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ABSTRACT

Sleep deprivation (SD) is a significant risk factor for reproductive dysfunction. This review aims to
synthesize evidence establishing that oxidative stress (OS) is the key pathological mediator of SD-
induced reproductive impairments in both sexes and to provide a comprehensive rationale for anti-
oxidant intervention. We conducted a narrative review of peer-reviewed studies (2000-2025) from
PubMed, ScienceDirect, Scopus, and Google Scholar. We examined the evidence linking SD, OS,
and reproductive health, with a specific focus on recent preclinical and clinical studies that directly
investigate the mechanistic role of OS and the efficacy of anti-oxidant therapies. The evidence
demonstrates that SD induces systemic OS, which in turn drives reproductive pathology. In males,
SD leads to increased testicular OS, resulting in impaired sperm quality and hormonal disruption.
In females, SD is associated with diminished ovarian reserve and reduced oocyte quality, mediated
by ovarian OS. Crucially, preclinical studies show that various anti-oxidants, including bromelain,
vitamin C, and zinc, can successfully ameliorate SD-induced testicular damage. In women, clinical
evidence links sleep disorders to lower melatonin levels in follicular fluid and decreased ovarian
reserve, supporting a similar OS-mediated mechanism. The synthesized evidence strongly suggests
that OS is a key pathological mechanism through which SD impairs reproductive function. This
provides a strong scientific foundation for anti-oxidant therapies as a promising strategy to mitigate
these harms. Future clinical trials are warranted to develop effective anti-oxidant regimens for

individuals whose fertility is compromised by SD.
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Introduction

The World Health Organization (WHO) recommends
that adults obtain at least 7 hours of sleep each night.
However, in modern society, insufficient sleep has become a
prevalent issue, with one-third of adults sleeping less than 7
hours per night (1, 2). Sleep deprivation (SD) is a recognized
public health concern, with human studies showing that
9%-24% of the population experiences excessive daytime
sleepiness due to nighttime SD, making it one of the primary
reasons for visits to sleep clinics (3).

SD poses significant health risks, impacting various
bodily systems and contributing to numerous health issues
(Figure 1). Central to these issues is the role of chronic
sleep deprivation (CSD) in inducing systemic oxidative
stress (OS), hormonal imbalances, and inflammation. These
pathological changes are known to undermine immune
function, weaken anti-oxidant defenses, and increase the
risk of cardiovascular and mental health disorders (4-7).
For instance, populations with high levels of sleep debt, such

as healthcare professionals and other shift workers, exhibit
increased DNA damage and impaired repair mechanisms,
underscoring the critical importance of adequate sleep (8,
9).

Similar to SD, infertility represents a significant global
health concern, affecting 10% to 15% of couples worldwide
(10, 11). While a growing body of research links SD to
reproductive dysfunction (12-14) and separately establishes
SD as a potent inducer of systemic OS (15), the precise
role of OS as the intermediary in SD-induced reproductive
damage has primarily been a matter of inference, a gap
this review aims to address by synthesizing recent direct
investigational evidence. The literature is divided into two
main streams: one examining the effects of SD on health,
and another exploring the role of OS in infertility from
various other causes (16-18). Few studies have explicitly
bridged these two fields.

This narrative review addresses this gap by synthesizing
these two distinct but mechanistically related bodies of
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Figure 1. Harms caused by sleep deprivation

literature. First, it reviews the evidence establishing the
link between SD and reproductive impairment. Second, it
presents the extensive evidence implicating OS as a primary
culprit in reproductive disorders. By connecting these
two lines of evidence, this review aims to substantiate the
hypothesis that OS is a primary pathway through which
SD damages reproductive health. Based on this proposed
mechanism, we then critically assess the efficacy of anti-
oxidants in other OS-driven models to build a robust
scientific rationale for their potential therapeutic use in
mitigating SD-induced reproductive impairments. This
work, therefore, does not merely summarize existing
knowledge but actively constructs a conceptual framework
to guide future research at the intersection of sleep science,
reproductive medicine, and redox biology.

