Schisandrin B regulates the SIRT1/PI3K/Akt signaling pathway to ameliorate Ang II-infused cardiac fibrosis

Document Type : Original Article

Authors

1 Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Shanghai Health Medical College Affiliated Zhoupu Hospital) Shanghai, 201318, China

2 Department of General Medicine, Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China

3 Department of Cardiology, People’s Hospital of Shache County, Xinjiang, 844700, China

10.22038/ijbms.2025.83918.18160

Abstract

Objective(s): Schisandrin B (SchB), extracted from Schisandra chinensis, has antimicrobial and anti-inflammatory effects. The study aimed to investigate SchB’s possible defense against angiotensin II (Ang II)-infused cardiac fibrosis and its molecular processes.
Materials and Methods: An equivalent volume of saline or Ang II (2.0 mg/kg/day, HY-13948, MedChemExpress) was administered subcutaneously to male C57BL/6 mice aged between 8 and 10 weeks. SchB (30 mg/kg/day, HY-N0089, MedChemExpress) was given via intraperitoneal injection two hours before Ang II infusion for 28 days. Comprehensive morphological, histological, and biochemical analyses were conducted. We evaluated the mRNA and protein expression levels using western blot and RT-qPCR techniques.
Results: SchB treatment improves heart disease in Ang II-induced mice. SchB markedly lowered serum levels of cardiac fibrosis-related markers, including cTnI, cTnT, ANP, and BNP. In addition, SchB elevated sirtuin 1 (SIRT1) expression while reducing α-SMA, TGF-β1, collagen I, collagen III, and CTGF in vivo. Furthermore, SchB inhibited the migration of Ang II-infused rat cardiac fibroblasts. SchB increased SIRT1 expression while decreasing TGF-β1, α-SMA, collagen I, and collagen III, whereas EX-527, an inhibitor of SIRT1, recovered their activities in vitro. Furthermore, SchB elevated SIRT1 expression while lowering the expressions of p-PI3K (p85, Tyr458) and p-Akt (Ser473) proteins.
Conclusion: Our results suggest that SchB regulates the SIRT1/PI3K/Akt pathway to prevent Ang II-infused cardiac fibrosis.

