Maximizing the therapeutic benefits of biopolymer-derived nanoparticles in wound healing

Document Type : Review Article

Authors

1 Department of Mechanical & Biomedical Engineering, Boise State University, Boise, ID, USA

2 Biomolecular Sciences Graduate Programs, Boise State University, Boise, USA

3 Department of Mechanical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, USA

10.22038/ijbms.2025.82225.17787

Abstract

Nanoparticles have emerged as a cornerstone of nanomedicine, offering transformative potential to modern healthcare through their multifunctional capabilities. Their adaptability positions them as ideal candidates for wound management, either as advanced wound dressings or as efficient drug delivery systems. With intrinsic antibacterial properties and the ability to enhance tissue repair, nanoparticles have gained significant attention in promoting effective wound healing. Biopolymer-based nanoparticles, derived from naturally sourced and synthetic materials such as proteins, polysaccharides, and polymers, including collagen, chitosan, alginate, polycaprolactone, and polylactic acid, stand out due to their unique combination of biodegradability and biocompatibility. These attributes make them particularly suited for addressing the challenges of wound care. Moreover, nanofibers incorporated with biopolymer-based nanoparticles demonstrate superior antibacterial properties and wound healing effectiveness, comparable to the performance of silver nanoparticles. These advancements signify a transformative approach in wound healing therapies, facilitating targeted and personalized treatments that expedite tissue regeneration and enhance patient recovery. This review delves into biopolymer-based nanoparticles’ advancements, applications, and potential in revolutionizing wound healing.