Sleep deprivation as a systemic inducer of oxidative stress

SD is increasingly recognized as a potent physiological
stressor that triggers systemic OS, leading to widespread
tissue damage and organ dysfunction. The consequences
for reproductive health are a central focus of this review,
but the impact of SD is far from isolated. Evidence from
diverse fields converges to paint a picture of SD as a multi-
system threat. For instance, even environmentally-triggered
sleep disturbances, such as exposure to aircraft noise, have
been shown to exacerbate cardiovascular and brain damage
through an OS-mediated mechanism (19), highlighting the
sensitivity of these systems to poor sleep quality.

The profound, multi-organ impact of sleep-loss-induced
OS is further substantiated across various experimental
models. Studies on paradoxical sleep deprivation (PSD)
reveal significant oxidative damage in metabolic organs
like the liver and pancreas, with a heightened vulnerability
observed in older animals (20). This systemic vulnerability
extends to the submandibular glands, the thyroid, and,
critically, the brain (21, 22). In the central nervous
system, SD-induced OS is directly linked to functional
impairments, including memory deficits, anxiety, and other
neurobehavioral issues, primarily by elevating reactive
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oxygen species (ROS) and depleting anti-oxidant defenses
in crucial areas such as the hippocampus and prefrontal
cortex (23-25). These findings, consistent across species
and age groups, are supported by human studies showing
that SD not only increases pain sensitivity but also leaves a
lasting oxidative footprint that is only partially mitigated by
recovery sleep (26, 27). Collectively, this body of evidence
establishes a critical premise: SD is not a localized issue
but a systemic condition that disrupts redox homeostasis
throughout the body. Understanding this universal
mechanism is fundamental to appreciating its specific and
severe consequences for the highly sensitive reproductive
system, and it logically points toward systemic interventions,
such as anti-oxidant therapies, as a potential therapeutic
strategy.

Stress: The critical mechanistic link between sleep deprivation
and reproductive dysfunction

While historical research has separately established the
negative impacts of SD on reproductive health and the
detrimental role of OS in fertility, a growing body of direct
evidence now bridges this gap. Indeed, as noted previously,
studies have already demonstrated that chronic SD
induces erectile dysfunction in male models and that total
maternal sleep deprivation (TSD) elevates oocyte OS and
impairs embryonic viability (28, 29). Recent preclinical and
clinical studies have moved beyond inference to provide
compelling validation that OS is a primary pathological
mediator through which SD impairs both male and
female reproductive function, thereby establishing a clear
mechanistic rationale for anti-oxidant-based interventions.

In male models, the pathway from SD to reproductive
injury via OS has been robustly demonstrated. A
cornerstone study by Hosseinpour et al. subjected rats
to REM SD and observed not only a significant decline
in sperm quality but also a concurrent surge in testicular
OS, inflammation, and apoptosis. Critically, concomitant
administration of the anti-oxidant bromelain successfully
reversed these pathological changes (30). This conclusion is
strongly supported by Rizk et al., who found that vitamin
C administration significantly counteracted SD-induced
reproductive deficits by suppressing OS and up-regulating
the Nrf-2 anti-oxidant pathway (31). This therapeutic
principle holds for a range of natural substances; for
instance, honey (32), Hibiscus sabdariffa extract (33), and
zinc supplementation (34) have consistently shown the
ability to ameliorate testicular OS in sleep-deprived rats.
Moreover, the link extends to the neuroendocrine stress
axis, as mifepristone, a glucocorticoid receptor antagonist,
was also shown to mitigate testicular OS, suggesting that the
stress response itself is a major source of OS in SD (35).

However, the intervention outcomes can be nuanced,
highlighting the complexity of the recovery process. For
example, studies using cannabidiol (36) and olive oil (37)
reported improvements in testicular histoarchitecture,
such as the restoration of Sertoli and Leydig cells, without a
corresponding immediate improvement in sperm function.
This suggests that while anti-oxidant support can initiate
cellular repair, a longer duration or optimized dosage
may be necessary to translate these structural gains into
functional recovery.

