Innovative strategies and nanocarrier approaches for enhancing the oral bioavailability of macromolecular therapeutics

Document Type : Review Article

Authors

1 Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G.Nagara, Karnataka, 571448, India

2 Centre Of Research Management And Industrial Linkage, Adichunchanagiri University, B.G.Nagara, Karnataka, 571448, India

10.22038/ijbms.2025.87167.18839

Abstract

This review focuses on identifying the primary limitations affecting the oral administration of biologics and evaluates current strategies designed to improve their bioavailability. It also incorporates a bibliometric mapping approach to assess ongoing research trends in this field. A detailed literature survey was performed alongside a bibliometric analysis using VOSviewer to illustrate keyword relationships and the evolution of research activity in oral biologic delivery. Barriers such as enzymatic degradation, restricted epithelial transport, and rapid systemic elimination hinder effective oral delivery of biologics. Innovative approaches including nanocarrier systems, enteric coatings, PEGylation, lipidation, protease inhibitors, and mucoadhesive formulations have been developed to address these issues. Advances like receptor targeted ligand systems and pH sensitive nanocarriers show promise for more efficient absorption. Emerging therapies, including GLP-1 receptor agonists and orally delivered monoclonal antibodies, are highlighted. The review also touches upon therapeutic applications beyond oncology, such as neurodegenerative diseases. Case studies on oral insulin provide valuable clinical development insights. Scaleup production and regulatory challenges are discussed, along with future directions for formulation improvement. Although oral delivery of biologics presents significant obstacles, technological advancements are steadily transforming the landscape. Future research focusing absorption mechanisms and innovative formulation strategies will be crucial for the successful development of effective oral biologic therapies.