Keywords

Main Subjects


1. Puri A, Mohite P, Maitra S, Subramaniyan V, Kumarasamy V, Uti DE, et al. From nature to nanotechnology: The interplay of traditional medicine, green chemistry, and biogenic metallic phytonanoparticles in modern healthcare innovation and sustainability. Biomed Pharmacother 2024;170:116083. 
2.    Mamun AA, Shao C, Geng P, Wang S, Xiao J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front Immunol 2024;15:1395479. 
3.    Sari MHM, de F. Cobre A, Pontarolo R, Ferreira LM. Status and future scope of soft nanoparticles-based hydrogel in wound healing. Pharmaceutics 2023;15:874-910.
4.    Alavi SE, Alavi SZ, Nisa M, Koohi M, Raza A, Ebrahimi Shahmabadi H. Revolutionizing wound healing: Exploring scarless solutions through drug delivery innovations. Mol Pharmaceutics 2024;21:1056–1076. 
5.    Kumar M, Mahmood S, Chopra S, Bhatia A. Biopolymer-based nanoparticles and their therapeutic potential in wound healing – A review. Int J Biol Macromol 2024;267:131335. 
6.    Kučuk N, Primožič M, Knez Ž, Leitgeb M. Sustainable biodegradable biopolymer-based nanoparticles for healthcare applications. Int J Mol Sci 2023;24:3188-3232. 
7.    Firmansyah Y, Sidharta VM, Wijaya L, Tan ST. Unraveling the significance of growth factors (TGF-β, PDGF, KGF, FGF, Pro Collagen, VEGF) in the dynamics of wound healing. Asian J Med Health 2024;22:49–61. 
8.    Farazin A, Mohammadimehr M, Ghasemi AH, Naeimi H. Design, preparation, and characterization of CS/PVA/SA hydrogels modified with mesoporous Ag₂O/SiO₂ and curcumin nanoparticles for green, biocompatible, and antibacterial biopolymer film. RSC Adv 2021;11:32775-32791.
9.    Farazin A, Torkpour Z, Dehghani S, Mohammadi R, Fahmy MD, Saber-Samandari S, et al. A review on polymeric wound dressings for the treatment of burns and diabetic wounds. Int J Basic Sci Med 2021;6:44-50.
10.    Ghorbanpour Arani A, Miralaei N, Farazin A, Mohammadimehr M. An extensive review of the repair behavior of smart self-healing polymer matrix composites. J Mater Res 2023;38:617-632.
11.    Cabral H, Li J, Miyata K, Kataoka K. Controlling the biodistribution and clearance of nanomedicines. Nat Rev Bioeng 2024;2:214–232. 
12.    Li H, Li B, Lv D, Li W, Lu Y, Luo G. Biomaterials releasing drug responsively to promote wound healing via regulation of pathological microenvironment. Adv Drug Deliv Rev 2023;196:114778. 
13.    Farazin A, Ghasemi AH. Design, synthesis, and fabrication of chitosan/hydroxyapatite composite scaffold for use as bone replacement tissue by sol–gel method. J Inorg Organomet Polym Mater 2022;32:3067-3082.
14.    Farazin A, Shirazi FA, Shafiei M. Natural biomarocmolecule-based antimicrobial hydrogel for rapid wound healing: A review. Int J Biol Macromol 2023;244:125454.
15.    Farazin A, Mohammadimehr M, Naeimi H, Bargozini F. Design, fabrication, and evaluation of green mesoporous hollow magnetic spheres with antibacterial activity. Mater Sci Eng B 2024;299:116973.
16.    Darghiasi SF, Farazin A, Ghazali HS. Design of bone scaffolds with calcium phosphate and its derivatives by 3D printing: A review. J Mech Behav Biomed Mater 2024:106391.
17.    Farazin A, Mohammadimehr M, Naeimi H. Flexible self-healing nanocomposite based gelatin/tannic acid/acrylic acid reinforced with zinc oxide nanoparticles and hollow silver nanoparticles based on porous silica for rapid wound healing. Int J Biol Macromol 2023;241:124572.
18.    Tavasolikejani S, Farazin A. Explore the most recent advancements in the domain of self-healing intelligent composites specifically designed for use in dentistry. J Mech Behav Biomed Mater 2023:106123.
19.    Tavasolikejani S, Farazin A. The effect of increasing temperature on simulated nanocomposites reinforced with SWBNNs and its effect on characteristics related to mechanics and the physical attributes using the MDs approach. Heliyon 2023;9:e21022.
20.    Farazin A, Sahmani S, Soleimani M, Kolooshani A, Saber-Samandari S, Khandan A. Effect of hexagonal structure nanoparticles on the morphological performance of the ceramic scaffold using analytical oscillation response. Ceram Int 2021 ; 47:18339-18350.