The mediating role of OS is not confined to males; a
multi-layered body of evidence now firmly establishes a
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parallel mechanism in female reproductive dysfunction. At
the clinical level, human studies have directly linked sleep
disorders to tangible impairments in ovarian health. A recent
study by Yildiz et al. found that women with obstructive
sleep apnea, a severe form of sleep disruption, exhibited
significantly lower levels of anti-Miillerian hormone
(AMH), a key biomarker of ovarian reserve. The authors
postulated that this decline in ovarian function was likely
attributable to the chronic hypoxia and OS characteristic of
the disorder (38).

Mechanistically, this clinical observation is strongly
supported by research on the ovarian microenvironment.
A primary pathway involves the hormone melatonin, a
potent anti-oxidant. Li et al. discovered that women with
polycystic ovary syndrome, a condition often accompanied
by sleep disturbances, had significantly lower melatonin
concentrations directly in their follicular fluid, which
correlated with poorer-quality embryos (39). These findings
are substantiated by preclinical evidence; a pivotal study by
Yi et al. demonstrated that maternal sleep deprivation in
mice directly causes OS and mitochondrial dysfunction in
the oocytes themselves, leading to a decline in fertility (28).

Collectively, these studies create a cohesive narrative:
sleep disruption suppresses protective anti-oxidant
mechanisms, inducing OS and resulting in measurable
damage to both male and female reproductive systems.
While direct preclinical testing of broader anti-oxidant
therapies in female SD models remains urgently needed, the
powerful rationale established by these findings warrants
further investigation into such interventions.

In summary, OS emerges not as a plausible consequence
of SD but as a key mechanism driving reproductive
dysfunction in both sexes. The compelling evidence for this
mechanistic link provides a robust scientific foundation for
the clinical translation of anti-oxidant therapies as a rational
and promising strategy for mitigating the reproductive
harms of SD.

Sleep deprivation-induced male reproductive dysfunction
and the role of anti-oxidants
Sleep deprivation leads to male reproductive dysfunction

SD compromises male reproductive health by initiating
a cascade of pathological changes, centered on OS and a
profound disruption ofhormonal and structuralhomeostasis
(Figure 2). The maintenance of stable circadian rhythms is
fundamental for optimal reproductive physiology, and their
disruption through sleep loss can lead to significant fertility
impairments (12, 40). The duration and type of sleep loss
critically modulate the severity and nature of the damage.

The initial and most sensitive indicators of SD-induced
damage appear in sperm parameters, particularly motility.
In a comprehensive mouse model of CSD (18 hr/day), a
significant decline in sperm motility was observed after
just 2 weeks, whereas a reduction in sperm concentration
only became significant after 3 weeks (41). This finding of
motility as an earlier marker is corroborated by rat studies,
in which 7 days of total SD significantly reduced sperm
motility without yet affecting sperm count (42). These
findings suggest a sequential pattern of injury, in which
the functional capacity of mature sperm is compromised
before a significant impact on overall spermatogenic output
becomes evident.

The endocrine system is a primary target of SD. Both acute
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Figure 2. Schematic representation of potential mechanisms by which sleep
deprivation leads to male reproductive disorders, with sleep deprivation-
induced oxidative stress being a major pathway

LH: luteinizing hormone; FSH: follicle-stimulating hormone; ROS: reactive oxygen
species