Keywords

Main Subjects


1. Liu F, Wu H, Yang X, Dong Y, Huang G, Genin GM, et al. A new model of myofibroblast-cardiomyocyte interactions and their differences across species. Biophys J 2021; 120: 3764-3775.
2. DeLeon-Pennell KY, Meschiari CA, Jung M, Lindsey ML. Matrix metalloproteinases in myocardial infarction and heart failure. Prog Mol Biol Transl Sci 2017; 147: 75-100.
3. Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC. Cardiac fibrosis: The fibroblast awakens. Circ Res 2016; 118: 1021-1040.
4. Gulati A, Jabbour A, Ismail TF, Guha K, Khwaja J, Raza S. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA 2013; 309: 896-908.
5. Lal H,  Ahmad F, Zhou J, Yu JE, Vagnozzi RJ, Guo Y. Cardiac fibroblast glycogen synthase kinase-3beta regulates ventricular remodeling and dysfunction in ischemic heart. Circulation 2014; 130: 419-430.
6. Wen ZZ, Cai MY, Mai Z, Jin DM, Chen YX, Huang H. Angiotensin II receptor blocker attenuates intrarenal renin-angiotensin-system and podocyte injury in rats with myocardial infarction. PLoS One 2013; 8: e67242-67253.
7. Tan Y, Li X, Prabhu SD, Brittian KR, Chen Q, Yin X. Angiotensin II plays a critical role in alcohol-induced cardiac nitrative damage, cell death, remodeling, and cardiomyopathy in a protein kinase C/nicotinamide adenine dinucleotide phosphate oxidase-dependent manner. J Am Coll Cardiol 2012; 59: 1477-1486.
8. Ruttkay-Nedecky B, Nejdl L, Gumulec J, Zitka O, Masarik M, Eckschlager T, et al. The role of metallothionein in oxidative stress. Int J Mol Sci 2013; 14: 6044-6066.
9. Nguyen Dinh Cat A, Montezano AC, Burger D, Touyz RM. Angiotensin II, NADPH oxidase, and redox signaling in the vasculature. Antioxid Redox Signal 2013; 19: 1110-1120.
10. Sun Y. Intracardiac renin-angiotensin system and myocardial repair/remodeling following infarction. J Mol Cell Cardiol 2010; 48: 483-489.
11. Jia L, Li Y, Xiao C, Du J. Angiotensin II induces inflammation leading to cardiac remodeling. Front Biosci 2012; 17: 221-231.
12. Su X, Jiang X, Meng L, Dong X, Shen Y, Xin Y. Anticancer activity of sulforaphane: The epigenetic mechanisms and the Nrf2 signaling pathway. Oxidative Med Cell Longev 2018; 2018: 5438179-5438189.
13. Asghari S, Asghari-Jafarabadi M, Somi MH, Ghavami SM, Rafraf M. Comparison of calorie-restricted diet and resveratrol supplementation on anthropometric indices, metabolic parameters, and serum Sirtuin-1 levels in patients with nonalcoholic fatty liver disease: A randomized controlled clinical trial. J Am Coll Nutr 2018; 37: 223-233.
14. Tanno M, Kuno A, Horio Y, Miura T. Emerging beneficial roles of sirtuins in heart failure. Basic Res Cardiol 2012; 107: 273-287.
15. Vinciguerra M, Santini MP, Martinez C, Pazienza V, Claycomb WC, Giuliani A, et al. mIGF-1/JNK1/SirT1 signaling confers protection against oxidative stress in the heart. Aging Cell 2012; 11: 139-149.
16. Gao R, Ma Z, Hu Y, Chen J, Shetty S, Fu J. Sirt1 restrains lung inflammasome activation in a murine model of sepsis. Am J Physiol Lung Cell Mol Physiol 2015; 308: 847-853.
17. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: A regulated cell death nexus linking metabolism redox biology, and disease. Cell 2017; 171: 273-285.
18. Janku F, Yap TA, Meric-Bernstam F. Targeting the PI3K pathway in cancer: Are we making headway? Nat Rev Clin Oncol 2018; 15: 273-291. 
19. Chen M, Choi S, Wen T, Chen C, Thapa N, Lee JH, et al. A p53-phosphoinositide signalosome regulates nuclear AKT activation. Nat Cell Biol 2022; 24: 1099-1113. 
20. Hoxhaj G, Manning BD. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer 2020; 20: 74-88. 
21. Alzahrani AS. PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside. Semin Cancer Biol 2019; 59: 125-32.
22. Yan LS, Zhang SF, Luo G, Cheng BCY, Zhang C, Wang YW, et al. Schisandrin B mitigates hepatic steatosis and promotes fatty acid oxidation by inducing autophagy through AMPK/mTOR signaling pathway. Metabolism 2022; 131: 155200.
