Role of bacteria in cancers and their therapeutic potential: Review of current knowledge

Document Type : Review Article

Authors

Department of Microbiology Faculty of Biological Sciences University of Wroclaw Przybyszewskiego 63, 51-148 Wroclaw

10.22038/ijbms.2024.77667.16798

Abstract

Cancers are extremely dynamic diseases that can actively cause refractorines to be gained from applied therapies, which is why they are at the forefront of deaths worldwide. In this literature review,  we covered the most recent and important discoveries regarding the influence of human microbiota, including tumor bacteriome, on the development and treatment of cancer. Advances in research on microbial communities have enabled us to discover the role of the human microbiome in the development and course of this disease, helping us understand neoplasms better and design new potential therapies. As we show through our findings, by immunomodulation and the secretion of certain chemical substances, the correct bacteriome of the intestinal tract, respiratory system, or skin can protect humans against cancer development and help during the treatment process. Bacteria also reside inside tumors, forming part of the tumor microenvironment (TME), where they interact with immunological and cancer cells in many complex ways. Some bacteria, such as Pseudomonas aeruginosa or Akkermansia muciniphila, can stimulate anticancer cell-mediated immune responses or even directly lead to cancer cell death. We also present the clinical possibilities of using some live, usually modified bacteria to develop bacteriotherapies. Modifying the gut microbiome to stimulate standard treatment is also important. Research on the microbiome and cancer remains a challenging topic in microbiology, having a great potential for advancements in cancer therapy in the future, and is continuously becoming a more and more popular field of research, as shown by our statistical analysis of PubMed data.