and chronic sleep loss models consistently demonstrate a
suppression of the hypothalamic-pituitary-gonadal (HPG)
axis. Acute (PSD) for 96 hr in rats, a model of severe sleep
loss, leads to a significant decrease in serum testosterone
and impaired sexual behavior. In contrast, a milder,
chronic sleep restriction (SR) for 21 days did not affect
sexual behavior but still caused a significant drop in sperm
viability, indicating that different facets of reproductive
function have varying sensitivities to SD duration and type
(43). Shorter-term total SD (4 and 7 days) also significantly
decreases testosterone while increasing the stress hormone
corticosterone, implicating a stress-mediated inhibition
of the HPG axis and highlighting the complex interplay
between psychological stress, sleep, and fertility (42, 44).
Beyond hormonal shifts, SD also causes direct structural
damage to the reproductive tract. A landmark study revealed
that just 10 days of CSD (20 h/day) in rats caused a significant
increase in the permeability of the blood-testis and blood-
epididymis barriers. This breakdown was associated with
a marked down-regulation of the expression of key tight
junction proteins (occludin, claudin-11) and the androgen
receptor, providing a direct structural basis for fertility
impairment (45). The clinical relevance of these mechanisms
is highlighted in human populations experiencing chronic
sleep disruption. For instance, shift workers often exhibit
higher rates of oligozoospermia (44), and a multi-arm
randomized trial found that men with obstructive sleep
apnea (OSA) had significantly lower levels of total and free
testosterone and a lower proportion of healthy sperm cells
than healthy volunteers (46). This demonstrates how chronic
sleep disruption in humans mirrors the pathologies observed
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in experimental models (47).

Collectively, these interconnected pathways—OS,
HPG axis suppression, and physical barrier breakdown—
illustrate that adequate sleep is indispensable for male
reproductive health. It maintains a stable hormonal milieu
and a protected microenvironment, both of which are
essential for the successful production and maturation of
sperm (12, 40, 42, 43, 48).

Effects of oxidative stress on male reproductive health

The profound impact of SD on male fertility is best
understood through its role as a potent inducer of OS,
a central pathogenic mechanism in male reproductive
dysfunction. This principle is not confined to sleep loss;
a substantial body of evidence demonstrates that diverse
factors converge on this common pathway. These include
exposure to environmental pollutants, such as industrial
chemicals, microplastics, and mobile phone radiation (49-
51), as well as lifestyle choices, such as high-fat diets and
cannabis use (52, 53). Furthermore, medical contexts,
including the use of certain medications and viral infections
such as SARS-CoV-2, also significantly contribute to the
testicular oxidative burden (54-57). Collectively, these
insults elevate ROS, which disrupts reproductive hormones
and causes sperm DNA damage, ultimately leading to sperm
dysfunction (58).

Regardless of the trigger, the downstream consequences of
elevated OS on the male reproductive system are consistent,
creating a hostile environment for spermatogenesis, as
illustrated in the context of SD in (Figure 2). The core
pathologies include: (i) Lipid Peroxidation: The high content
of polyunsaturated fatty acids in sperm membranes makes
them exceptionally vulnerable to ROS-induced damage,
which impairs membrane fluidity and integrity, leading to
reduced sperm motility and viability (59). (ii) DNA Damage:
ROS can directly cause breaks in sperm DNA, increasing
the DNA fragmentation index (DFI), a key marker of
infertility that correlates with poor embryo development
(49). (iii) Cellular Apoptosis: In the testis, OS can trigger
apoptotic pathways in both spermatogenic germ cells and
testosterone-producing Leydig cells, leading to a reduction
in sperm count and endocrine disruption (54, 60). This
established framework of OS-driven pathology provides a
compelling rationale for why a systemic stressor like SD has
such a profound impact on male reproductive health.

Anti-oxidants as protectors against male reproductive injury

The strong proof-of-concept for the therapeutic
application of anti-oxidants in SD is rooted in the central
mediating role of OS. This approach is logical, as the body’s
endogenous anti-oxidant systems can be overwhelmed
by chronic stressors like SD, necessitating exogenous
support (61). Preclinical successes in SD models—ranging
from vitamins and minerals to natural extracts—not only
confirm this mechanistic link but also highlight a promising
therapeutic avenue (30-35). Furthermore, emerging
evidence suggests that OS from SD may also disrupt
epigenetic regulation in spermatogenesis, potentially
leading to transgenerational effects that anti-oxidants could
theoretically mitigate (62).