Keywords

Main Subjects


1. Yun Y, Cho YW, Park K. Nanoparticles for oral delivery: Targeted nanoparticles with peptidic ligands for oral protein delivery. Adv Drug Deliv Rev 2013; 65: 822-832. 
2. Vllasaliu D, Thanou M, Stolnik S, Fowler R. Recent advances in oral delivery of biologics: nanomedicine and physical modes of delivery. Expert Opin Drug Deliv 2018; 15: 759-770. 
3. Bernkop-Schnurch A, Fragner R. Investigations into the diffusion behaviour of polypeptides in native intestinal mucus with regard to their peroral administration. Pharm Sci 1996; 2: 361-363. 
4. Doherty GJ, McMahon HT. Mechanisms of endocytosis. Annu Rev Biochem 2009; 78: 857-902. 
5. Hamman JH, Demana PH, Olivier EI. Targeting receptors, transporters and site of absorption to improve oral drug delivery. Drug Target Insights 2007; 2: 71-81. 
6. Homayun B, Lin X, Choi HJ. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics 2019; 11: 129-158. 
7. Smart AL, Gaisford S, Basit AW. Oral peptide and protein delivery: Intestinal obstacles and commercial prospects. Expert Opin Drug Deliv 2014; 11: 1323-1335. 
8. Zhang X, Han Y, Huang W, Jin M, Gao Z. The influence of the gut microbiota on the bioavailability of oral drugs. Acta Pharm Sin B 2021; 11: 1789-1812. 
9. Kirby A. Exploratory bibliometrics: Using VOSviewer as a preliminary research tool. Publications 2023; 11: 1-14. 
10. Cavalcante WQ de F, Coelho A, Bairrada CM. Sustainability and tourism marketing: A bibliometric analysis of publications between 1997 and 2020 using vosviewer software. Sustainability (Switzerland) 2021; 13: 1-21. 
11. Kemeç A, Altınay AT. Sustainable energy research trend: A bibliometric analysis using VOSviewer, RStudio bibliometrix, and citespace software tools. Sustainability (Switzerland) 2023; 15: 1-21. 
12. Li B, Hu K, Lysenko V, Khan KY, Wang Y, Jiang Y, et al. A scientometric analysis of agricultural pollution by using bibliometric software VoSViewer and HistciteTM. Environ Sci Pollut Res 2022; 29: 37882-37893. 
13. McAllister JT, Lennertz L, Atencio Mojica Z. Mapping a discipline: A guide to using VOSviewer for bibliometric and visual analysis. Sci Technol Libr (New York, NY) 2022; 41: 319-348. 
14. Baldo BA, Pham NH. Biologics: Monoclonal Antibodies for Non-cancer Therapy, Cytokines, Fusion Proteins, Enzymes, and Hormones. In: Drug Allergy. 2021. 
15. Midlam C. Status of Biologic Drugs in Modern Therapeutics-Targeted Therapies vs. Small Molecule Drugs. In: Biologics, Biosimilars, and Biobetters: An Introduction for Pharmacists, Physicians, and Other Health Practitioners. 2021. 
16. Muheem A, Shakeel F, Jahangir MA, Anwar M, Mallick N, Jain GK, et al. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm J 2016; 24: 413-428. 
17. Tyagi P, Pechenov S, Anand Subramony J. Oral peptide delivery: Translational challenges due to physiological effects. J Control Release 2018; 287: 167-176. 
18. Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12: 7291-7309. 
19. Li C, Zhou K, Chen D, Xu W, Tao Y, Pan Y, et al. Solid lipid nanoparticles with enteric coating for improving stability, palatability, and oral bioavailability of enrofloxacin. Int J Nanomedicine 2019; 14: 1619-1631. 
20. Singh A, Mandal UK, Narang RK. Development and characterization of enteric coated pectin pellets containing mesalamine and Saccharomyces boulardii for specific inflamed colon: In vitro and in vivo evaluation. J Drug Deliv Sci Technol 2021; 62. 
21. Katzhendler I, Mäder K, Friedman M. Structure and hydration properties of hydroxypropyl methylcellulose matrices containing naproxen and naproxen sodium. Int J Pharm 2000; 200: 161-179. 
22. Maderuelo C, Lanao JM, Zarzuelo A. Enteric coating of oral solid dosage forms as a tool to improve drug bioavailability. Eur J Pharm Sci 2019; 138: 105019. 
23. Nikam A, Sahoo PR, Musale S, Pagar RR, Paiva-Santos AC, Giram PS. A systematic overview of Eudragit® based copolymer for smart healthcare. Pharmaceutics 2023; 15: 587-618. 
24. Azevedo C, Pinto S, Benjakul S, Nilsen J, Santos HA, Traverso G, et al. Prevention of diabetes-associated fibrosis: Strategies in FcRn-targeted nanosystems for oral drug delivery. Adv Drug Deliv Rev 2021; 175: 113778. 
25. Malm CJ, Emerson J, Hiatt GD. Cellulose acetate phthalate as an enteric coating material. J Am Pharm Assoc Am Pharm Assoc 1951; 40: 520-525. 
26. Salawi A. Pharmaceutical coating and its different approaches, a review. Polymers 2022; 14: 3318-3345. 
27. Agbowuro AA, Huston WM, Gamble AB, Tyndall JDA. Proteases and protease inhibitors in infectious diseases. Med Res Rev 2018; 38: 1295-1331. 
28. Steinmetzer T, Hardes K. The antiviral potential of host protease inhibitors. In: Activation of Viruses by Host Proteases. 2018: 279-325. 
29. Renukuntla J, Vadlapudi AD, Patel A, Boddu SHS, Mitra AK. Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm 2013; 447: 75-93. 
30. Subramanian DA, Langer R, Traverso G. Mucus interaction to improve gastrointestinal retention and pharmacokinetics of orally administered nano-drug delivery systems. J Nanobiotechnology 2022; 20: 362-385. 
31. Menacho-Melgar R, Decker JS, Hennigan JN, Lynch MD. A review of lipidation in the development of advanced protein and peptide therapeutics. J Control Release. 2019; 295: 1-12. 
32. Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today 2005; 10: 1451-1458. 
33. Kulchar RJ, Singh R, Ding S, Alexander E, Leong KW, Daniell H. Delivery of biologics: Topical administration. Biomaterials 2023; 302: 122312. 
34. Markwalter CE, Pagels RF, Hejazi AN, Gordon AGR, Thompson AL, Prud’homme RK. Polymeric nanocarrier formulations of biologics using inverse flash nanoprecipitation. AAPS J 2020; 22: 18. 