21.    Ghasemi AH, Farazin A, Mohammadimehr M, Naeimi H. Fabrication and characterization of biopolymers with antibacterial nanoparticles and Calendula officinalis flower extract as an active ingredient for modern hydrogel wound dressings. Mater Today Commun 2022;31:103513.
22.    Miralaei N, Mohammadimehr M, Farazin A, Ghasemi AH, Bargozini F. Design, fabrication, evaluation, and in vitro study of green biomaterial and antibacterial polymeric biofilms of polyvinyl alcohol/tannic acid/CuO/SiO₂. J Mech Behav Biomed Mater 2023;148:106219.
23.    Zarrintaj P, Seidi F, Azarfam M, Khodadadi M, Erfani A, Barani M, et al. Biopolymer-based composites for tissue engineering applications. Compos Part B Eng 2023;258:110701. 
24.    Las Heras K, Garcia-Orue I, Rancan F, Igartua M, Santos-Vizcaino E, Hernandez RM. Modulating the immune system towards a functional chronic wound healing: A biomaterials and nanomedicine perspective. Adv Drug Deliv Rev 2024;210:115342. 
25.    Mahmud MZA, Islam MD, Mobarak MH. The development of eco-friendly biopolymers for use in tissue engineering and drug delivery. J Nanomater 2023; 1: 1-15.
26.    Tavasolikejani S, Farazin A. Fabrication and modeling of nanocomposites with bioceramic nanoparticles for rapid wound healing: An experimental and molecular dynamics investigation. Nanomed Res J 2023;8:412-429.
27.    Zarei A, Farazin A. Synergizing additive manufacturing and machine learning for advanced hydroxyapatite scaffold design in bone regeneration. J Aust Ceram Soc 2024. https://doi.org/10.1007/s41779-024-01084-w
28.    Ahmadi M, Sabzini M, Rastgordani S, Farazin A. Optimizing wound healing: Examining the influence of biopolymers through a comprehensive review of nanohydrogel-embedded nanoparticles in advancing regenerative medicine. Int J Low Extrem Wounds 2024; 15347346241244890.
29.    Loo HL, Goh BH, Lee LH, Chuah LH. Application of chitosan-based nanoparticles in skin wound healing. Asian J Pharm Sci 2022; 17: 299–332. 
30.    Gowda BHJ, Mohanto S, Singh A, Bhunia A, Abdelgawad MA, Ghosh S, et al. Nanoparticle-based therapeutic approaches for wound healing: A review of the state-of-the-art. Mater Today Chem 2023; 27:101319. 
31.    Farasati Far B, Naimi-Jamal MR, Sedaghat M, Hoseini A, Mohammadi N, Bodaghi M. Combinational system of lipid-based nanocarriers and biodegradable polymers for wound healing: An updated review. J Funct Biomater 2023;14:115-140. 
32.    Elmowafy M, Shalaby K, Elkomy MH, Alsaidan OA, Gomaa HAM, Abdelgawad MA, et al. Polymeric nanoparticles for delivery of natural bioactive agents: Recent advances and challenges. Polymers 2023;15:1123-1156. 
33.    More PR, Pandit S, Filippis AD, Franci G, Mijakovic I, Galdiero M. Silver nanoparticles: Bactericidal and mechanistic approach against drug resistant pathogens. Microorganisms 2023; 11:369-395.
34.    Madawi EA, Al Jayoush AR, Rawas-Qalaji M, Thu HE, Khan S, Sohail M, et al. Polymeric nanoparticles as tunable nanocarriers for targeted delivery of drugs to skin tissues for treatment of topical skin diseases. Pharmaceutics 2023;15:657-694.
35.    Cao Z, Zuo X, Liu X, Xu G, Yong KT. Recent progress in stimuli-responsive polymeric micelles for targeted delivery of functional nanoparticles. Adv Colloid Interface Sci 2024;330:103206. 
36.    Sun L, Liu H, Ye Y, Lei Y, Islam R, Tan S, et al. Smart nanoparticles for cancer therapy. Sig Transduct Target Ther 2023;8:1–28. 
37.    Fatima M, Almalki WH, Khan T, Sahebkar A, Kesharwani P. Harnessing the power of stimuli-responsive nanoparticles as an effective therapeutic drug delivery system. Adv Mater 2024;2312939. 
38.    Mirani B, Hadisi Z, Pagan E, Dabiri SMH, van Rijt A, Almutairi L, et al. Smart dual-sensor wound dressing for monitoring cutaneous wounds. Adv Healthc Mater 2023;12:2203233. 
39.    Alieva M, Wezenaar AKL, Wehrens EJ, Rios AC. Bridging live-cell imaging and next-generation cancer treatment. Nat Rev Cancer 2023;23:731–745. 
40.    Xi T, Guo Q, Jia L, Yin T, Huang W, Zhang X, et al. Multifunctional hydrogels for the healing of diabetic wounds. Adv Healthc Mater 2024; 13: 2301885. 