The protective efficacy of anti-oxidants is further
demonstrated across a wide range of analogous OS-driven
male infertility models, providing a strong theoretical
framework for this approach (Table 1). For instance, in men
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with high OS undergoing assisted reproductive technology
(ART), supplementation with anti-oxidants like selenium
and zinc has been shown to improve sperm parameters and
pregnancy rates (17, 63). This benefit extends to mitigating
reproductive toxicity from various sources, including
medications, environmental pollutants, and metabolic
conditions such as high-fat diets and diabetes (64-68). In
these diverse contexts, a vast array of anti-oxidants has been
shown to protect testicular tissue, preserve sperm DNA
integrity, and restore hormonal balance (69-71).

However, the application of anti-oxidant therapy
requires careful consideration. While a diet rich in
natural anti-oxidants is often beneficial (72), therapeutic
supplementation must be approached with caution. The
goal is to restore redox homeostasis, not to eliminate
reactive oxygen species entirely, as a certain level of ROS
is necessary for normal sperm function. Irrational or
excessive supplementation can lead to “reductive stress,’
which paradoxically impairs fertility by disrupting essential
redox signaling (73, 74). Therefore, the promise of anti-
oxidants, including a broad array of micronutrients, lies in
their personalized and balanced application, particularly for
conditions such as idiopathic oligoasthenospermia (OAT)
(75-78). The established success of these therapies in other
OS-related infertility scenarios, combined with the direct
evidence from SD models, strongly suggests their potential
relevance for clinical translation.

Sleep deprivation-induced femalereproductive dysfunction
and the role of anti-oxidants
Sleep deprivation leads to female reproductive dysfunction

SD profoundly disrupts female reproductive health
through a complex interplay of hormonal dysregulation,
OS, inflammation, and circadian misalignment, which
collectively impair fertility, ovarian function, and pregnancy
outcomes (Figure 3). A central mechanism in this process
is the suppression of melatonin, an anti-oxidant hormone
crucial for protecting ovarian tissue. Human studies
indicate that SD-induced reductions in melatonin not only
increase the ovaries’ vulnerability to oxidative damage but
also disrupt the HPG axis, leading to irregular levels of LH
and FSH, which are essential for ovulation and menstrual
regularity, a finding supported by both clinical and animal
research (12, 79, 80).

The clinical consequences of this disruption are
particularly evident in populations with chronic sleep
disturbances. Female shift workers, for example, who
frequently experience CSD, exhibit higher rates of infertility,
menstrual dysfunction, and pregnancy complications, with
epidemiological data pointing to OS as a pivotal mediator
(12, 81, 82). Similarly, women with recurrent pregnancy loss
(RPL) have been found to sleep less than fertile controls,
suggesting SD is a significant risk factor (83). These human
studies confirm that CSD, through the combined effects
of reduced melatonin and elevated cortisol, compromises
reproductive health via both oxidative and hormonal
imbalance (12, 81). The direct impact on ovarian health
has been further elucidated in animal models, which
demonstrate that prolonged SD inflicts oxidative damage
on ovarian tissue, depletes ovarian reserve, reduces oocyte
quality, and can even accelerate ovarian aging, leading to
conditions like premature ovarian insufficiency (POI).
This is often accompanied by systemic changes, such as
gut dysbiosis and increased inflammatory markers, which
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Table 1. Selected evidence for anti-oxidant therapies in oxidative stress (OS) driven models of male reproductive impairment
Study
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lycopene (6 mg),
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vitami ,
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diet for 12 weeks T
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Streptozotoci 500 me/ka/d 4 K animal and structure; Serum decreased serum MDA levels (e.g.,
reptozotocin- m ay, 4-week animal
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(oxidative stress and improved seminal vesicle
for 4 weeks R
marker) histology.
Quinalphos Commelina 400 mg/kg (CBE) Serum testosterone, Both extracts significantly restored
(pesticide)-induced  benghalensis (CBE) or  or 350 mg/kg 7-day animal sperm count & testosterone levels, sperm count, 71)
reproductive Cissus quadrangularis (CQE), orally for study viability, testicular OS  and viability compared to the
disorders in mice (CQE) extract 7 days markers pesticide-only group (P<0.05).
Two 220 mg Seminal plasma  Restored peroxynitrite and enzyme
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infertile men (n=60) intervention . o
orally for 3 activity; Sperm  sperm motility (21+£9% vs 39+14%,
months parameters P<0.05).

further exacerbate the decline in reproductive function (84,
85).

