Hiding in plain sight: Interleukin-11 emerges as a master regulator of fibrosis, tissue integrity, and stromal inflammation. Annu Rev Med 2020; 27: 263-276.
46. Lal H, Ahmad F, Zhou J, Yu JE, Vagnozzi RJ, Guo Y, et al. Cardiac fibroblast glycogen synthase kinase-3β regulates ventricular remodeling and dysfunction in ischemic heart. Circulation 2014; 130: 419-430.
47. Działo E, Czepiel M, Tkacz K, Siedlar M, Kania G, Błyszczuk P. WNT/β-catenin signaling promotes TGF-β-mediated activation of human cardiac fibroblasts by enhancing IL-11 production. Int J Mol Sci 2021; 22: 10072-10087.