41.    Qin P, Meng Y, Yang Y, Gou X, Liu N, Yin S, et al. Mesoporous polydopamine nanoparticles carrying peptide RL-QN15 show potential for skin wound therapy. J Nanobiotechnology 2021;19:309-326. 
42.    Liu R, Luo C, Pang Z, Zhang J, Ruan S, Wu M, et al. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chin Chem Lett 2023; 34:107518. 
43.    Mehrdadi S. Lipid-based nanoparticles as oral drug delivery systems: Overcoming poor gastrointestinal absorption and enhancing bioavailability of peptide and protein therapeutics. Adv Pharm Bull 2024;14:48–66. 
44.    Saha S, Ali M, Khaleque MA, Bacchu M, Aly Saad Aly MA, Khan MZ. Metal oxide nanocarrier for targeted drug delivery towards the treatment of global infectious diseases: A review. J Drug Deliv Sci Technol 2023; 86: 104728.
45.    Cheng S, Wang Q, Qi M, Sun W, Wang K, Li W, et al. Nanomaterials-mediated on-demand and precise antibacterial therapies. Mater Des 2023; 230:111982. 
46.    Mohanta YK, Chakrabartty I, Mishra AK, Chopra H, Mahanta S, Avula SK, et al. Nanotechnology in combating biofilm: A smart and promising therapeutic strategy. Front Microbiol 2023;13: 1028086.
47.    Li H, Gou R, Liao J, Wang Y, Qu R, Tang Q, et al. Recent advances in nano-targeting drug delivery systems for rheumatoid arthritis treatment. Acta Mater Med 2023; 2: 23–41. 
48.    Rahmat JN, Liu J, Chen T, Li Z, Zhang Y. Engineered biological nanoparticles as nanotherapeutics for tumor immunomodulation. Chem Soc Rev 2024; 53: 5862–5903. 
49.    Puri S, Mazza M, Roy G, England RM, Zhou L, Nourian S, et al. Evolution of nanomedicine formulations for targeted delivery and controlled release. Adv Drug Deliv Rev 2023; 200:114962. 
50.    Gao Y, Liu X, Chen N, Yang X, Tang F. Recent advance of liposome nanoparticles for nucleic acid therapy. Pharmaceutics 2023; 15:178-200.
51.    Serrano DR, Kara A, Yuste I, Luciano FC, Ongoren B, Anaya BJ, et al. 3D printing technologies in personalized medicine, nanomedicines, and biopharmaceuticals. Pharmaceutics 2023; 15: 313-340.
52.    Gawne PJ, Ferreira M, Papaluca M, Grimm J, Decuzzi P. New opportunities and old challenges in the clinical translation of nanotheranostics. Nat Rev Mater 2023; 8:783–798. 
53.    Pérez-Díaz MA, Prado-Prone G, Díaz-Ballesteros A, González-Torres M, Silva-Bermudez P, Sánchez-Sánchez R. Nanoparticle and nanomaterial involvement during the wound healing process: An update in the field. J Nanopart Res 2023;25:27-49. 
54.    Chidre P, Chavan A, Hulikunte Mallikarjunaiah N, Chandrakanth Revanasiddappa K. Nanomaterials: Potential broad spectrum antimicrobial agents. nat prod commun. 2023;18:1934578X221106904. 
55.    Salih ARC, Farooqi HMU, Amin H, Karn PR, Meghani N, Nagendran S. Hyaluronic acid: Comprehensive review of a multifunctional biopolymer. Futur J Pharm Sci 2024;10:63-83. 
56.    Carton F, Malatesta M. Nanotechnological research for regenerative medicine: the role of hyaluronic acid. Int J Mol Sci 2024;25:3975. 
57.    Zhou J, Xiong S, Liu M, Yang H, Wei P, Yi F, et al. Study on the influence of scaffold morphology and structure on osteogenic performance. Front Bioeng Biotechnol 2023; 11:1127162. 
58.    Ji D, Lin Y, Guo X, Ramasubramanian B, Wang R, Radacsi N, et al. Electrospinning of nanofibres. Nat Rev Methods Primers 2024;4:1–21. 
59.    Nandhini J, Karthikeyan E, Rajeshkumar S. Nanomaterials for wound healing: Current status and futuristic frontier. BMT 2023;6:26–45. 
60.    Tiwari R, Pathak K. Local drug delivery strategies towards wound healing. Pharmaceutics 2023;15:634-672.
61.    Aljamal D, Iyengar PS, Nguyen TT. Translational challenges in drug therapy and delivery systems for treating chronic lower extremity wounds. Pharmaceutics 2024;16:750-778. 
62.    Kim KT, Lee JY, Kim DD, Yoon IS, Cho HJ. Recent progress in the development of poly(lactic-co-glycolic acid)-based nanostructures for cancer imaging and therapy. Pharmaceutics 2019;11:280-307.
63.    Desai N, Rana D, Salave S, Gupta R, Patel P, Karunakaran B, et al. Chitosan: A potential biopolymer in drug delivery and biomedical applications. Pharmaceutics 2023;15:1313-1381. 