The detrimental effects of SD are not confined to the
pre-conception period but extend throughout pregnancy,
severely affecting placental function and fetal development.
Research in humans has linked maternal SD to elevated
markers of OS and inflammation, resulting in increased
lipid peroxidation and diminished anti-oxidant capacity in
the placenta. This compromises the vital supply of nutrients
and oxygen to the fetus, increasing the risk of intrauterine
growth restriction, miscarriage, and other placental
abnormalities (79, 85). It is noteworthy that such OS-
mediated placental dysfunction, particularly in the context
of RPL, may be multifactorial, with paternal factors such
as sperm DNA fragmentation also implicated as potential
contributors (86). The repercussions of maternal SD can
even be intergenerational; preclinical models show that
maternal SD during pregnancy is associated with altered
hormone levels, reduced sexual motivation, and decreased
fertility in the offspring, though human data on this topic
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remain limited (87). This body of evidence paints a clear
picture: from impairing the foundational aspects of ovarian
fertility to disrupting the life-sustaining environment of
the placenta, SD poses a continuous and enduring threat to
female reproductive success across the lifespan.

Effects of oxidative stress on female reproductive health
Similar to its impact on males, SD compromises female
fertility primarily by inducing systemic OS, a crucial
mechanism that adversely affects the entire reproductive
timeline. The universal role of OS in female reproductive
disorders is well-documented, with evidence linking it to
conditions like miscarriage, pre-eclampsia, and infertility
(88). This vulnerability is consistently demonstrated across
various contexts. Factors such as environmental toxins (e.g.,
silica, BPA, lead, and phthalates)(89-93) and unhealthy
lifestyle choices (e.g., smoking)(94). Various pathological
states, including endometriosis and diabetes (95-98), and
even unique environmental conditions like microgravity
(99), are all known to induce OS and negatively impact
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Figure 3. Schematic representation of the potential mechanisms by which
sleep deprivation leads to female reproductive disorders, with sleep
deprivation-induced oxidative stress being a major pathway

LH: luteinizing hormone; FSH: follicle-stimulating hormone; ROS: reactive oxygen
species; POI: premature ovarian insufficiency

female reproductive function.

The mechanisms through which OS impairs female
fertility are comprehensive, as summarized in the context
of SD in (Figure 3). At the ovarian level, excess ROS
induces mitochondrial dysfunction and apoptosis in
oocytes and surrounding granulosa cells (90, 93). OS-
mediated hormonal disturbances can further disrupt
hormone secretion, leading to apoptosis and autophagy of
ovarian cells, which ultimately contribute to reproductive
disorders (100, 101). This cascade of events diminishes
oocyte quality, hinders maturation, and can accelerate the
depletion of the ovarian reserve, contributing to premature
ovarian insufficiency. For a successful pregnancy, OS must
also be tightly regulated. Elevated ROS has been shown to
hinder implantation. It is implicated in the pathophysiology
of major pregnancy complications like miscarriage and
pre-eclampsia, in part through OS-mediated damage to
the developing embryo and the placenta (88). The growing
understanding of OS-regulating pathways, such as SIRT1 and
TLR4/NOX2, further clarifies these damage mechanisms
and highlights promising therapeutic targets (102). Given
this profound sensitivity of the female reproductive axis to
redox balance, it becomes clear why SD, as a potent source
of systemic OS, poses such a significant and multifaceted
threat to female reproductive success.

Anti-oxidants as protectors of female reproductive injury
Given the shared OS mechanism, the rationale for anti-
oxidant therapy extends to female reproductive health as well.
This approach stands as a promising, though yet unproven,
strategy for addressing the reproductive consequences
of SD in women. By examining the established efficacy of
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anti-oxidants in other female reproductive disorders driven
by OS, we can build a strong rationale for their potential
application in the context of SD (Table 2).