23. Li XK, Zhao Y, Gong SH, Song TB, Ge JM, Li JR, et al. Schisandrin B ameliorates acute liver injury by regulating EGFR-mediated activation of autophagy. Bioorg Chem 2023; 130: 106272.
24. Ma ZY, Xu G, Shen YY, Hu SF, Lin X, Zhou J, et al. Schisandrin B-mediated TH17 cell differentiation attenuates bowel inflammation. Pharmacol Res 2021; 166: 105459.
25. Zhu W, Luo W, Han JB, Zhang QY, Ji LJ, Samorodov AV, et al. Schisandrin B protects against LPS-induced inflammatory lung injury by targeting MyD88. Phytomedicine 2023; 108: 154489.
26. Dong CT, Song C, He ZQ, Song QL, Song TB, Liu JW, et al. Protective efficacy of Schizandrin B on ameliorating nephrolithiasis via regulating GSK3?/Nrf2 signaling-mediated ferroptosis in vivo and in vitro. Int Immunopharmacol 2023; 117: 110042.
27. Chen XQ, Liu CH, Deng JX, Xia TB, Zhang XH, Xue ST, et al. Schisandrin B ameliorates adjuvant-induced arthritis in rats via modulation of inflammatory mediators, oxidative stress, and HIF-1α/VEGF pathway. J Pharm Pharmacol 2024; 76: 681-690.
28. Shang J, Yan WH, Cui X, Ma WN, Wang ZZ, Liu N, et al. Schisandrin B, a potential GLP-1R agonist, exerts anti-diabetic effects by stimulating insulin secretion. Mol. Cell. Endocrinol. 2023; 577: 112029.
29. Duan C, Montgomery MK, Chen X, Ullas S, Stansfield J, McElhanon K, et al. Fully automated mouse echocardiography analysis using deep convolutional neural networks. Am J Physiol Heart Circ Physiol 2022; 4: H628-H639. 
30. Wu Y, Can J, Hao S, Qiang X, Ning Z. LOXL2 inhibitor attenuates angiotensin II-induced atrial fibrosis and vulnerability to atrial fibrillation through inhibition of transforming growth factor Beta-1 Smad2/3 pathway. Cerebrovasc Dis 2022; 51: 188-198.
31. Wu Y, Ning Zh. Echinacoside alleviates Ang II-induced cardiac fibrosis by enhancing the SIRT1/IL-11 pathway. Iran J Basic Med Sci 2025; 28: 130-139.
32. Sun J, Wang R, Chao T, Peng J, Wang Ch, Chen K, et al. Ginsenoside Re inhibits myocardial fibrosis by regulating miR489/myd88/NF-κB pathway. J Ginseng Res 2023; 47: 218-227.
33. Li L, Hou X, Xu R, Liu C, Tu M. Research review on the pharmacological effects astragaloside IV. Fundam Clin Pharmacol 2017; 31: 17-36.
34. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29: e45-51.
35. January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE Jr, Cleveland JC. AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: A report of the american college of cardiology/american heart association task force on practice guidelines and the Heart Rhythm Society. Circulation 2014; 130: 199-267.
36. Jalife J. Mechanisms of persistent atrial fibrillation. Curr Opin Cardiol 2014; 29: 20-27.
37. Clementy N, Benhenda N, Piver E, Pierre B, Bernard A, Fauchier L. Serum galectin-3 levels predict recurrences after ablation of atrial fibrillation. Sci Rep 2016; 6: 34357-34364.
38. Nattel S, Harada M. Atrial remodeling and atrial fibrillation: Recent advances and translational perspectives. J Am Coll Cardiol 2014; 63: 2335-2345.
39. Ma J, Chen Q, Ma S. Left atrial fibrosis in atrial fibrillation: Mechanisms, clinical evaluation and management. J Cell Mol Med 2021; 25: 2764-2775.
40. Zhang X, Tian B, Cong X, Ning Z. Corilagin inhibits angiotensin II-induced atrial fibrosis and fibrillation in mice through the PI3K-Akt pathway. Iran J Basic Med Sci 2024; 27: 717-724.
41. Sygitowicz G, Maciejak-Jastrzebska A, Sitkiewicz DA. A review of the molecular mechanisms underlying cardiac fibrosis and atrial fibrillation. J Clin Med 2021; 10: 4430-4448.
42. Anderson ME. Oxidant stress promotes disease by activating CaMKII. J Mol Cell Cardiol 2015; 89:160-167.
43. Wang Q, Quick AP, Cao S, Reynolds J, Chiang DY, Beavers D. Oxidized CaMKII (Ca(2+)/calmodulin-dependent protein kinase II) is essential for ventricular arrhythmia in a mouse model of duchenne muscular dystrophy. Circ Arrhythm Electrophysiol 2018; 11: e005682-5700.