Keywords

Main Subjects


1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021 May; 71: 209-249.
2. Binder M, Roberts C, Spencer N, Antoine D, Cartwright C. On the antiquity of cancer: Evidence for metastatic carcinoma in a young man from Ancient Nubia (c. 1200BC). PLoS One 2014; 9: e90924-90935.
3. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin 2022 Jan 12; 72: 7-33.
4. Chakraborty S, Rahman T. The difficulties in cances treatment. Ecancermedicalscience 2012; 6: ed16-21.
5. Zhu L, Jiang M, Wang H, Sun H, Zhu J, Zhao W, et al. A narrative review of tumor heterogeneity and challenges to tumor drug therapy. Ann Transl Med 2021; 9:1351-1360.
6. Dahmke IN, Peckys D, Porth I, Hirsch D, Gaiser T, de Jonge N. Single molecule analysis in patient derived samples. Wiley Analytical Science; 2021.
7. Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature 2019; 575: 299-309.
8. Swagatika S, Tomar RS. ABC transporter Pdr5 is required for cantharidin resistance in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2021; 553: 141–147.
9. Pecorino L. Molecular Biology of Cancer: Mechanisms, Targets, and therapeutics. Oxford University Press; 2021.
10. Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal 2020; 18: 59-78.
11. Fang P, Kazmi SA, Jameson KG, Hsiao EY. The microbiome as a modifier of neurodegenerative disease risk. Cell Host Microbe 2020; 28: 201-222.
12. Navidinia M, Goudarzi M, Seyfi E. The clinical outcomes of gut-brain axis (GBA) microbiota influence on psychiatric disorders. Iran J Microbiol 2023; 15: 1-9. 
13. Wang B, Yao M, Lv L, Ling Z, Li L. The human microbiota in health and disease. Engineering 2017; 3: 71-82.
14. Panasiuk A, Kowalinska J. Mikrobiota przewodu pokarmowego [Gut microbiota]. 1st ed. PZWL; 2019.
15. Akbar N, Khan NA, Muhammad JS, Siddiqui R. The role of gut microbiome in cancer genesis and cancer prevention. Health Sci Rev 2022; 2: 100010-100021.
16. Shi F, Liu G, Lin Y, Guo CL, Han J, Chu ESH, et al. Altered gut microbiome composition by appendectomy contributes to colorectal cancer. Oncogene 2022; 42: 530-540.
17. Zhang C, Hu A, Li J, Zhang F, Zhong P, Li Y, et al. Combined non-invasive prediction and new biomarkers of oral and fecal microbiota in patients with gastric and colorectal cancer. Front Cell Infect Microbiol 2022; 19: 830684-830701.
18. Hooper MJ, Enriquez GL, Veon FL, LeWitt TM, Sweeney D, Green SJ, et al. Narrowband ultraviolet B response in cutaneous T-cell lymphoma is characterized by increased bacterial diversity and reduced Staphylococcus aureus and Staphylococcus lugdunensis. Front Immunol 2022; 11: 1022093-1022107.
19. Krueger A, Zaugg J, Chisholm S, Linedale R, Lachner N, Teoh SM, et al. Secreted toxins from Staphylococcus aureus strains isolated from keratinocyte skin cancers mediate pro-tumorigenic inflammatory responses in the skin. Front Microbiol. 2022; 25:789042-789059.
20. Hao Y, Zeng Z, Peng X, Ai P, Han Q, Ren B, et al. The human oral – nasopharynx microbiome as a risk screening tool for nasopharyngeal carcinoma. Front Cell Infect Microbiol 2022; 30: 1013920-1013931.
21. Vernocchi P, Gili T, Conte F, Del Chierico F, Conta G, Miccheli A, et al. Network analysis of gut microbiome and metabolome to discover microbiota-linked biomarkers in patients affected by non-small cell lung cancer. Int J Mol Sci 2020; 21: 8730-8749. 
22. Carretta MD, Quiroga J, López R, Hidalgo MA, Burgos RA. Participation of short-chain fatty acids and their receptors in gut inflammation and colon cancer. Front Physiol 2021; 8: 662739-662752.
23. Sadrekarimi H, Gardanova ZR, Bakhshesh M, Ebrahimzadeh F, Yaseri AF, Thangavelu L, et al. Emerging role of human microbiome in cancer development and response to therapy: Special focus on intestinal microflora. J Transl Med 2022; 20: 301-321.
24. Jain T, Sharma P, Are AC, Vickers SM, Dudeja V. New insights into the cancer-microbiome-immune axis: Decrypting a decade of discoveries. Front Immunol 2021; 12: 622064-622091.
25. Alon‐Maimon T, Mandelboim O, Bachrach G. Fusobacterium nucleatum and cancer. Periodontol 2000 2022; 89: 166-80.
26. Ishikawa T, Terashima J, Shimoyama Y, Ohashi Y, Mikami T, Takeda Y, et al. Effects of butyric acid, a bacterial metabolite, on the migration of ameloblastoma mediated by laminin 332. J Oral Sci 2020; 62: 435-438. 
27. Liu X, Yao JJ, Chen Z, Lei W, Duan R, Yao Z. Lipopolysaccharide sensitizes the therapeutic response of breast cancer to IAP antagonist. Front Immunol 2022; 13: 906357-906373.