Anti-oxidants have demonstrated significant benefits
across various conditions affecting female fertility. In
disorders such as endometriosis-associated infertility and
polycystic ovarian syndrome (PCOS), compounds such
as vitamins C and E, melatonin, and N-acetylcysteine
have been shown to reduce inflammation and oxidative
damage (103-105). This protective effect also extends to
counteracting environmental toxicity (106) and improving
outcomes in assisted reproductive technology (ART)
(107). The therapeutic potential of anti-oxidants also
includes mitigating age-related reproductive decline, with
various compounds enhancing oocyte quality in animal
models (108-110). The landscape of potential treatments is
broad, encompassing not only essential vitamins but also
traditional remedies like Bushen Culuan Decoction (BCD),
which show promise in preclinical models (111, 112).

However, a critical caveat applies to all anti-oxidant use in
fertility: the principle of balance. Excessive supplementation
can disrupt the delicate redox equilibrium essential for
processes such as ovulation and implantation, potentially
impeding fertility (73, 113). Therefore, while targeting
OS is a valid therapeutic concept, the strategy must be
tailored. The findings from recent clinical studies suggest
that interventions aimed at restoring melatonin levels or
protecting against hypoxia-induced OS could be particularly
effective (38, 39). Given the compelling mechanistic
evidence, future investigations should prioritize promising
candidates such as melatonin, Coenzyme QI10, and
N-acetylcysteine for preclinical testing and eventual clinical
trials in women whose reproductive health is compromised
by SD.

Discussion

This narrative review synthesizes a broad spectrum
of evidence establishing SD as a significant risk factor
for reproductive disorders in both men and women. By
systematically linking SD to OS and subsequent cellular
damage, a key pathological mechanism has been elucidated.
Akeystrengthisthe integration of sleep science, reproductive
medicine, and redox biology to build a compelling rationale
for a mechanistically plausible solution: Anti-oxidant
therapy.