64.    Chen F, Wu P, Zhang H, Sun G. Signaling pathways triggering therapeutic hydrogels in promoting chronic wound healing. Macromol Biosci 2024;24:2300217. 
65.    Fazal T, Murtaza BN, Shah M, Iqbal S, Rehman M, Jaber F, et al. Recent developments in natural biopolymer-based drug delivery systems. RSC Adv 2023;13:23087–23121. 
66.    Wang X, Li R, Zhao H. Enhancing angiogenesis: Innovative drug delivery systems to facilitate diabetic wound healing. Biomed Pharmacother 2024;170:116035. 
67.    Hogan KJ, Perez MR, Mikos AG. Extracellular matrix component-derived nanoparticles for drug delivery and tissue engineering. J Control Release 2023;360:888–912.
68.    Ruan H, Aulova A, Ghai V, Pandit S, Lovmar M, Mijakovic I, et al. Polysaccharide-based antibacterial coating technologies. Acta Biomater 2023;168:42–77. 
69.    Angolkar M, Paramshetti S, Gahtani RM, Al Shahrani M, Hani U, Talath S, et al. Pioneering a paradigm shift in tissue engineering and regeneration with polysaccharides and proteins-based scaffolds: A comprehensive review. Int J Biol Macromol 2024;265:130643. 
70.    Jabeen N, Atif M. Polysaccharides-based biopolymers for biomedical applications: A review. Polym Adv Technol 2024;35:e6203. 
71.    Sharma S, Kishen A. Bioarchitectural design of bioactive biopolymers: Structure–function paradigm for diabetic wound healing. Biomimetics 2024;9:275-300. 
72.    Gheorghiță D, Moldovan H, Robu A, Bița AI, Grosu E, Antoniac A, et al. Chitosan-based biomaterials for hemostatic applications: A review of recent advances. Int J Mol Sci 2023;24:10540-10564. 
73.    Vivcharenko V, Trzaskowska M, Przekora A. Wound dressing modifications for accelerated healing of infected wounds. Int J Mol Sci 2023;24:7193-7219.
74.    Jafernik K, Ładniak A, Blicharska E, Czarnek K, Ekiert H, Wiącek AE, et al. Chitosan-based nanoparticles as effective drug delivery systems—A review. Molecules 2023;28:1963-1979. 
75.    Salih ARC, Farooqi HMU, Amin H, Karn PR, Meghani N, Nagendran S. Hyaluronic acid: A comprehensive review of a multifunctional biopolymer. Futur J Pharm Sci 2024;10:63-83.
76.    Carton F, Malatesta M. Nanotechnological research for regenerative medicine: The role of hyaluronic acid. Int J Mol Sci 2024;25:3975-3990. 
77.    Feng Y, Shi Y, Tian Y, Yang Y, Wang J, Guo H, et al. The collagen-based scaffolds for bone regeneration: A journey through electrospun composites integrated with organic and inorganic additives. Processes 2023;11:2105-2126. 
78.    Kumar M, Kumar D, Garg Y, Mahmood S, Chopra S, Bhatia A. Marine-derived polysaccharides and their therapeutic potential in wound healing application - A review. Int J Biol Macromol 2023;253:127331. 
79.    Brites A, Ferreira M, Bom S, Grenho L, Claudio R, Gomes PS, et al. Fabrication of antibacterial and biocompatible 3D printed Manuka-Gelatin based patch for wound healing applications. Int J Pharm 2023;632:122541. 
80.    Hashempur MH, Karami F, Khoshnam M, Zomorodian K, Zare A, Jafari M, et al. Enrichment of creatine-gelatin cryogel with Zataria multiflora essential oil and titanium dioxide nanoparticles as a potential wound dressing. Mater Today Chem 2024;38:102069.
81.    Flores-Rojas GG, Gómez-Lazaro B, López-Saucedo F, Vera-Graziano R, Bucio E, Mendizábal E. Electrospun scaffolds for tissue engineering: A review. Macromol 2023;3:524–553. 
82.    Zhou J, Xiong S, Liu M, Yang H, Wei P, Yi F, et al. Study on the influence of scaffold morphology and structure on osteogenic performance. Front Bioeng Biotechnol 2023;11:1127162. 
83.    Ji D, Lin Y, Guo X, Ramasubramanian B, Wang R, Radacsi N, et al. Electrospinning of nanofibres. Nat Rev Methods Primers 2024;4:1–21. 
84.    Vargas-Molinero HY, Serrano-Medina A, Palomino-Vizcaino K, López-Maldonado EA, Villarreal-Gómez LJ, Pérez-González GL, et al. Hybrid systems of nanofibers and polymeric nanoparticles for biological application and delivery systems. Micromachines 2023;14:208-227. 
85.    Norahan MH, Pedroza-González SC, Sánchez-Salazar MG, Álvarez MM, Trujillo de Santiago G. Structural and biological engineering of 3D hydrogels for wound healing. Bioact Mater 2023;24:197–235. 