28. Reens AL, Cabral DJ, Liang X, Norton JE, Therien AG, Hazuda DJ, et al. Immunomodulation by the commensal microbiome during immune-targeted interventions: focus on cancer immune checkpoint inhibitor therapy and vaccination. Front Immunol 2021; 12: 643255-643275.
29. Ma J, Huang L, Hu D, Zeng S, Han Y, Shen H. The role of the tumor microbe microenvironment in the tumor immune microenvironment: Bystander, activator, or inhibitor? J Exp Clin Cancer Res 2021; 40: 327-344.
30. Qiao H, Tan XR, Li H, Li JY, Chen XZ, Li YQ, et al. Association of intratumoral microbiota with prognosis in patients with nasopharyngeal carcinoma from 2 hospitals in China. JAMA Oncol 2022; 8: 1301-1309.
31. Chen Y, Wu FH, Wu PQ, Xing HY, Ma T. The Role of the tumor microbiome in tumor development and its treatment. Front Immunol 2022; 13: 935846-935861.
32. Jin C, Lagoudas GK, Zhao C, Bullman S, Bhutkar A, Hu B, et al. Commensal microbiota promote lung cancer development via γδ T cells. Cell 2019; 176: 998-1013.
33. Di Domenico EG, Cavallo I, Pontone M, Toma L, Ensoli F. Biofilm producing Salmonella Typhi: Chronic colonization and development of gallbladder cancer. Int J Mol Sci 2017; 18: 1887.
34. Yin H, Miao Z, Wang L, Su B, Liu C, Jin Y, et al. Fusobacterium nucleatum promotes liver metastasis in colorectal cancer by regulating the hepatic immune niche and altering gut microbiota. Aging (Albany NY) 2022; 14: 1941-1958.
35. Wong-Rolle A, Wei HK, Zhao C, Jin C. Unexpected guests in the tumor microenvironment: Microbiome in cancer. Protein Cell 2021; 12: 426-435.
36. Zhu Z, Cai J, Hou W, Xu K, Wu X, Song Y, et al. Microbiome and spatially resolved metabolomics analysis reveal the anticancer role of gut Akkermansia muciniphila by crosstalk with intratumoral microbiota and reprogramming tumoral metabolism in mice. Gut Microbes 2023; 15: 2166700-2166723.
37. Xu S, Yin W, Zhang Y, Lv Q, Yang Y, He J. Foes or friends? Bacteria enriched in the tumor microenvironment of colorectal cancer. Cancers (Basel) 2020; 12: 372-393.
38. Luo ZW, Xia K, Liu YW, Liu JH, Rao SS, Hu XK, et al. Extracellular vesicles from Akkermansia muciniphila elicit antitumor immunity against prostate cancer via modulation of CD8+ T cells and macrophages. Int J Nanomedicine 2021; 16: 2949-2963.
39. Choi JK, Naffouje SA, Goto M, Wang J, Christov K, Rademacher DJ, et al. Cross-talk between cancer and Pseudomonas aeruginosa mediates tumor suppression. Commun Biol 2023; 6: 16-26.
40. Abdel Sater AH, Bouferraa Y, Amhaz G, Haibe Y, Lakkiss A, Shamseddine A. From tumor cells to endothelium and gut microbiome: A complex interaction favoring the metastasis cascade. Front Oncol 2022; 12: 804983-804998.
41. Wang N, Sun T, Xu J. Tumor-related microbiome in the breast microenvironment and breast cancer. J Cancer 2021; 12: 4841-4848.
42. Balhouse BN, Patterson L, Schmelz EM, Slade DJ, Verbridge SS. N-(3-oxododecanoyl)-L-homoserine lactone interactions in the breast tumor microenvironment: Implications for breast cancer viability and proliferation in vitro. PLoS One 2017; 12: e0180372-180388.
43. Qiu Q, Lin Y, Ma Y, Li X, Liang J, Chen Z, et al. Exploring the emerging role of the gut microbiota and tumor microenvironment in cancer immunotherapy. Front Immunol 2021; 11: 612202-612217.
44. Ma J, Sun L, Liu Y, Ren H, Shen Y, Bi F, et al. Alter between gut bacteria and blood metabolites and the anti-tumor effects of Faecalibacterium prausnitzii in breast cancer. BMC Microbiol 2020; 20: 82-101. 
45. Qi J, He J, Jin S, Yang X, Bai H, Liu C, et al. P. aeruginosa mediated necroptosis in mouse tumor cells induces long-lasting systemic antitumor immunity. Front Oncol 2021; 10: 610651-610663.
46. Gao Y, Bi D, Xie R, Li M, Guo J, Liu H, et al. Fusobacterium nucleatum enhances the efficacy of PD-L1 blockade in colorectal cancer. Signal Transduct Target Ther 2021; 6: 398-408.
47. Haberman Y, Kamer I, Amir A, Goldenberg S, Efroni G, Daniel-Meshulam I, et al. Gut microbial signature in lung cancer patients highlights specific taxa as predictors for durable clinical benefit. Sci Rep 2023; 13: 2007-2019.
48. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 2014; 11: 506-514.
49. Sankarapandian V, Venmathi Maran BA, Rajendran RL, Jogalekar MP, Gurunagarajan S, Krishnamoorthy R, et al. An update on the effectiveness of probiotics in the prevention and treatment of cancer. Life (Basel) 2022; 12: 59-78.