However, in interpreting the findings, several
limitations inherent to the current body of literature
must be acknowledged. A primary methodological
consideration in the reviewed preclinical studies is the
control over confounding factors. A significant challenge
is distinguishing the effects of sleep loss from the inherent
stress of deprivation procedures, which can independently
elevate OS. Many cited studies commendably addressed this
by including robust sham or vehicle-treated control groups,
such as placing control animals on grid floors within the same
apparatus (37) or administering a vehicle solution to the
sleep-deprived control group (31). Nevertheless, the widely
used platform-based deprivation techniques inevitably
introduce a stress component alongside sleep loss, a point
highlighted in recent systematic reviews on the topic (15).
Therefore, the observed increase in OS likely represents a
composite effect. Future research would benefit from using
less stressful deprivation methods and from meticulously
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Table 2. Selected evidence for anti-oxidant therapies in oxidative stress (OS) driven models of female reproductive impairment
Study
D & Key Out Main findi ti
population/animal ~ Antioxidant agent(s) f)s.age ) Study design ey comes ain Incings (,VS respective Reference
administration Measured control/toxin group)
model
S 40 mg/kg/day, . Endothelial- Marlfedl.y improved age-rel.ated
Aged rats (R)-a-Lipoicacid . . Animal study dependent vascular decline in vasomotor function, (109)
intraperitoneally . 1 .
function which is relevant to fertility.
Pregestation supplementation
significantly increased the
0.5 me/ke in Blastocyst quality proportion of good-quality
Periconceptional mice Selenium (from yeast) diet% dag Animal study  and implantation  blastocysts (73.3% vs 33.3% in (110)
¥ success the control group) and reduced
pre-implantation loss (9.8% vs
38.8%, P<0.05).
) PUE increased follicle numbers,
. 100 and 200 Follicle count, .
Premature ovarian mo/ke/da 28-dav animal atresia ratio. ovarian reduced atresia (P<0.01), and
failure (POF) mice Puerarin (PUE) gkglday, Y > significantly elevated levels of (111)
. orally for 28 study OS markers (SOD2, .
(chemo-induced) antioxidant factors SOD2 and
days Nrf2)
Nrf2 (P<0.01).
Follicl bers,
oficie numbers BCD restored estrous cycles,
. estrous cycle, .
Premature ovarian Bushen Culuan 2.67 g/kg/day, . increased AMH and E2, and
. . . 30-day animal hormone levels o .
insufficiency (POI) Decoction (BCD) orally for 30 stud (AMH, E2), 0S significantly reduced ovarian (112)
mice (TWP-induced)  (herbal formula) days Y marker)s (M’DA MDA while increasing SOD and
SOD) ? CAT levels (P<0.01).
. Significantly reduced serum
. Vit C: 1000
Reproductive-aged . . . . i 8-week Serum OS markers MDA (p=0.002) and ROS
. Vitamin C & Vitamin mg/day; Vit E: . X L.
women with E 800 TU/da randomized (MDA, ROS); Pelvic (P<0.001); significantly decreased ~ (101)
endometriosis (n=60) orall "> controlled trial pain scores (VAS)  pain scores for dysmenorrhea
¥ and dyspareunia (P<0.001).
Dose-dependently reduced LH
. . 50, 100, 200 Serum hormones and testosterone (P<0.001),
Polycystic ovarian mg/kg/da 10-day animal (LH, testosterone) lowered insulin resistance
) - i , , i
syndrome (PCOS) rat  Green tea extract 8 g Y Y X . . W .u . (104)
model intraperitoneally study insulin resistance, (P<0.05), and improved ovarian
for 10 days ovarian morphology morphology (fewer cysts, more
corpora lutea).
30 and 100 . . Lo.w—dose l.les (30 mg/kg)
Chemotherapy- . Follicle count, significantly increased follicle
. mg/kg/day,  2-week animal . )
induced accelerated Resveratrol (Res) orally for 2 stud ovarian OS markers numbers (P<0.005) and raised (99)
ovarian aging in mice eyeks udy (SOD2) ovarian SOD2 levels (P<0.05),
wi

alleviating ovarian aging.

reporting variables such as dietary composition, which can
modulate redox status (114).

Beyond these methodological considerations, the
evidence supporting anti-oxidant use is mainly indirect,
particularly in the context of SD, particularly for females.
There is an apparent lack of studies testing their efficacy
directly in sleep-deprived human populations. Furthermore,
the included studies exhibit significant heterogeneity in
SD protocols, anti-oxidant types, and dosages, making it
challenging to formulate specific clinical recommendations.

Theselimitations clearly define the path for future research
and pave the way for translational research from bench to
bedside. There is an urgent need for preclinical studies that
directly test a broader range of anti-oxidant compounds in
standardized female SD animal models. Subsequently, well-
designed randomized controlled trials (RCTs) in human
populations, such as shift workers or individuals with
chronic insomnia, are essential to validate these preclinical
findings and confirm the clinical efficacy of anti-oxidant
therapies. Future work should also aim to identify reliable
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biomarkers of OS to pinpoint which individuals are most
likely to benefit from such interventions, a significant
challenge given the complexities of accurately measuring
and interpreting OS in a clinical setting (115). Ultimately,
the goal is to develop evidence-based, personalized anti-
oxidant regimens that can be integrated into reproductive
healthcare as a low-cost, high-impact strategy to counteract
the growing challenge of SD in modern society.

Conclusion

A compelling body of evidence, synthesized in this review,
suggests that CSD, acting primarily through the induction
of OS, is a critical and potentially reversible contributor to
reproductive dysfunction. Addressing sleep quality should
be considered a fundamental component of reproductive
healthcare. The body of evidence reviewed herein strongly
supports the view that anti-oxidant therapies represent a
promising, mechanistically sound approach to mitigate
these harms. While their clinical utility for sleep-deprived
individuals remains a compelling hypothesis awaiting
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rigorous scientific validation, the potential for these
interventions to provide a tangible therapeutic strategy is a
significant message of this review.
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