86.    Da Silva J, Leal EC, Carvalho E, Silva EA. Innovative functional biomaterials as therapeutic wound dressings for chronic diabetic foot ulcers. Int J Mol Sci 2023;24:9900-9929.
87.    Xu R, Fang Y, Zhang Z, Cao Y, Yan Y, Gan L, et al. Recent advances in biodegradable and biocompatible synthetic polymers used in skin wound healing. Materials 2023;16:5459-5479.
88.    Elfawy LA, Ng CY, Amirrah IN, Mazlan Z, Wen APY, Fadilah NIM, et al. Sustainable approach of functional biomaterials–tissue engineering for skin burn treatment: A comprehensive review. Pharmaceuticals 2023;16:701-729. 
89.    Sanjarnia P, Picchio ML, Polegre Solis AN, Schuhladen K, Fliss PM, Politakos N, et al. Bringing innovative wound care polymer materials to the market: Challenges, developments, and new trends. Adv Drug Deliv Rev 2024;207:115217. 
90.    Khodaei T, Schmitzer E, Suresh AP, Acharya AP. Immune response differences in degradable and non-degradable alloy implants. Bioact Mater 2022;24:153–170. 
91.    Ma L, Zhao X, Hou J, Huang L, Yao Y, Ding Z, et al. Droplet microfluidic devices: Working principles, fabrication methods, and scale-up applications. small methods. 2024;2301406. 
92.    Srivastava GK, Martinez-Rodriguez S, Md Fadilah NI, Looi Qi Hao D, Markey G, Shukla P, et al. Progress in wound-healing products based on natural compounds, stem cells, and microrna-based biopolymers in the European, USA, and Asian markets: Opportunities, barriers, and regulatory issues. Polymers 2024;16:1280-1309.
93.    Shi M, McHugh KJ. Strategies for overcoming protein and peptide instability in biodegradable drug delivery systems. Adv Drug Deliv Rev 2023;199:114904. 
94.    Al Mamun A, Ullah A, Chowdhury MEH, Marei HE, Madappura AP, Hassan M, et al. Oxygen releasing patches based on carbohydrate polymer and protein hydrogels for diabetic wound healing: A review. Int J Biol Macromol 2023;250:126174. 
95.    Uchida DT, Bruschi ML. 3D printing as a technological strategy for the personalized treatment of wound healing. AAPS PharmSciTech 2023;24:41-65. 
96.    Puccetti M, Pariano M, Schoubben A, Giovagnoli S, Ricci M. Biologics, theranostics, and personalized medicine in drug delivery systems. Pharmacol Res 2024;201:107086.
97.    Ezike TC, Okpala US, Onoja UL, Nwike CP, Ezeako EC, Okpara OJ, et al. Advances in drug delivery systems, challenges and future directions. Heliyon. 2023;9:e17488. 
98.    Zhu H, Zheng J, Oh XY, Chan CY, Low BQL, Tor JQ, et al. Nanoarchitecture-integrated hydrogel systems toward therapeutic applications. ACS Nano 2023;17:7953–7978.
99.    Hama R, Reinhardt JW, Ulziibayar A, Watanabe T, Kelly J, Shinoka T. Recent tissue engineering approaches to mimicking the extracellular matrix structure for skin regeneration. Biomimetics 2023;8:130-148. 
100.    Alieva M, Wezenaar AKL, Wehrens EJ, Rios AC. Bridging live-cell imaging and next-generation cancer treatment. Nat Rev Cancer 2023;23:731–745. 
101.    Hao Z, Li X, Zhang R, Zhang L. Stimuli-Responsive Hydrogels for Antibacterial Applications. Adv Healthcare Mater 2024;2400513. 
102.    Sun L, Liu H, Ye Y, Lei Y, Islam R, Tan S, et al. Smart nanoparticles for cancer therapy. Sig Transduct Target Ther 2023;8:1–28. 
103.    Shi Y, Zhang Y, Zhu L, Miao Y, Zhu Y, Yue B. Tailored drug delivery platforms: stimulus-responsive core–shell structured nanocarriers. Adv Healthcare Mater 2024;13:2301726. 
104.    Fatima M, Almalki WH, Khan T, Sahebkar A, Kesharwani P. Harnessing the power of stimuli-responsive nanoparticles as an effective therapeutic drug delivery system. Adv Mater 2024;2312939. 
105.    Mirani B, Hadisi Z, Pagan E, Dabiri SMH, van Rijt A, Almutairi L, et al. Smart dual-sensor wound dressing for monitoring cutaneous wounds. Adv Healthcare Mater 2023;12:2203233. 
106.    Li X, Wang W, Gao Q, Lai S, Liu Y, Zhou S, et al. Intelligent bacteria-targeting ZIF-8 composite for fluorescence imaging-guided photodynamic therapy of drug-resistant superbug infections and burn wound healing. Exploration 2024;20230113. 
107.    Rahman M. Magnetic resonance imaging and iron-oxide nanoparticles in the era of personalized medicine. Nanotheranostics 2023;7:424–449.