1. Liu F, Wu H, Yang X, Dong Y, Huang G, Genin GM, et al. A new model of myofibroblast-cardiomyocyte interactions and their differences across species. Biophys J 2021; 120: 3764-3775.
2. DeLeon-Pennell KY, Meschiari CA, Jung M, Lindsey ML. Matrix metalloproteinases in myocardial infarction and heart failure. Prog Mol Biol Transl Sci 2017; 147: 75-100.
3. Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC. Cardiac fibrosis: The fibroblast awakens. Circ Res 2016; 118: 1021-1040.
4. Gulati A, Jabbour A, Ismail TF, Guha K, Khwaja J, Raza S. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA 2013; 309: 896-908.
5. Lal H, Ahmad F, Zhou J, Yu JE, Vagnozzi RJ, Guo Y. Cardiac fibroblast glycogen synthase kinase-3beta regulates ventricular remodeling and dysfunction in ischemic heart. Circulation 2014; 130: 419-430.
6. Wen ZZ, Cai MY, Mai Z, Jin DM, Chen YX, Huang H. Angiotensin II receptor blocker attenuates intrarenal renin-angiotensin-system and podocyte injury in rats with myocardial infarction. PLoS One 2013; 8: e67242-67253.
7. Tan Y, Li X, Prabhu SD, Brittian KR, Chen Q, Yin X. Angiotensin II plays a critical role in alcohol-induced cardiac nitrative damage, cell death, remodeling, and cardiomyopathy in a protein kinase C/nicotinamide adenine dinucleotide phosphate oxidase-dependent manner. J Am Coll Cardiol 2012; 59: 1477-1486.
8. Ruttkay-Nedecky B, Nejdl L, Gumulec J, Zitka O, Masarik M, Eckschlager T, et al. The role of metallothionein in oxidative stress. Int J Mol Sci 2013; 14: 6044-6066.
9. Nguyen Dinh Cat A, Montezano AC, Burger D, Touyz RM. Angiotensin II, NADPH oxidase, and redox signaling in the vasculature. Antioxid Redox Signal 2013; 19: 1110-1120.
10. Sun Y. Intracardiac renin-angiotensin system and myocardial repair/remodeling following infarction. J Mol Cell Cardiol 2010; 48: 483-489.
11. Jia L, Li Y, Xiao C, Du J. Angiotensin II induces inflammation leading to cardiac remodeling. Front Biosci 2012; 17: 221-231.
12. Su X, Jiang X, Meng L, Dong X, Shen Y, Xin Y. Anticancer activity of sulforaphane: The epigenetic mechanisms and the Nrf2 signaling pathway. Oxidative Med Cell Longev 2018; 2018: 5438179-5438189.
13. Asghari S, Asghari-Jafarabadi M, Somi MH, Ghavami SM, Rafraf M. Comparison of calorie-restricted diet and resveratrol supplementation on anthropometric indices, metabolic parameters, and serum Sirtuin-1 levels in patients with nonalcoholic fatty liver disease: A randomized controlled clinical trial. J Am Coll Nutr 2018; 37: 223-233.
14. Tanno M, Kuno A, Horio Y, Miura T. Emerging beneficial roles of sirtuins in heart failure. Basic Res Cardiol 2012; 107: 273-287.
15. Vinciguerra M, Santini MP, Martinez C, Pazienza V, Claycomb WC, Giuliani A, et al. mIGF-1/JNK1/SirT1 signaling confers protection against oxidative stress in the heart. Aging Cell 2012; 11: 139-149.
16. Gao R, Ma Z, Hu Y, Chen J, Shetty S, Fu J. Sirt1 restrains lung inflammasome activation in a murine model of sepsis. Am J Physiol Lung Cell Mol Physiol 2015; 308: 847-853.
17. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: A regulated cell death nexus linking metabolism redox biology, and disease. Cell 2017; 171: 273-285.
18. Janku F, Yap TA, Meric-Bernstam F. Targeting the PI3K pathway in cancer: Are we making headway? Nat Rev Clin Oncol 2018; 15: 273-291.
19. Chen M, Choi S, Wen T, Chen C, Thapa N, Lee JH, et al. A p53-phosphoinositide signalosome regulates nuclear AKT activation. Nat Cell Biol 2022; 24: 1099-1113.
20. Hoxhaj G, Manning BD. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer 2020; 20: 74-88.
21. Alzahrani AS. PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside. Semin Cancer Biol 2019; 59: 125-32.
22. Yan LS, Zhang SF, Luo G, Cheng BCY, Zhang C, Wang YW, et al. Schisandrin B mitigates hepatic steatosis and promotes fatty acid oxidation by inducing autophagy through AMPK/mTOR signaling pathway. Metabolism 2022; 131: 155200.