50. Motevaseli E, Dianatpour A, Ghafouri-Fard S. The role of probiotics in cancer treatment: emphasis on their in vivo and in vitro anti-metastatic effects. Int J Mol Cell Med 2017; 6: 66-76.
51. Tomita Y, Ikeda T, Sakata S, Saruwatari K, Sato R, Iyama S, et al. Association of probiotic Clostridium butyricum therapy with survival and response to immune checkpoint blockade in patients with lung cancer. Cancer Immunol Res 2020; 8: 1236-1242.
52. Oladejo M, Nguyen HM, Silwal A, Reese B, Paulishak W, Markiewski MM, et al. Listeria-based immunotherapy directed against CD105 exerts anti-angiogenic and anti-tumor efficacy in renal cell carcinoma. Front Immunol 2022; 13: 1038807-1038834.
53. Liang S, Wang C, Shao Y, Wang Y, Xing D, Geng Z. Recent advances in bacteria-mediated cancer therapy. Front Bioeng Biotechnol 2022; 10: 1026248-1026268.
54. Maletzki C, Klier U, Obst W, Kreikemeyer B, Linnebacher M. Reevaluating the concept of treating experimental tumors with a mixed bacterial vaccine: Coley’s Toxin. Clin Dev Immunol 2012; 2012: 230625-230641.
55. Staedtke V, Roberts N, Bai RY, Zhou S. Clostridium novyi-NT in cancer therapy. Genes Dis 2016; 3: 144-152.
56. Mi Z, Feng ZC, Li C, Yang X, Ma MT, Rong PF. Salmonella-mediated cancer therapy: An innovative therapeutic strategy. J Cancer 2019; 10: 4765-4776.
57. Bermudes D, Low KB, Pawelek J, Feng M, Belcourt M, Zheng LM, et al. Tumour-selective Salmonella-based cancer therapy. Biotechnol Genet Eng Rev 2001; 18: 219-233.
58. Ebrahimzadeh S, Ahangari H, Soleimanian A, Hosseini K, Ebrahimi V, Ghasemnejad T, et al. Colorectal cancer treatment using bacteria: Focus on molecular mechanisms. BMC Microbiol 2021; 21: 218-230. 
59. Ołdak A, Zielińska D. Bakteriocyny bakterii fermentacji mlekowej jako alternatywa antybiotyków [Bacteriocins from lactic acid bacteria as an alternative to antibiotics]. Postepy Hig Med Dosw 2017; 71: 328-338.
60. Solecka J, Ziemska J, Rajnisz A, Laskowska A, Guśpiel A. Promieniowce-występowanie i wydzielanie związków biologicznie czynnych [Actinomycetes–occurrence and production of biologically active compounds]. Post Microbiol 2013; 52: 83-91.
61. Kang YB, Cai Y. Faecal microbiota transplantation enhances efficacy of immune checkpoint inhibitors therapy against cancer. World J Gastroenterol 2021; 27: 5362-5375.
62. Chen D, Wu J, Jin D, Wang B, Cao H. Fecal microbiota transplantation in cancer management: Current status and perspectives. Int J Cancer 2019; 145: 2021-2031. 
63. Sedighi M, Zahedi Bialvaei A, Hamblin MR, Ohadi E, Asadi A, Halajzadeh M, et al. Therapeutic bacteria to combat cancer; current advances, challenges, and opportunities. Cancer Med 2019; 8: 3167–3181.
64. Sieow BFL, Wun KS, Yong WP, Hwang IY, Chang MW. Tweak to treat: Reprograming bacteria for cancer treatment. Trends Cancer 2021; 7: 447-464.
65. Song J, Zhang Y, Zhang C, Du X, Guo Z, Kuang Y, et al. A microfluidic device for studying chemotaxis mechanism of bacterial cancer targeting. Sci Rep 2018; 8: 6394-6403.
66. Duong MTQ, Qin Y, You SH, Min JJ. Bacteria-cancer interactions: bacteria-based cancer therapy. Exp Mol Med 2019; 51: 1-15.
67. Oladejo M, Paterson Y, Wood LM. Clinical experience and recent advances in the development of Listeria-based tumor immunotherapies. Front Immunol 2021; 12: 642316-642334.
68. Murray PR, Rossenthal KS, Pfaller MA. Medical microbiology. 8th ed. Elsevier; 2015.
69. Izquierdo-Serrano R, Fernández-Delgado I, Moreno-Gonzalo O, Martín-Gayo E, Calzada-Fraile D, Ramírez-Huesca M, et al. Extracellular vesicles from Listeria monocytogenes-infected dendritic cells alert the innate immune response. Front Immunol 2022; 5: 946358-946375.
70. Celec P, Gardlik R. Gene therapy using bacterial vectors. Front Biosci (Landmark Ed) 2017; 22: 81-95.
71. Ni B, Colin R, Sourjik V. Production and characterization of motile and chemotactic bacterial minicells. ACS Synth Biol 2021; 10: 1284-1291.
72. Rommasi F. Bacterial-based methods for cancer treatment: What we know and where we are. Oncol Ther 2022; 10: 23-54.
73. Henderson EA, Lukomski S, Boone BA. Emerging applications of cancer bacteriotherapy towards treatment of pancreatic cancer. Front Oncol 2023; 19: 1217095-1217110.
74. Din SRU, Saeed S, Khan SU, Arbi FM, Xuefang G, Zhong M. Bacteria-driven cancer therapy: Exploring advancements and challenges. Crit Rev Oncol Hematol 2023; 191: 104141-104153.
75. Broecker F, Moelling K. The roles of the virome in cancer. Microorganisms 2021; 9: 253-270.
76. Li X, Saxena D. The tumor mycobiome: A paradigm shift in cancer pathogenesis. Cell 2022; 185: 3648-3651.