35. Wang Y, Zhao Y, Cui Y, Zhao Q, Zhang Q, Musetti S, et al. Overcoming multiple gastrointestinal barriers by bilayer modified hollow mesoporous silica nanocarriers. Acta Biomater 2018; 65: 405-416. 
36. Pathomthongtaweechai N, Muanprasat Ch. Potential applications of chitosan-based nanomaterials to surpass the gastrointestinal physiological obstacles and enhance the intestinal drug absorption. Pharmaceutics 2021; 13: 887-909. 
37. Muro S. Challenges in design and characterization of ligand-targeted drug delivery systems. J Control Release 2012; 164: 125-137. 
38. Trapani G, Denora N, Trapani A, Laquintana V. Recent advances in ligand targeted therapy. J Drug Target 2012; 20: 1-22. 
39. Javia A, Bardoliwala D, Patel M, Misra A. Ligands and Receptors for Targeted Delivery of Nanoparticles: Recent Updates and Challenges. In: Drug Delivery with Targeted Nanoparticles: In Vitro and in Vivo Evaluation Methods. 1st ed. 2021. 
40. Majumder J, Minko T. Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery. Expert Opin Drug Deliv 2021; 18: 205-227. 
41. Du J, Lane LA, Nie S. Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J Control Release 2015; 219: 205-214. 
42. Drucker DJ. Advances in oral peptide therapeutics. Nat Rev Drug Discov 2020; 19: 277-289. 
43. Aguirre TAS, Teijeiro-Osorio D, Rosa M, Coulter IS, Alonso MJ, Brayden DJ. Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials. Adv Drug Deliv Rev 2016; 106: 223-241. 
44. Vrang N, Larsen PJ. Preproglucagon derived peptides GLP-1, GLP-2 and oxyntomodulin in the CNS: Role of peripherally secreted and centrally produced peptides. Prog Neurobiol 2010; 62: 442-462. 
45. Turton MD, O’Shea D, Gunn I, Beak SA, Edwards CMB, Meeran K, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996; 379: 69-72. 
46. Tang-Christensen M, Larsen PJ, Göke R, Fink-Jensen A, Jessop DS, Møller M, et al. Central administration of GLP-1-(7-36) amide inhibits food and water intake in rats. Am J Physiol Regul Integr Comp Physiol 1996; 271: 848-856. 
47. Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest 1998; 101: 515-520. 
48. Barrera JG, Jones KR, Herman JP, D’Alessio DA, Woods SC, Seeley RJ. Hyperphagia and increased fat accumulation in two models of chronic CNS glucagon-like peptide-1 loss of function. J Neurosci 2011; 31: 3904-3913. 
49. Guilleminault L, Michelet M, Reber LL. Combining Anti-IgE monoclonal antibodies and oral immunotherapy for the treatment of food allergy. Clin Rev Allergy Immunol 2022; 62: 216-231. 
50. Maekawa N, Konnai S, Takagi S, Kagawa Y, Okagawa T, Nishimori A, et al. A canine chimeric monoclonal antibody targeting PD-L1 and its clinical efficacy in canine oral malignant melanoma or undifferentiated sarcoma. Sci Rep 2017; 7: 8951-8963. 
51. Jacobse J, ten Voorde W, Tandon A, Romeijn SG, Grievink HW, van der Maaden K, et al. Comprehensive evaluation of microneedle-based intradermal adalimumab delivery vs. subcutaneous administration: Results of a randomized controlled clinical trial. Br J Clin Pharmacol 2021; 87: 3162-3176. 
52. Larbouret C, Gros L, Pèlegrin A, Chardès T. Improving biologics’ effectiveness in clinical oncology: From the combination of two monoclonal antibodies to oligoclonal antibody mixtures. Cancers 2021; 13: 4620-4641. 
53. Liu J, Ting JP, Al‐azzam S, Ding Y, Afshar S. Therapeutic advances in diabetes, autoimmune, and neurological diseases. Int J Mol Sci 2021; 22: 2805-2876. 
54. Rahman MM, Islam MR, Akash S, Harun-Or-Rashid M, Ray TK, Rahaman MS, et al. Recent advancements of nanoparticles application in cancer and neurodegenerative disorders: At a glance. Biomed Pharmacother 2022; 153: 113305. 
55. Tarik Alhamdany A, Saeed AMH, Alaayedi M. Nanoemulsion and solid nanoemulsion for improving oral delivery of a breast cancer drug: Formulation, evaluation, and a comparison study. Saudi Pharm J 2021; 29: 1278-1288. 
56. Shehata MK, Ismail AA, Kamel MA. Nose to brain delivery of astaxanthin–loaded nanostructured lipid carriers in rat model of alzheimer’s disease: Preparation, in vitro and in vivo evaluation. Int J Nanomedicine 2023; 18: 1631-1658. 
57. Dadras P, Atyabi F, Irani S, Ma’mani L, Foroumadi A, Mirzaie ZH, et al. Formulation and evaluation of targeted nanoparticles for breast cancer theranostic system. Eur J Pharm Sci 2017; 97: 47-54. 
58. Sebe I, Szabó E, Zelkó R. Advances in Drug Delivery via Electrospun and Electrosprayed Formulations. In: Emerging Drug Delivery and Biomedical Engineering Technologies. 1st ed. 2023. 
59. Colombo R, Cavalloro V, Papetti A, Frosi I, Rossi D, Collina S, et al. Evolving Challenges and Opportunities in Plantbased Drug Discovery and Development. In: Ethnobotany and Ethnopharmacology of Medicinal and Aromatic Plants: Steps Towards Drug Discovery. 1st ed. 2023. 
60. Masloh S, Culot M, Gosselet F, Chevrel A, Scapozza L, Zeisser Labouebe M. Challenges and opportunities in the oral delivery of recombinant biologics. Pharmaceutics 2023; 15: 1415-1460. 
61. Pelegri-Oday EM, Lin EW, Maynard HD. Therapeutic protein-polymer conjugates: Advancing beyond pegylation. J Am Chem Soc 2014; 136: 14323-14332. 
62. Putri AD, Chen PS, Su YL, Lin JP, Liou JP, Hsieh CM. Optimization and development of selective histone deacetylase inhibitor (Mpt0b291)-loaded albumin nanoparticles for anticancer therapy. Pharmaceutics 2021;13: 1728-1744. 
63. Sousa F, Castro P, Fonte P, Sarmento B. How to overcome the limitations of current insulin administration with new non-invasive delivery systems. Ther Deliv 2015; 6: 83-94.