23. Li XK, Zhao Y, Gong SH, Song TB, Ge JM, Li JR, et al. Schisandrin B ameliorates acute liver injury by regulating EGFR-mediated activation of autophagy. Bioorg Chem 2023; 130: 106272.
24. Ma ZY, Xu G, Shen YY, Hu SF, Lin X, Zhou J, et al. Schisandrin B-mediated TH17 cell differentiation attenuates bowel inflammation. Pharmacol Res 2021; 166: 105459.
25. Zhu W, Luo W, Han JB, Zhang QY, Ji LJ, Samorodov AV, et al. Schisandrin B protects against LPS-induced inflammatory lung injury by targeting MyD88. Phytomedicine 2023; 108: 154489.
26. Dong CT, Song C, He ZQ, Song QL, Song TB, Liu JW, et al. Protective efficacy of Schizandrin B on ameliorating nephrolithiasis via regulating GSK3?/Nrf2 signaling-mediated ferroptosis in vivo and in vitro. Int Immunopharmacol 2023; 117: 110042.
27. Chen XQ, Liu CH, Deng JX, Xia TB, Zhang XH, Xue ST, et al. Schisandrin B ameliorates adjuvant-induced arthritis in rats via modulation of inflammatory mediators, oxidative stress, and HIF-1α/VEGF pathway. J Pharm Pharmacol 2024; 76: 681-690.
28. Shang J, Yan WH, Cui X, Ma WN, Wang ZZ, Liu N, et al. Schisandrin B, a potential GLP-1R agonist, exerts anti-diabetic effects by stimulating insulin secretion. Mol. Cell. Endocrinol. 2023; 577: 112029.
29. Duan C, Montgomery MK, Chen X, Ullas S, Stansfield J, McElhanon K, et al. Fully automated mouse echocardiography analysis using deep convolutional neural networks. Am J Physiol Heart Circ Physiol 2022; 4: H628-H639.
30. Wu Y, Can J, Hao S, Qiang X, Ning Z. LOXL2 inhibitor attenuates angiotensin II-induced atrial fibrosis and vulnerability to atrial fibrillation through inhibition of transforming growth factor Beta-1 Smad2/3 pathway. Cerebrovasc Dis 2022; 51: 188-198.
31. Wu Y, Ning Zh. Echinacoside alleviates Ang II-induced cardiac fibrosis by enhancing the SIRT1/IL-11 pathway. Iran J Basic Med Sci 2025; 28: 130-139.
32. Sun J, Wang R, Chao T, Peng J, Wang Ch, Chen K, et al. Ginsenoside Re inhibits myocardial fibrosis by regulating miR489/myd88/NF-κB pathway. J Ginseng Res 2023; 47: 218-227.
33. Li L, Hou X, Xu R, Liu C, Tu M. Research review on the pharmacological effects astragaloside IV. Fundam Clin Pharmacol 2017; 31: 17-36.
34. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29: e45-51.
35. January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE Jr, Cleveland JC. AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: A report of the american college of cardiology/american heart association task force on practice guidelines and the Heart Rhythm Society. Circulation 2014; 130: 199-267.
36. Jalife J. Mechanisms of persistent atrial fibrillation. Curr Opin Cardiol 2014; 29: 20-27.
37. Clementy N, Benhenda N, Piver E, Pierre B, Bernard A, Fauchier L. Serum galectin-3 levels predict recurrences after ablation of atrial fibrillation. Sci Rep 2016; 6: 34357-34364.
38. Nattel S, Harada M. Atrial remodeling and atrial fibrillation: Recent advances and translational perspectives. J Am Coll Cardiol 2014; 63: 2335-2345.
39. Ma J, Chen Q, Ma S. Left atrial fibrosis in atrial fibrillation: Mechanisms, clinical evaluation and management. J Cell Mol Med 2021; 25: 2764-2775.
40. Zhang X, Tian B, Cong X, Ning Z. Corilagin inhibits angiotensin II-induced atrial fibrosis and fibrillation in mice through the PI3K-Akt pathway. Iran J Basic Med Sci 2024; 27: 717-724.
41. Sygitowicz G, Maciejak-Jastrzebska A, Sitkiewicz DA. A review of the molecular mechanisms underlying cardiac fibrosis and atrial fibrillation. J Clin Med 2021; 10: 4430-4448.
42. Anderson ME. Oxidant stress promotes disease by activating CaMKII. J Mol Cell Cardiol 2015; 89:160-167.
43. Wang Q, Quick AP, Cao S, Reynolds J, Chiang DY, Beavers D. Oxidized CaMKII (Ca(2+)/calmodulin-dependent protein kinase II) is essential for ventricular arrhythmia in a mouse model of duchenne muscular dystrophy. Circ Arrhythm Electrophysiol 2018; 11: e005682-5700.